説明

Fターム[5F102HC21]の内容

接合型電界効果トランジスタ (42,929) | 個別プロセス (4,778) | 熱処理(アニール) (453)

Fターム[5F102HC21]の下位に属するFターム

Fターム[5F102HC21]に分類される特許

81 - 100 / 400


【課題】製造工程において高温で短時間のアニールを可能にすることにより、イオン注入の工程が不要なAlGa1−xN/AlGa1−yNヘテロ接合のオーミック電極を備える電子デバイスを提供する。
【解決手段】
電子デバイスは、ワイドバンドギャップ化合物半導体層と、前記ワイドバンドギャップ化合物半導体層上に形成されるオーミック電極とを含む電子デバイスであって、前記ワイドバンドギャップ化合物半導体層は、InAlGaN(i+j+k=1,0≦i≦1,0<j≦1,0≦k<1)からなる化合物半導体バリア層とAlGa1−yN(0<y≦1)からなる化合物半導体チャネル層からなり、前記オーミック電極は、前記化合物半導体バリア層上に密着層が積層され、前記密着層上にオーミック層が積層されて形成された電極であり、前記密着層はZrからなるようにする。 (もっと読む)


【課題】イオン注入したダイヤモンドの高温高圧アニールにより起こるダイヤモンド表面のエッチングを防ぎ、従来の方法では得られない高品質P型、N型ダイヤモンド半導体を得るダイヤモンド半導体の作製方法を提供すること。
【解決手段】ダイヤモンド基板5−11を用意し、そのダイヤモンド基板5−11上にマイクロ波プラズマCVD装置を用い、メタンを反応ガスとして基板温度700℃でダイヤモンド薄膜5−12を1μm積層する。上記ダイヤモンド薄膜5−12にイオン注入装置を用い、加速電圧60kV、ドーズ量1×1014cm−2でドーパントを打ち込む。その後、イオン注入ダイヤモンド薄膜5−13上に保護層(白金)5−14を形成する。表面に保護層5−14が形成されたイオン注入ダイヤモンド薄膜5−13を、超高温高圧焼成炉内に配置し、3.5GPa以上、600℃以上の圧力、温度下でアニールする。 (もっと読む)


【課題】最大発振周波数fmaxを高くしてダイヤモンド電界効果トランジスタの特性を大きく向上させ、かつ電圧降下を小さく抑えることにより実用レベルに到達させること。
【解決手段】「ソース・ゲート電極間隔dSG、ゲート・ドレイン電極間隔dGDを狭くすること」と「ソース電極の厚さt、ドレイン電極の厚さtを厚くすること」とを両立させるために、ソース電極およびドレイン電極を、エッチング溶液を用いてエッチングする層とレジストを用いてリフトオフする層とに分けて形成する。これにより電極の逆メサ部を小さくすることができるため、ソース電極とゲート電極との間隔を小さくして最大発振周波数fmaxを上げ、かつソース電極およびドレイン電極の厚みを厚くして電圧降下を小さく抑えることができる。 (もっと読む)


【課題】ダイヤモンド薄膜内に存在する結晶欠陥、不純物等を減少させ、高品質なダイヤモンド薄膜を作製可能なダイヤモンド薄膜作製方法を提供すること。
【解決手段】ダイヤモンドが安定な高圧力下でアニールを行う。これにより、結晶中に含まれる格子欠陥等が回復、除去され、ダイヤモンド結晶薄膜を高品質化する事ができる。「(ダイヤモンドが)安定な、安定に」とは、ダイヤモンドがグラファイト化せずにダイヤモンドの状態を保つ状態を指す。ダイヤモンドが安定にアニール出来る領域内でアニールを行う温度(アニール温度、とも呼ぶ)Tおよびアニールを行う圧力(アニール圧力、とも呼ぶ)Pが決定される。この領域は、図21に示される、P>0.71+0.0027TまたはP=0.71+0.0027Tを満たし、なおかつP≧1.5GPaの領域である。このような領域は、図21中の斜線部分である。 (もっと読む)


【課題】工程増を最小限とした簡便な手法で、基板に反りを生ぜしめることなく、また基板上方の化合物半導体層の結晶性を損なうことなく確実な素子分離を実現し、信頼性の高い装置構成を得る。
【解決手段】SiC基板1上の素子分離領域に相当する部位にマスク2を形成し、マスク2を覆うようにSiC基板1上に緩衝層3を第1の温度で形成し、第1の温度より高い第2の温度で加熱処理して緩衝層3のうちSiC基板1上の部位を結晶化し、緩衝層3の上方に化合物半導体層10を形成して、化合物半導体層10のマスク2の上方に相当する部位を素子分離領域とする。 (もっと読む)


【課題】炭化珪素基板を用いた接合型FETにおいて、ゲート・ソース間のpn接合領域において生じるリーク電流を低減する。
【解決手段】炭化珪素基板を用いたトレンチ型接合FETにおいて、トレンチ5の側壁および底面に窒素を導入することにより、トレンチ5の表面にn型層8およびn型層9を形成する。これによりp型ゲート領域4とn型ソース領域3との接合領域であるpn接合領域はダメージの多いトレンチ5の側壁ではなく半導体基板21の主面において露出し、また、その露出する領域は狭まるため、pn接合領域におけるリーク電流を低減することができる。 (もっと読む)


【課題】オン動作時には電子移動の抵抗が低く、かつオフ動作時にはゲート電極と2次元電子ガスとのゲートリーク電流が発生しにくいIII族窒化物系へテロ電界効果トランジスタを提供する。
【解決手段】本発明のIII族窒化物系へテロ電界効果トランジスタは、基板と、該基板の上に設けられるキャリア走行層と、該キャリア走行層上に、ヘテロ界面を形成するように設けられる障壁層と、該障壁層上の一部からキャリア走行層の内部まで掘り込まれたリセス構造と、該リセス構造上に設けられる絶縁層と、該絶縁層上に設けられるゲート電極とを含み、キャリア走行層および障壁層はいずれも、III族窒化物半導体からなり、絶縁層は、リセス構造の側面上に形成される側面絶縁層と、リセス構造の底面上に形成される底面絶縁層とからなり、側面絶縁層の厚みは、前記底面絶縁層の厚みよりも厚いことを特徴とする。 (もっと読む)


【課題】ゲート−ソース間およびゲート−ドレイン間のキャパシタンスの低減と、JFETをオンさせる際に必要なゲート印加電圧が高電圧になることを抑制する。
【解決手段】n-型チャネル層2の表面に直接p+型ゲート領域4を形成し、p+型ゲート領域4のうちn-型チャネル層2と接する部分と比較して、n-型チャネル層2から離れた部分が幅広となるようにする。そして、p+型ゲート領域4のうち幅広とされた部分がn-型チャネル層2から所定距離離れるようにする。例えば、n-型チャネル層2に凹部2aを形成し、この凹部2a内にp+型ゲート領域4を形成する。 (もっと読む)


半導体デバイスを形成する方法であって、この方法は、半導体層を準備するステップと、半導体層上に第1の金属の第1の層を準備するステップとを含む。第1の金属の第1の層上に第2の層を準備することができる。第2の層は、シリコン層及び第2の金属の層を含むことができ、第1の金属及び第2の金属は異なり得る。第1の金属はチタンとすることができ、第2の金属はニッケルとすることができる。関連するデバイス、構造体、及び他の方法もまた説明される。 (もっと読む)


【課題】単一のダイの上にIII−V族半導体デバイスをIV族半導体デバイスと共に集積する、複合デバイスの製造方法を提供する。
【解決手段】IV族半導体基板202上にIII−V族半導体本体274a,274bを形成するステップと、III−V族半導体本体にトレンチを形成し、トレンチ内にIV族半導体本体232を形成するステップとを有する。この方法は、IV族半導体本体内に少なくとも1つのIV族半導体デバイス272を製造するステップと、III−V族半導体本体内に少なくとも1つのIII−V族半導体デバイス274を製造するステップも含む。III−V族半導体本体の上面とIV族半導体本体の上面とを平坦化して、それぞれの上面をほぼ同一平面にするステップをさらに含む。一実施形態では、トレンチの側壁に隣接する、前記IV族半導体本体の欠陥領域に、少なくとも1つの受動デバイスを製造するステップをさらに含む。 (もっと読む)


【課題】 チップ面積を大きくし過ぎることなく、過電圧、過電力が加わっても破壊されない電界効果トランジスタを提供する。
【解決手段】 本発明の電界効果トランジスタは、
半導体層上に、ゲート電極110と、ドレイン電極109と、ソース電極108と、保護ダイオード(保護ダイオード電極)111とが配置され、
ドレイン電極109が、保護ダイオード111の周囲の一部もしくは全部を囲む状態で形成されているか、または、
ドレイン電極109は、複数であり、複数のドレイン電極109の少なくとも一対のドレイン電極間に、保護ダイオード111が配置されるように形成されていることを特徴とする。 (もっと読む)


【課題】ゲートリーク電流を抑制する、窒化物半導体からなるリセスゲート構造のヘテロ接合FET及びその製造方法を提供することを目的とする。
【解決手段】本発明のヘテロ接合FETは、窒化物半導体からなるヘテロ接合FETであって、バリア層40とバリア層40の上に形成されたキャップ層50を含む半導体層と、半導体層に下部を埋没するようにして半導体層上に設けられたゲート電極100と、ゲート電極100の両側に離間して半導体層上に夫々設けられたソース電極80及びドレイン電極90とを備える。キャップ層50は、少なくとも表面側で、少なくともゲート電極100のドレイン電極90側の側面に接する領域に、アクセプタ準位を形成する不純物がドーピングされるドーピング領域60を備える。 (もっと読む)


【課題】 第1半導体層と第2半導体層とのヘテロ接合により第1半導体層に二次電子ガス層を生じさせつつ、ソース電極とドレイン電極との間の通電状態を切り換えるためのゲート電圧のしきい値を所定の値に調整することができる電界効果トランジスタを提供する。
【解決手段】 電界効果トランジスタ10では、サファイア基板11上に、i型のGaNからなるGaN層13と、i型のGaNと格子定数が異なるi型のAlGaNからなるAlGaN層14と、i型のAlGaNよりもエッチングレートが小さいi型のAlInNからなるAlInN層15とが順に形成されている。AlInN層15の上端から途中まで伸びている溝25が形成されており、その溝25の底部の少なくとも一部にゲート電極26がショットキー接続されている。 (もっと読む)


【課題】 チャネルの高い移動度を得ながら、かつ、縦方向耐圧およびゲート電極端における耐圧の両方の耐圧性能を確実に得ることができる、半導体装置およびその製造方法を提供する。
【解決手段】 n型ドリフト層および該n型ドリフト層上に位置するp型層を含むGaN系積層体に、開口部が設けられ、開口部を覆うように位置する、チャネルを含む再成長層と、再成長層に沿って該再成長層上に位置するゲート電極とを備え、開口部はn型ドリフト層に届いており、ゲート電極の端は、平面的に見てp型層から外れた部分がないように位置していることを特徴とする。 (もっと読む)


【課題】反りの少ないエピタキシャルウェハを提供する。
【解決手段】エピタキシャルウェハは、基板1と窒化物半導体4,5,6の間に形成されたアルミニウム層2と、アルミニウムを陽極酸化して形成したアルミニウムの陽極酸化(陽極酸化Al)層3によって、熱膨張係数差に起因した応力を緩和することで、ウェハのそりを押さえることが可能となる。 (もっと読む)


【課題】エピタキシャル成長を行わなくても素子形成が行え、かつ、バンチングが発生することを防止できるようにする。
【解決手段】エピタキシャル成長を行わず、素子を構成する各領域をイオン注入のみによって形成すると共に、SiC基板1としてオフ角を有しないオン基板を用いる。これにより、イオン注入領域を活性化するための熱処理によってバンチングが発生しないようにできる。したがって、エピタキシャル成長を行わなくても素子形成が行え、かつ、バンチングが発生することを防止できるSiC半導体装置とすることができる。 (もっと読む)


【課題】高い信頼性を得ることができる化合物半導体装置及びその製造方法を提供する。
【解決手段】窒化物半導体層1上に、高融点金属を含む第1の導電膜3を形成する。第1の熱処理を行うことにより、第1の導電膜3と窒化物半導体層1とを反応させて高融点金属の窒化物層4を形成すると共に、窒化物半導体層1の表面に窒素空孔を生じさせる。第1の導電膜2上に、Alを含有する第2の導電膜3を形成する。第2の熱処理を行うことにより、第2の導電膜3中のAl原子を窒化物半導体層1の表面まで拡散させる。 (もっと読む)


【課題】ノーマリオフ動作を可能にし、かつしきい値電圧を自由に制御出来るGaN系MOSFETを提供する。
【解決手段】p−GaNからなる電子走行層13とゲート電極18との間にゲート絶縁膜15が形成されたGaN系MOSFET10である。ゲート電極18は、AlGaInP混晶からなる。ゲート電極18は、p型AlGaInP混晶からなる第1のゲート層19と、この上に形成されたp型GaAsからなる第2のゲート層20と、この上に形成された金属層(AuGe/Au電極)21とを有する。AlGaInP混晶の混晶比を変化させることにより、しきい値電圧を制御することが出来る。 (もっと読む)


【課題】III−V族チャネルとIV族ソース−ドレインとを有する半導体デバイス及びその製造方法を提供する。
【解決手段】III−V族材料のエネルギーレベルの密度とドーピング濃度をIII−V族材料とIV族材料のヘテロエピタキシと素子の構造設計によって高める。本発明の方法は、基板100上にダミーゲート材料層を堆積し、フォトリソグラフィでダミーゲート材料層にダミーゲートを区画することと、ダミーゲートをマスクとして使用し、セルフアライン型イオン注入によってドーピングを行い、高温で活性化を行い、ソース−ドレイン108を形成することと、ダミーゲートを除去することと、ソース−ドレインのペアの間の基板にエッチングで凹陥部を形成することと、凹陥部にエピタキシャル法によりチャネル含有スタック素子112を形成することと、チャネル含有スタック素子上にゲート120を形成することと、を含む。 (もっと読む)


【課題】放熱性に優れ、製造歩留まりの向上を図ることができる半導体装置及びその製造方法を提供することを目的とする。
【解決手段】
半導体装置は、基板1の上方に設けられた化合物半導体層2,3,4と、化合物半導体層2,3,4の上方に設けられた複数のソース電極7及び複数のドレイン電極9と、化合物半導体層2,3,4を貫通し、複数のソース電極7のそれぞれに接続される複数のビア配線22と、化合物半導体層2,3,4を貫通し、複数のドレイン電極9のそれぞれに接続される複数のビア配線23と、複数のビア配線22に接続され、基板1に埋め込まれたソース共通配線18と、複数のビア配線23に接続され、基板1に埋め込まれたドレイン共通配線20とを有する。 (もっと読む)


81 - 100 / 400