説明

Fターム[5F140BH05]の内容

Fターム[5F140BH05]の下位に属するFターム

Fターム[5F140BH05]に分類される特許

261 - 274 / 274


【課題】 極浅接合を形成する方法を提供する。
【解決手段】 p型素子に極浅接合を形成する方法は、アルミニウムイオンをn型にドープされたシリコンに打ち込み、続いてアルミニウムを活性化させ、かつ拡散させるために低温アニーリングを行う。アルミニウムを使用することによりホウ素を使用した場合に比べ、より浅い接合を形成することができる、抵抗が低くなる、より低温でのアニーリングが可能となるといった様々な利点が生まれる。 (もっと読む)


【課題】オン抵抗の低減とESD耐量などのサージ耐量の向上を図ることができる半導体装置を提供する。
【解決手段】p型半導体基板1の表面層にストライプ状のnウェル領域2を形成し、このnウェル領域2の表面層にストライプ状のpウェル領域3を形成し、このpウェル領域3の表面層にストライプ状のnソース領域4とストライプ状のpコンタクト領域5を形成し、このnソース領域4上とpコンタクト領域5上にストライプ状のソース電極11を形成し、nウェル領域2の表面層にpウェル領域3と離してストライプ状のnドレイン領域8を形成し、このnドレイン領域8に囲まれるように四角形のpアノード領域15を複数個形成し、nドレイン領域8上とpアノード領域15上にドレイン電極10を形成する。pウェル領域3(nソース領域4)と対向する四角形のpアノード領域15の辺とはドレイン電極10は接しないようにする。 (もっと読む)


【課題】 絶縁ゲート型半導体装置及びその駆動方法に関し、高駆動電流化及び微細化構造においても基板バイアス効果によってオフリークIoff を低減して低消費電力化を実現する。
【解決手段】 幅が3〜20nmの第1のサイドウォール4、幅が30nm〜60nmの第2のサイドウォール5、及び、その外側に第3のサイドウォール6を有するとともに、第1のサイドウォール4の直下に第1のサイドウォール4と自己整合する長さのエクスエンション領域7を設けるとともに、第2のサイドウォール5の直下に第2のサイドウォール5と自己整合する長さで且つエクステンション領域7と深接合のソース・ドレイン領域9の中間の深さのバッファ領域8を設けてソース・ドレイン構造を3重構造にする。 (もっと読む)


【課題】ゲート直下のpウェルとnウェルとの接合近傍のnウェル濃度を高めること。pウェルの直下におけるnウェルの不純物量および厚さを増加させ、ハイサイドスイッチに適した高いパンチスルー耐圧を得ること。
【解決手段】p型半導体基板1の表面層にnウェル2が形成され、nウェル2内にn+ドレイン領域8とpウェル3が形成され、pウェル3内にn+ソース領域4が形成され、pウェル3の、n+ソース領域4とnウェル2とに挟まれた部分の表面上にゲート酸化膜6を介してゲート電極7が形成された横型MOSFETにおいて、pウェル3を内包するように第2のnウェル13を形成し、ゲート直下のpウェル3とnウェル2との接合近傍におけるn型不純物濃度を高くするとともに、pウェル3の直下におけるn型半導体領域の不純物量と厚さを増加させる。 (もっと読む)


【課題】電力用のような高耐圧用途に使用できるボディ部分のプロファイルのばらつきの少ないDMOSを提供することを課題とする。
【解決手段】半導体基板の主表面に形成された第一導電型のウェルの所定の領域に形成された第二導電型のDMOSのボディ部分と、半導体基板上に形成されたゲート誘電膜と、ゲート誘電膜上にボディ部分の端部を跨ぐように形成されたゲート電極と、ゲート電極の両側の半導体基板の主表面に形成された第一の導電型の拡散層(但し、拡散層の少なくとも一方がボディ部内に形成されている)と、ボディ部分内に形成されたボディ部分より高い不純物濃度の第二導電型のコンタクト層とを含み、ボディ部分は、深さ方向のボディ部分とウェルとの濃度差が、半導体基板表面におけるボディ部分とウェルとの濃度差より大きい領域を備えていることを特徴とする半導体装置により上記課題を解決する。 (もっと読む)


【課題】 素子面積を増大させずにオン抵抗の低減を実現した横型MOSFETにおいて、更にオン抵抗を低減させる。
【解決手段】 トレンチ構造を用いることで素子面積を増大させずにチャネル幅を増大させ、オン抵抗の低減を実現した横型トレンチMOSFETにおいて、トレンチ008の両端付近に多方向イオン注入によりソース層004およびドレイン層005を形成する。このような構成にすることでソース層004およびドレイン層005がトレンチ008より深く形成され、電子がチャネル全域に広がって流れ、実効的なL長も短くなることで更なるオン抵抗の低減化が実現できる。 (もっと読む)


【課題】 チャネルに応力が印加されるMOSトランジスタの特性のばらつきを防ぐことができる半導体装置とその製造方法を提供すること、及び、MOSトランジスタのチャネルにおけるキャリア分布を直接測定することができる半導体装置の評価方法を提供すること。
【解決手段】 シリコン(半導体)基板10と、シリコン基板10の上に順に形成されたゲート絶縁膜13及びゲート電極14cと、ゲート電極14cの横のシリコン基板10のリセス(穴)10a、10bに形成されたソース/ドレイン材料層18a、18bと、を有し、リセス10a、10bのゲート電極14c寄りの側面10c、10dが、シリコン基板10の少なくとも一つの結晶面で構成されることを特徴とする半導体装置による。 (もっと読む)


【課題】 信頼性の高い半導体装置を実現するために、寄生容量の大きな半導体装置を提供する。
【解決手段】 半導体装置は、第1方向に延在する突出部1bを有する半導体基板1を含む。ゲート絶縁膜11は、突出部の上面上および第1方向に沿う側面上に配設される。ゲート電極12は、第1部分12aと第2部分12bを有する。第1部分は、突出部と交差し、且つ突出部の上面上のゲート絶縁膜上に配設される。第2部分は、突出部の側面上のゲート絶縁膜上に配設され、且つ第1方向における長さが第1部分の第1方向における長さより長い。1対のソース/ドレイン領域13が、ゲート電極の第1部分の下方の領域を挟むように突出部の表面に形成される。 (もっと読む)


【課題】更なる微細化を促進できる半導体装置の製造方法を提供すること。
【解決手段】 第1の半導体層1上に、第1半導体層1よりも絶縁化し難い第2半導体層3を形成する工程と、第2半導体層3の上面から第1半導体層1にかけて、第2半導体層3、及び第1半導体層1を露出させる溝7を形成する工程と、溝7から露出する第1半導体層1、及び第2半導体層3を絶縁化し、溝を、絶縁化した第1半導体層9で閉じる工程とを具備する。 (もっと読む)


電界効果電子デバイス(100,600)(例えばVDMOS等のFET)は、誘電体層(104,608)に隣接して配置されたフィールドプレート(105,607)を有しており、当該フィールドプレートは、半導体層(103,602)に隣接して配置されている。この場合、デバイスのドリフト領域は半導体層中にある。ドーピングレベルはドリフト領域に亘って略非線形的に変化し、デバイスは略一定の低減された表面電界を示す。電界効果デバイスの製造方法は、デバイスの半導体層のドリフト領域に非線形で不均一なドーピング密度を与えることを含んでいる。この場合、半導体層及び誘電体層の両方が一定でない厚さを有している。誘電体層は、low−k誘電材料によって形成され得る。
(もっと読む)


マルチチャネル半導体デバイスは、完全に、または部分的に量子井戸が空乏化(排除)(depleted)されており、CMOSFETのようなULSIデバイスにおいて特に役立つ。マルチチャネル領域(15)は、最上部のチャネル領域上に、例えばゲート絶縁膜(14c)により分離されるゲート電極が形成された状態で、基板(12)上に形成される。マルチチャネル領域(15)およびゲート電極(16)の垂直方向の積み重なりが、デバイスによって占有されるシリコン領域を増加させることなく、半導体デバイス中の駆動電流を増加させることができる。
(もっと読む)


【課題】 p型電界効果トランジスタ(PFET)およびn型電界効果トランジスタ(NFET)を有する集積回路を提供することにある。
【解決手段】 第1の歪みは、NFETではなくPFETのみのソースおよびドレイン領域内に配置されたシリコン・ゲルマニウムなどの格子不整合半導体層を介してNFETではなくPFETのチャネル領域に加えられる。PFETおよびNFETを形成するプロセスが提供される。PFETのソースおよびドレイン領域になるためのエリア内にトレンチがエッチングされ、それに隣接するPFETのチャネル領域に歪みを加えるために、格子不整合シリコン・ゲルマニウム層をそこにエピタキシャル成長させる。シリコン・ゲルマニウム層の上にシリコンの層を成長させ、シリコンの層からサリサイドを形成して、低抵抗ソースおよびドレイン領域を提供することができる。 (もっと読む)


半導体装置はセル(18)に隣接するトレンチ(42)を有する。このセルは、ソース・コンタクト領域及びドレイン・コンタクト領域(26、28)と、それとは逆の導電型の中央本体(40)とを含む。この装置は双方向性であり、比較的低いオン抵抗で電流をいずれの方向にも制御する。好ましい実施形態は、ソース・ドリフト領域及びドレイン・ドリフト領域(30、32)と共に働いてRESURF効果を生み出す電位プレート(60)を含む。
(もっと読む)


【課題】 サブミクロンCMOSトランジスタを、アナログCMOSトランジスタ、高耐圧MOSトランジスタ、バイポーラトランジスタ、ダイオードまたは拡散抵抗などと一緒に、それぞれの特性を劣化させることなく、同一基板上に混載すること。
【解決手段】 半導体基板1の一主面側にパンチスルーストッパー層を形成する際に、アナログCMOSトランジスタ、高耐圧MOSトランジスタ、バイポーラトランジスタ、ダイオードまたは拡散抵抗を形成する領域をマスクしてたとえばイオン注入をおこなう。それによって、サブミクロンCMOSトランジスタの形成領域にパンチスルーストッパー領域4を形成するとともに、アナログCMOSトランジスタ、高耐圧MOSトランジスタ、バイポーラトランジスタ、ダイオードまたは拡散抵抗の形成領域にパンチスルーストッパー領域が形成されるのを防ぐ。 (もっと読む)


261 - 274 / 274