説明

Fターム[5F140BK21]の内容

Fターム[5F140BK21]に分類される特許

121 - 140 / 1,499


【課題】埋め込みゲートトランジスタのSCEに対する免疫性を向上させると同時に、分岐点での重なりを増加させる方法及び構造の提供。
【解決手段】基板102は第1活性領域104と第2活性領域106とを有し、浅溝分離(STI)領域108によって分離される。バッファ層112は応力緩和層として機能しハードマスク層114が形成される。基板102の表面に分離領域108を部分的に網羅するように凹部118を設ける。ゲート誘電体120が凹部118に形成された後第一ドーパントインプラント122により、ドープ済みチャンネル領域124が形成される。インプラントはハードマスク114を貫通しないので、凹部118の下に形成されたドープ済みチャンネル領域124中のドーパント濃度は最も高くなる。ドープ済みチャンネル領域124はトランジスタのオン・オフを切り替える閾値電圧を変調する。 (もっと読む)


【課題】転位ループが発生するおそれがあるダミーパターン領域を有しながらも、転位ループによる基板上の他の素子等への悪影響が抑えられた半導体装置を提供する。
【解決手段】一実施の形態による半導体装置は、基板上に形成された素子分離絶縁膜と、前記素子分離絶縁膜により前記基板上に区画された素子領域およびダミーパターン領域と、前記素子領域内の前記基板上に形成された第1のエピタキシャル結晶層と、前記ダミーパターン領域内の前記基板上に形成された第2のエピタキシャル結晶層と、を有する。第1のエピタキシャル結晶層は前記基板を構成する結晶と異なる格子定数を有する結晶からなる。第2のエピタキシャル結晶層は前記第1のエピタキシャル結晶層と同じ結晶からなる。前記第2のエピタキシャル結晶層と前記基板との界面上の任意の点を含む前記基板の(111)面は、前記第2のエピタキシャル結晶層よりも深い領域で前記素子分離絶縁膜に囲まれる。 (もっと読む)


【課題】高性能・高信頼性の半導体装置を製造するための半導体装置の製造方法を提供する。
【解決手段】半導体基板上に保護膜を形成し、保護膜を介して不純物をイオン注入する。注入した不純物を活性化して不純物層を形成した後、保護膜を除去する。その後、不純物層の表面部の半導体基板を除去し、表面部を除去した半導体基板上に半導体層をエピタキシャル成長する。 (もっと読む)


【課題】ゲート絶縁膜の形成を1000℃以上で行う場合に、Grow−in欠陥の発生の抑制と、BMDを用いたゲッタリング効果の向上を両立させる。
【解決手段】初期状態での酸素濃度が5×1017atoms/cm以下の半導体基板に素子分離領域3を形成し、ゲート絶縁膜5aを1000℃以上の熱酸化により形成した後、酸素をイオン注入して熱処理することで、BMD層30を素子分離領域3の底面よりも下方に形成する。 (もっと読む)


【課題】 窒化物上へゲルマニウム・スペーサを選択的に堆積するための構造及び方法を提供すること。
【解決手段】 半導体製造プロセス中でゲルマニウム構造体を選択的に形成する方法は、化学的酸化物除去(COR)プロセスにおいて自然酸化物を除去し、次いで、加熱された窒化物及び酸化物表面を加熱されたゲルマニウム含有ガスに曝して、ゲルマニウムを選択的に窒化物表面上にだけ形成し、酸化物表面上には形成しない。 (もっと読む)


【課題】メタルゲートプロセスにおけるプリメタル層間絶縁膜の平坦性を向上できるようにする。
【解決手段】まず、半導体基板1の上に、ゲート絶縁膜3を介在させてゲート電極4を形成する。その後、半導体基板1にゲート電極4をマスクとしてソース・ドレイン領域を形成する。続いて、ゲート電極4を覆うように半導体基板1上の全面に第1の酸化シリコン膜10を形成する。その後、ゲート電極4をストップ膜とするCMP法により、第1の酸化シリコン膜10を平坦化する。続いて、ゲート電極4を含む第1の酸化シリコン膜10の上に、第2の酸化シリコン膜11を形成する。その後、ゲート電極4をストップ膜とするCMP法により、第2の酸化シリコン膜10を平坦化する。さらに、ゲート電極4を含む第2の酸化シリコン膜10の上に、第3の酸化シリコン膜12を形成する。 (もっと読む)


【課題】ドレイン端での局所的な電流集中を防止して静電放電に対する耐性を向上させる。
【解決手段】N型高濃度埋め込み領域102の上面にN型低濃度領域103とN型ウエル領域104とN型高濃度埋め込みコンタクト領域105を順次隣接して配置し、N型低濃度領域103の上面にP型低濃度領域106を配置し、ドレイン電極113Dが接続される第1のN型高濃度領域107をN型高濃度埋め込みコンタクト領域105の上面に配置し、ソース電極113Sが接続される第2のN型高濃度領域108とP型高濃度領域109をP型低濃度領域106の上面にチャネル幅方向に並べて配置し、第1のN型高濃度領域107からN型ウエル領域104の上面を経由しP型低濃度領域106の上面に向けて素子分離領域110を配置し、P型低濃度領域106の上面に位置する箇所の上面にゲート酸化膜を介してゲート電極111を配置し、P型低濃度領域106のうちのゲート電極111の下部にチャネルが形成されるようにした。 (もっと読む)


【課題】超高速アニールプロセスにおける加熱応力によるウェハ破壊の頻度を抑圧することが可能な半導体装置の製造方法を提供する。
【解決手段】半導体装置の製造方法であって、補助加熱されている半導体基板の補助加熱されている裏面とは反対側の表面に0.1m秒以上100m秒以下のパルス幅を有するフラッシュランプ光を照射し、その照射エネルギーによって熱処理する工程を、前記半導体基板の補助加熱されている裏面の面積をW、該面と接触するサセプタと該面との接触面積をCとすると、気圧値Pが
0.01−0.005(C/W)≦P≦0.4−0.2(C/W)(kgf/cm
の関係を満たす減圧状態下で実行する。 (もっと読む)


【課題】金属電極と該金属電極の上に形成されたシリコン電極とを有するゲート電極を備えた電界効果型トランジスタを実現する際に、金属電極とシリコン電極との界面に生じる界面抵抗を低減できるようにする。
【解決手段】半導体装置は、半導体基板100における第1の活性領域103aに形成されたP型の電界効果型トランジスタを備えている。第1の電界効果型トランジスタは、第1の活性領域103aの上に形成された第1のゲート絶縁膜106aと、第1のゲート絶縁膜106aの上に形成された第1のゲート電極115aとを有している。第1のゲート電極115aは、第1のゲート絶縁膜106aの上に形成された第1の金属電極107aと、該第1の金属電極107aの上に形成された第1の界面層110aと、該第1の界面層110aの上に形成された第1のシリコン電極111aとを有している。 (もっと読む)


【課題】本発明は、ゲート絶縁膜の一方の側のみに、容易に、かつ精度良く、バーズビークを形成可能な半導体装置の製造方法を提供することを課題とする。
【解決手段】斜めイオン注入により、マスク膜にイオンを注入することで、シリコン酸化膜及びシリコン窒化膜を介して、ゲート絶縁膜の第1の側面と第1の不純物拡散領域の上面とで構成される角部に形成されたマスク膜のエッチング速度を、他の部分に形成されたマスク膜よりも速くし、次いで、ウエットエッチングにより、角部に形成されたマスク膜を選択的に除去して、シリコン窒化膜の表面の一部を露出させ、次いで、ウエットエッチングにより、マスク膜から露出されたシリコン窒化膜を選択的に除去して、シリコン酸化膜の表面の一部を露出させ、その後、熱酸化法により、ゲート絶縁膜の第1の側面側にバーズビークを形成する。 (もっと読む)


【課題】製造工程を簡略化することの可能な半導体装置の製造方法を提供する。
【解決手段】半導体基板11上に、ダミーゲート電極及びダミーコンタクトプラグの側面を覆う層間絶縁膜16を形成後、ダミーゲート電極、ダミーコンタクトプラグを選択的に除去して、ゲート電極形成用溝17及びコンタクト孔18を同時に形成し、次いで、ゲート電極形成用溝17内、コンタクト孔18内、及び層間絶縁膜16の上面を覆う高誘電率絶縁膜42を成膜し、次いで、斜めイオン注入法により、ゲート電極形成用溝17の下部17Aに形成された高誘電率絶縁膜42にイオン注入しないように、高誘電率絶縁膜42を介して、半導体基板に不純物拡散領域15を形成し、次いで、イオン注入された高誘電率絶縁膜42を選択的に除去することで、ゲート電極形成用溝の下部にゲート絶縁膜を形成し、かつコンタクト孔から不純物拡散領域15の上面を露出させる。 (もっと読む)


【課題】ゲート誘電体の上に複数のシリサイド金属ゲートが作製される相補型金属酸化物半導体集積化プロセスを提供する。
【解決手段】形成されるシリサイド金属ゲート相の変化を生じさせるポリSiゲートスタック高さの変化という欠点のないCMOSシリサイド金属ゲート集積化手法が提供される。集積化手法は、プロセスの複雑さ最小限に保ち、それによって、CMOSトランジスタの製造コストを増加させない。 (もっと読む)


【課題】チャネル移動度と閾値電圧とのトレードオフの関係を打破し、チャネル移動度を向上させ、かつ、閾値電圧の低下を抑えた炭化珪素半導体装置およびその製造方法を提供する。
【解決手段】この発明に係る炭化珪素半導体装置1aの製造方法は、炭化珪素エピタキシャル層6を有する炭化珪素基板2の炭化珪素エピタキシャル層6上に、リンをドープした多結晶珪素膜18を形成する工程と、多結晶珪素膜18を熱酸化してゲート絶縁膜12を形成する工程と、を備えた。 (もっと読む)


【課題】生産性に優れた半導体装置およびその製造方法を提供する。
【解決手段】半導体装置100は、シリコン基板101と、同一のシリコン基板101上に設けられたN型トランジスタ200およびP型トランジスタ202と、を備え、N型トランジスタ200およびP型トランジスタ202は、Hfを含む高誘電率ゲート絶縁膜108と、高誘電率ゲート絶縁膜108上に設けられたTiN膜110と、を有しており、N型トランジスタ200は、シリコン基板101と高誘電率ゲート絶縁膜108との間に、La添加SiO2膜109aを有しており、P型トランジスタ202は、高誘電率ゲート絶縁膜108とTiN膜110の間に、N型トランジスタ200と同じ仕事関数調整用元素を含有するLa添加SiO膜109bを有する。 (もっと読む)


【課題】MOSトランジスタの新規な閾値電圧制御技術を提供する。
【解決手段】半導体装置の製造方法は、半導体基板のp型領域上に、ゲート絶縁膜を形成する工程と、ゲート絶縁膜上に、化学量論組成よりも酸素量の少ない酸化アルミニウム膜を形成する工程と、酸化アルミニウム膜上に、タンタルと窒素とを含むタンタル窒素含有膜を形成する工程と、タンタル窒素含有膜上に、導電膜を形成する工程と、導電膜をパターニングして、ゲート電極を形成する工程と、ゲート電極をマスクとして、p型領域にn型不純物を注入する工程と、タンタル窒素含有膜の形成後に、熱処理を行う工程とを有する。 (もっと読む)


【課題】CMISデバイスにおいて、pチャネル型電界効果トランジスタの動作特性を劣化させることなく、ひずみシリコン技術を用いたnチャネル型電界トランジスタの動作特性を向上させる。
【解決手段】所望する濃度プロファイルおよび抵抗を有するnMISのソース/ドレイン(n型拡張領域8およびn型拡散領域13)およびpMISのソース/ドレイン(p型拡張領域7およびp型拡散領域11)を形成した後、所望するひずみ量を有するSi:C層16をn型拡散領域13に形成することにより、nMISのソース/ドレインにおいて最適な寄生抵抗と最適なSi:C層16のひずみ量とを得る。また、Si:C層16を形成する際の熱処理を1m秒以下の短時間で行うことにより、すでに形成されているp型拡張領域7およびp型拡散領域11のp型不純物の濃度プロファイルの変化を抑える。 (もっと読む)


【課題】半導体装置の性能を向上させる。
【解決手段】イオン注入により半導体基板1にエクステンション領域EXを形成してから、ゲート電極GEの側壁上にサイドウォールスペーサSWを形成し、その後、イオン注入により半導体基板1にソース・ドレイン領域SDを形成する。サイドウォールスペーサSWを形成するには、半導体基板1上にゲート電極GEを覆うように絶縁膜6を形成してから、この絶縁膜6を異方性エッチングし、その後、半導体基板1上にゲート電極GEを覆うように絶縁膜7を形成してから、この絶縁膜7を異方性エッチングすることで、ゲート電極GEの側壁上に残存する絶縁膜6,7からなるサイドウォールスペーサSWを形成する。絶縁膜6のエッチング工程では、絶縁膜6をアンダーエッチングまたはジャストエッチングし、絶縁膜7のエッチング工程では、絶縁膜7をオーバーエッチングする。 (もっと読む)


【課題】トランジスタの耐圧を向上し得る半導体装置及びその製造方法を提供する。
【解決手段】半導体基板10上にゲート絶縁膜16を介して形成されたゲート電極18cと、ゲート電極の一方の側の半導体基板に形成された第1導電型のドレイン領域54aと、ゲート電極の他方の側の半導体基板に形成された第1導電型のソース領域54bと、ドレイン領域からゲート電極の直下に達する第1導電型の第1の不純物領域56と、ソース領域と第1の不純物領域との間に形成された、第1導電型と反対の第2導電型の第2の不純物領域58とを有し、ゲート電極は、第1導電型の第1の部分48aと、第1の部分の一方の側に位置する第2導電型の第2の部分48bとを含み、ゲート電極の第2の部分内に、下端がゲート絶縁膜に接する絶縁層24が埋め込まれている。 (もっと読む)


【課題】半導体素子を提供すること。
【解決手段】半導体素子であって、基板と、該基板内に形成された井戸領域と、該基板の表面の上方に形成されたゲート構造と、該ゲート構造に隣接して基板内に形成されたソース領域と、該ソース領域の反対側に該ゲート構造に隣接して該基板内に形成されたドレイン領域と、該ソース領域を通して形成されたトレンチと、該トレンチを通して形成されたプラグと、該トレンチを通して該プラグの上方に形成されたソースタイと、該ソース領域、該ドレイン領域、および該ゲート構造の上方に形成された相互接続構造とを備える、半導体素子。 (もっと読む)


【課題】希土類金属を含有するHigh-k膜のエッチング残渣を抑制するための半導体装置の製造方法を提供する。
【解決手段】半導体基板1上に絶縁膜4を形成する工程と、絶縁膜4の上に希土類元素含有酸化膜7、12を形成する工程と、フッ酸、塩酸、硫酸を含む薬液により希土類元素含有酸化膜7、12をエッチングする工程とを有し、これにより希土類元素含有酸化膜7、12のエッチングを良好に行う。 (もっと読む)


121 - 140 / 1,499