説明

Fターム[5F140BK29]の内容

Fターム[5F140BK29]に分類される特許

121 - 140 / 795


【課題】オン抵抗が低く耐圧および信頼性が高い電界効果トランジスタを提供する。
【解決手段】基板1上に形成されたキャリア走行層3と、前記キャリア走行層上に形成され前記キャリア走行層よりもバンドギャップエネルギーが高いキャリア供給層4a、4bと、前記キャリア供給層から前記キャリア走行層の表面または内部に到る深さまで形成されたリセス部5と、前記キャリア供給層上に形成されたドレイン電極11と、前記リセス部に形成され、前記ドレイン電極側のキャリア供給層と重畳するように延設したゲート電極7と、前記リセス部の底面と前記ゲート電極との間に形成された第1絶縁膜6と、前記ゲート電極と前記ドレイン電極側のキャリア供給層との間に形成され前記第1絶縁膜よりも誘電率が高い第2絶縁膜8aとを備える。 (もっと読む)


【課題】CMOS回路を構成するnチャネルMISFETとpチャネルMISFETの両者において、キャリア移動度を高めて高い性能を実現する半導体装置を提供する。
【解決手段】半導体基板の第1領域及び第2領域において第1ゲート絶縁膜及び第1ゲート電極(16,17)を形成し、第1ゲート電極の両側部における半導体基板中にソースドレイン領域を形成し、ソースドレイン領域の導電性不純物を活性化し、第1ゲート電極を被覆して全面に半導体基板に応力を印加するストレスライナー膜(27,28)を形成し、少なくとも第1領域に形成された部分のストレスライナー膜は残しながら第2領域における第1ゲート電極の上部部分のストレスライナー膜を除去し、第2領域における第1ゲート電極の上部を露出させて第1ゲート電極を全て除去して第2ゲート電極形成用溝Tを形成し、第2ゲート電極形成用溝内に第2ゲート電極(31,32)を形成する。 (もっと読む)


【課題】半導体装置を構成する半導体層の表面上にAlOx層を安価に形成でき、且つAlOx層を厚膜化できる半導体装置の製造方法を提供する。
【解決手段】半導体基板1と、前記半導体基板1上に形成された窒化物系化合物半導体層2、3、4と、前記窒化物系化合物半導体層2、3、4上に隣接して形成された酸化アルミニウム層7と、を備える半導体装置の製造方法であって、
前記窒化物系化合物半導体層2、3、4上に多結晶又は非晶質の窒化アルミニウム層6を形成する第1の工程と、前記多結晶又は非晶質の窒化アルミニウム層6を熱酸化して前記酸化アルミニウム層7を得る第2の工程と、を備えることを特徴とする半導体装置の製造方法。 (もっと読む)


【課題】低い寄生抵抗(例えば、Rpara)および/または高い駆動電流の改善された特性を有するフィンフェットを提供する。
【解決手段】フィンフェット100およびフィンフェットの製造方法が提供される。フィンフェットは、半導体基板106上に、2つまたは複数のフィン102,104と、前記フィンの側面に設けられるエピタキシャル層108,110と、前記エピタキシャル層の表面上を覆うように設けられる金属−半導体化合物112,114とを備える。フィンは、前記半導体基板の表面上に対して実質的に垂直な側面を有する。前記エピタキシャル層は、前記フィンの側面に対して斜角を有して延設される表面を有する。フィンフェットは、前記金属−半導体化合物上に設けられるコンタクト116を含み得る。 (もっと読む)


【課題】電界効果トランジスタにおいて、フィールドプレート終端での高電界の集中を緩和し、もって高耐圧半導体装置として利用可能とする。
【解決手段】本電界効果トランジスタ30は、GaN系エピタキシャル基板32の電子走行層上に、ゲート電極38を挟んで配置されたソース電極34及びドレイン電極36を備え、ゲート電極38の上部に、ドレイン電極36側及びソース電極34側に庇状に突き出したフィールドプレート40が形成され、基板32の表面層とフィールドプレート40との間に誘電体膜46が形成され、誘電体膜46は、フィールドプレート40のドレイン電極36側及びソース電極34側の終端面と面一状態となるように切れ込み、ドレイン電極36側の下端からドレイン電極36に接続するようにドレイン電極36に向かって延びており、且つ、ソース電極34側の下端からソース電極34に接続するようにソース電極34に向かって延びている。 (もっと読む)


【課題】ゲート長の加工ばらつきに起因する特性劣化を確実に抑制できる半導体装置の製造方法を提供する。
【解決手段】ゲート長及びオフセットサイドウォール長のそれぞれの設計値からのズレ量と、トランジスタの特性を設計値に設定するためのソース/ドレイン・エクステンション領域のドーズ量との相関関係を予め求めておく。ゲート長及びオフセットサイドウォール長を実測した後、ゲート長及びオフセットサイドウォール長のそれぞれの実測値の設計値からのズレ量、並びに前記相関関係に基づいて、ソース/ドレイン・エクステンション領域のドーズ量を、トランジスタの特性の設計値からのズレ量が所定の範囲内に収まるように調整する。 (もっと読む)


【課題】MOS型デバイスのゲート絶縁膜の破壊を防止すると共に、信頼性を向上させた、窒化物系半導体装置を提供することを目的とする。
【解決手段】ドレイン電極26とゲート電極28との間に設けられたSBD金属電極30がAlGaN層20とショットキー接合されている。また、SBD金属電極30とソース電極24とが接続されており、電気的に短絡している。これにより、ゲート電極28にオフ信号が入ると、MOSFET部32がオフ状態となり、MOSFET部32のドレイン側の電圧がドレイン電極26の電圧値と近くなる。ドレイン電極26の電圧が上昇すると、SBD金属電極30の電圧値が、MOSFET部32のドレイン側の電圧値よりも低くなるため、SBD金属電極30によってMOSFET部32のドレイン側とドレイン電極26とが電気的に切断される。 (もっと読む)


【課題】リフトオフ法を用いずに、簡易な手法で化合物半導体装置のゲート電極、ソース電極、及びドレイン電極を各種パターンに欠陥を生ぜしめることなく形成する。
【解決手段】AlGaN/GaN・HEMTを製造する際に、化合物半導体層上に保護絶縁膜8を形成し、保護絶縁膜8に開口を形成し、開口を埋め込む導電材料を保護絶縁膜8上に形成し、導電材料上の開口上方に相当する部位にマスクを形成し、マスクを用いて導電材料をエッチングしてゲート電極15(又はソース電極45及びドレイン46)を形成し、その後、保護絶縁膜8上に保護絶縁膜16を形成し、保護絶縁膜8,16に開口を形成し、開口を埋め込む導電材料を保護絶縁膜16上に形成し、導電材料上の開口上方に相当する部位にマスクを形成し、マスクを用いて導電材料をエッチングしてソース電極22及びドレイン23(又はゲート電極53)を形成する。 (もっと読む)


【課題】信頼性の向上に寄与し得る半導体装置の製造方法を提供する。
【解決手段】半導体基板10にトランジスタ36を形成する工程と、半導体基板上に、トランジスタを覆う第1のシリコン窒化膜38を形成する工程と、第1のシリコン窒化膜にNHFラジカルを供給する工程と、NHFラジカルを供給する工程の後、第1のシリコン窒化膜に対して熱処理を行う工程と、熱処理を行う工程の後、第1のシリコン窒化膜上に第2のシリコン窒化膜を形成する工程とを有している。 (もっと読む)


【課題】室温(300K)以上において正孔濃度が1.0×1015cm‐3以上で、かつ、ドーパント原子濃度が1.0×1021cm‐3以下である実用的なp型ダイヤモンド半導体デバイスとその製造方法を提供すること。
【解決手段】単結晶ダイヤモンド基板1−1の上に形成された単結晶ダイヤモンド薄膜1−2の中には、二次元の正孔または電子チャンネル1−3が形成される。基板1−1の面方位と基板1−1の結晶軸「001」方向との成す角度をαs、ダイヤモンド薄膜1−2の面方位と単結晶ダイヤモンド薄膜1−2の結晶軸「001」方向との成す角度をαd、チャンネル1−3の面方位とダイヤモンド薄膜1−2の結晶軸「001」方向との成す角度をαcとする。単結晶ダイヤモンド薄膜1−2の表面上には、ソース電極1−4、ゲート電極1−5、ドレイン電極1−6が形成される。 (もっと読む)


【課題】オン抵抗を低減することができるGaN−MISトランジスタ、GaN−IGBT、およびこれらの製造方法を提供する。
【解決手段】ゲート電極(M)16とSiNゲート絶縁膜(I)13と半導体層(GaN)12とのMIS構造を有するGaN−MISトランジスタ150であって、半導体層は、オーミックコンタクト用nGaN領域14が離間した2箇所に形成され、SiNゲート絶縁膜は、2箇所のオーミックコンタクト用nGaN領域の基板反対側表面に熱CVD法により成膜されたSiN膜である。 (もっと読む)


【課題】配線の信頼性の高い半導体装置を提供する。
【解決手段】半導体基板42上に台形状の凸部領域と台形状の凹部領域を設け、凹部領域のシリコン表面にはゲート酸化膜45が設けられ、ゲート酸化膜上にはゲート電極46が形成されている。凹部領域に設けられたゲート電極46の両側の凸部領域にはソース・ドレイン高濃度領域48が位置し、ソース・ドレイン高濃度領域48とゲート電極46の間にはソース・ドレイン低濃度領域47が形成されている。ソース・ドレイン高濃度領域48の上表面には第1層目の金属配線49と第2層目の金属配線50と第3層目の金属配線52が積層され、ソース・ドレイン高濃度領域48から第3金属配線までの接続にコンタクトホールやビアホールなどを利用していない。このように本発明の半導体装置は、コンタクトホールやビアホールなどの接続孔を形成しないで素子と配線との接続や配線間接続を行なうことができる。 (もっと読む)


【課題】サリサイドプロセスにより金属シリサイド層を形成した半導体装置の性能を向上させる。
【解決手段】全反応方式のサリサイドプロセスを用いず、部分反応方式のサリサイドプロセスによりゲート電極8a,8b、n型半導体領域9bおよびp型半導体領域10bの表面に金属シリサイド層41を形成する。金属シリサイド層41を形成する際の熱処理では、ランプまたはレーザを用いたアニール装置ではなく、カーボンヒータを用いた熱伝導型アニール装置を用いて半導体ウエハを熱処理することにより、少ないサーマルバジェットで精度良く薄い金属シリサイド層41を形成し、最初の熱処理によって金属シリサイド層41内にNiSiの微結晶を形成する。 (もっと読む)


【課題】電界集中を緩和し、高い耐圧を得ることが可能な半導体装置を提供する。
【解決手段】
半導体層上において、第1フィールドプレートFAは、第1絶縁膜上に、第1電極102と第2電極103との間に相互に間隔を置いて配置され、第2フィールドプレートFBは、第2絶縁膜上に、第1電極102上方から第2電極103上方までの間に相互に間隔を置いて配置され、
第1電極および第2電極側末端のFBは、第1電極または第2電極およびそれに隣り合うFAに重なり、
前記第1電極および第2電極側末端FB以外の一方のFAまたはFBは、第1電極から第2電極への方向と垂直方向に隣り合う複数の他方のFAまたはFBに重なり合い、前記第1電極および第2電極側末端FB以外の他方のFAまたはFBは、第1電極から第2電極への方向に隣り合う2つの前記一方のFAまたはFBに重なり合う半導体装置。 (もっと読む)


【課題】スイッチング速度を向上でき、動作不良品を低減できる、横型の電界効果トランジスタを提供する。
【解決手段】ゲート配線43は、基部44と、基部44から突出する複数の指状部45と、隣接する指状部45の先端部46を接続する接続部47と、を有する。ゲート配線43の指状部45は、ソース配線23の指状部25とドレイン配線33の指状部35と、の間に配置されている。ゲート配線43の基部44は、ソース配線23の基部24とドレイン配線33の指状部35との間に配置され、かつ、ソース配線23の指状部25との間に絶縁膜を介在させて指状部25と交差している。 (もっと読む)


【課題】ゲート電極と第1のコンタクトプラグとが接触する接触幅を充分に確保する。
【解決手段】半導体基板10の上に、エッチングストッパー膜17、第1の層間絶縁膜18及び第2の層間絶縁膜19を順次形成する。次に、第1,第2の層間絶縁膜18,19を貫通し、且つ、エッチングストッパー膜17を露出する第1のホール23を形成する。次に、酸素ガスを含むプラズマを用いたプラズマ処理により、第2の層間絶縁膜19における第1のホール23の側壁に露出する部分を変質して、第1の変質層25を形成する。次に、第1の変質層25を除去して、第2のホール27を形成する。次に、エッチングストッパー膜17における第2のホール27に露出する部分を除去して、第1のコンタクトホール29を形成する。次に、第1のコンタクトホール29に、第1のコンタクトプラグ32Aを形成する。 (もっと読む)


【課題】不純物拡散領域の抵抗値のばらつきを抑制しうる半導体装置の製造方法を提供する。
【解決手段】半導体層にドーパント不純物を添加し、0.1秒〜10秒の活性化熱処理を行う。次いで、半導体層にイオン注入を行い、半導体層のドーパント不純物が添加された領域をアモルファス化する。次いで、0.1ミリ秒〜100ミリ秒の活性化熱処理を行い、アモルファス化した半導体層を再結晶化することにより、半導体層にドーパント不純物の拡散領域を形成する。 (もっと読む)


【課題】ポリシリコンゲート電極の意図しないフルシリサイド化を防止する。
【解決手段】基板17上に、ゲート絶縁膜12およびシリコン層10をこの順に積層した積層体(10、12)を形成する工程と、積層体(10、12)の側壁沿いにSiN膜を有するオフセットスペーサ13を形成する工程と、その後、シリコン層10の上面を、薬液を用いて洗浄する工程と、その後、少なくともシリコン層10の上面を覆う金属膜19を形成する工程と、その後、加熱する工程と、を有し、オフセットスペーサ13が有するSiN膜は、ALD法を用いて450℃以上で成膜されたSiN膜、または、1Gpa以上の引張/圧縮応力を有するSiN膜であり、前記薬液は、重量比率で、HF/HO=1/100以上であるDHF、または、バッファードフッ酸である半導体装置の製造方法を提供する。 (もっと読む)


【課題】良好な電気的特性を有する半導体装置及びその製造方法を提供する。
【解決手段】質量数が比較的小さいドーパント不純物を導入することにより第1のトランジスタ34a及び第2のトランジスタ34bのチャネルドープ層18を形成する工程と、質量数が比較的大きいドーパント不純物を導入することにより第3のトランジスタ34cのチャネルドープ層20を形成する工程と、質量数の比較的小さいドーパント不純物を導入することにより第1のトランジスタのポケット領域26を形成する工程と、質量数の比較的大きいドーパント不純物を導入することにより第2のトランジスタ及び第3のトランジスタのポケット領域36を形成する工程とを有している。 (もっと読む)


【課題】トンネルFETの閾値ばらつきの抑制をはかる。
【解決手段】Si1-x Gex (0<x≦1)の第1の半導体層13上にゲート絶縁膜21を介して形成されたゲート電極22と、Geを主成分とする第2の半導体と金属との化合物で形成されたソース電極24と、第1の半導体と金属との化合物で形成されたドレイン電極25と、ソース電極24と第1の半導体層13との間に形成されたSi薄膜26とを具備した半導体装置であって、ゲート電極22に対しソース電極24のゲート側端部とドレイン電極25のゲート側端部とは非対称の位置関係にあり、ドレイン電極25のゲート側の端部の方がソース電極24のゲート側の端部よりも、ゲート電極22の端部からゲート外側方向に遠く離れている。 (もっと読む)


121 - 140 / 795