説明

Fターム[5H115PI18]の内容

車両の電気的な推進・制動 (204,712) | 車両への電力供給 (26,397) | 車両の内部に電力供給源があるもの (15,723) | 電池によるもの (12,219) | 燃料電池を用いるもの (1,198)

Fターム[5H115PI18]に分類される特許

21 - 40 / 1,198


【課題】 中圧ガスタンク(リザーブタンク)や大規模な蒸発器を備えることなく構成でき、またボイルオフガスの発生を抑制することができる燃料電池車両の燃料用水素供給システムを提供する。
【解決手段】 燃料電池車両の燃料用水素供給システムにおいて、液遮蔽板2によってガス部2Aと液部2Bに分割された水素タンク1と、この水素タンク1を覆うように配置される断熱真空容器5と、この断熱真空容器5内部の真空槽5A内に設けた機械的熱伝導スイッチAと、水素ガスを前記水素タンク1から燃料電池3に供給するための高圧ガス配管4とを備え、前記機械的熱伝導スイッチAをオンにすることにより、前記水素タンク1を加熱し、前記液部2Bに貯蔵された液体水素を気化させ、前記水素ガスを前記燃料電池3に供給する。 (もっと読む)


【課題】インバータやコンバータを搭載している車両において、インバータやコンバータの動作に伴って発生する高周波ノイズを軽減するアースシステムを提供する。
【解決手段】マフラあるいは排気管をボディに接地する。特に、マフラフック2およびボディフック3を連結しているマウントラバー4の孔部22に嵌合している分割カラー5をリード線7で接続することによって、マフラフック2およびボディフック3を電気的に接続し、マフラをボディに接地する。 (もっと読む)


【課題】蓄電池を加熱する能力の低下を抑制しつつ、電力変換手段や電力変換手段の周辺機器への負荷の低減を図る。
【解決手段】蓄電池4に対して直列接続され、通電により発熱する抵抗体101と、放電時に蓄電池4から電力が供給されると共に、充電時に蓄電池4に対して電力を供給可能に構成されたDC−DCコンバータ3と、充電時に蓄電池4で必要とされる充電必要電力を算出する充電必要電力算出手段S30と、抵抗体101の発熱に必要とされる抵抗必要電力を算出する抵抗必要電力算出手段S40と、充電時にDC−DCコンバータ3から蓄電池4に供給する充電時供給電力を設定する充電時供給電力設定手段S120、S130と、を備え、充電時供給電力設定手段S120、S130は、充電必要電力に対して抵抗必要電力を補正した充電時補正電力が予め設定された許容電力以上である場合に、許容電力を充電時供給電力に設定する。 (もっと読む)


【課題】コードリールから受電用コードを引き出す際の引き出し力を一定にする。
【解決手段】電力を伝達するための受電用コード250を収納するためのコードリール600は、ドラム610と、バネ装置660と、抵抗付加装置630とを備える。ドラム610は、収納時に受電用コード250が周囲に巻回される。バネ装置660は、ドラム610に取付けられ、ドラム610に受電用コード250を巻き取るための巻取トルクを与える。抵抗付加装置630は、ドラム610の回転に対する抵抗力を可変に調整できるように構成される。そして、抵抗付加装置630は、受電用コード250をドラム610から引き出すときに必要となるトルクが略一定となるように抵抗力を調整する。 (もっと読む)


【課題】 冷却系統にイオン交換樹脂を設置しても、冷却液に添加した添加剤の効果を十分に発揮することができる燃料電池システムおよび燃料電池車を提供する。
【解決手段】 燃料電池システムおよび燃料電池車は、燃料電池20と、この燃料電池20を冷却する冷却液の循環流路21と、この循環流路に設けられ、冷却液の導電性を維持するイオン交換樹脂22とを備えている。冷却液は添加剤を含有するものであり、イオン交換樹脂は、この添加剤のイオン交換樹脂への吸着を飽和状態に調製したものである。 (もっと読む)


【課題】想定外の温度低下があったときにも適切なタイミングで低温掃気を実施する。
【解決手段】燃料電池1のアノード極およびカソード極に連なるガス流路に掃気ガスを流すことで流路および燃料電池1内の水を排出する掃気手段と、アノード出口温度を検出するアノード出口温度センサ62を備え、制御装置50は、燃料電池1の停止中、燃料電池1が停止してから確認インターバルが経過する毎に、アノード出口温度と掃気実施温度閾値とを比較しアノード出口温度が掃気実施温度閾値よりも小さいときに掃気手段による掃気が必要と判定する掃気要否判定を行い、該判定時のアノード出口温度を用いて算出した単位時間当たりの温度低下割合が所定値よりも大きい場合には、今回判定から次回判定までの確認インターバルを、今回判定時のアノード出口温度に応じて時間がより短く設定された短縮確認インターバルに変更する。 (もっと読む)


【課題】車両接近警告音用の第1超音波と対象物までの距離測定用の第2超音波との放射に共用可能としたパラメトリックスピーカ装置を提供する。
【解決手段】複数の超音波振動子4を含む振動子ユニット2aを配備し、その振動子ユニット2aから自己復調して可聴音となる超音波を送信するパラメトリックスピーカ装置であって、振動子ユニット2aを、上記可聴音発生のための第1超音波として送信する第1タイミングと、距離測定のための第2超音波を送受信する第2タイミングとに切り替えて駆動する。 (もっと読む)


【課題】車両への搭載性を悪化させることなく、電気機器を冷却する。
【解決手段】冷却装置10は、冷媒を循環させるためのコンプレッサ20と、冷媒を凝縮するためのコンデンサ40と、冷媒を用いて車両の室内の冷房を行なうためのエバポレータ80と、コンデンサ40からコンプレッサ20に流通する冷媒の経路上にエバポレータ80と直列に設けられ、冷媒を用いてインバータ122およびモータジェネレータ124を冷却するための冷却部120とを含む。 (もっと読む)


【課題】水素ガスの断熱膨張による水素系部品の低温化を防止するとともに、燃料電池スタックの冷却性能を向上させる。
【解決手段】水素タンク4の水素ガスを減圧して燃料電池スタック2に供給する水素ガス供給装置3と、燃料電池スタック2に空気を供給する空気供給ダクト8と、燃料電池スタック2から余剰空気を排出する空気排出ダクト9とを備える燃料電池システム1において、水素ガス供給装置3を空気供給ダクト8および空気排出ダクト9と連通する熱交換チャンバ17内に配置し、水素ガス供給装置3の温度が所定温度より低い場合には燃料電池スタック2から排出される空気を熱交換チャンバ17に導入して水素ガス供給装置3を加熱する一方、燃料電池スタック2から排出される空気が所定温度より高い場合には熱交換チャンバ17に導入されるとともに水素ガス供給装置3によって冷却された空気を燃料電池スタック2に供給する。 (もっと読む)


【課題】燃料電池の電圧が高電圧となる時に、ラジカル抑制物質が溶出可能となる量の液水を燃料電池内で確保する。
【解決手段】燃料電池システムが備える燃料電池は、電解質膜と、一対の電極と、多孔質なガス拡散層と、少なくとも一方の電極内、および/または、少なくとも一方のガス拡散層における電極との境界を含む領域内に配置されたラジカル抑制物質と、を備える。燃料電池システムは、さらに、水収支導出部と、運転状態制御部と、膜湿潤状態検出部と、を備える。運転状態制御部は、燃料電池を停止同等状態にすべきと判断したときに、水収支が負の値であれば、一方の電極又は一方のガス拡散層に接する電極の含水量が増加するように燃料電池の運転状態を変更し、電解質膜における湿潤状態が基準湿潤状態に達した後に、燃料電池を停止同等状態にするための制御を行なう。 (もっと読む)


【課題】判定精度が高く、商品性や燃費に悪影響を及ぼさない燃料電池の膜破損検知方法を提供する。
【解決手段】燃料電池1の発電停止時に、燃料電池1のアノード極3に供給された水素の圧力を、予め定めた膜破損検知用圧力とした後、ガス供給弁17、遮断弁18、排水弁25、パージ弁27、掃気排出弁29を閉じて、アノード極3に連なる燃料ガス流路を封止し、この封止後に封止した燃料ガス流路内の水素の圧力を初期圧力値として取得し、前記封止から所定時間が経過したときに封止した燃料ガス流路内の水素の圧力を経過後圧力値として取得し、初期圧力値と経過後圧力値との差が前記所定時間に応じて予め定められた閾値以上の場合に、燃料電池1の固体高分子電解質膜2が破損していると判定する。 (もっと読む)


【課題】車両前方のフードの下方領域における燃料電池の搭載性を高める。
【解決手段】車両10は、電池ケース40に収容した燃料電池30を、トランスミッション機構60に固定して搭載する。電池ケース40は、燃料電池30のコーナー部を補強コーナー41で覆った上で、電池側面を第1側壁42と第2側壁43で覆う。燃料電池30をこの電池ケース40を介してトランスミッション機構60に固定するに当たり、電池ケース40の補強コーナー41が車両前部のラジエーター15に向いて車両前方側に位置させ、補強コーナー41から延びる第1側壁42と第2側壁43とを車両前方側から離れるよう斜めに延ばす。 (もっと読む)


【課題】燃料電池におけるラジカルによる劣化抑制の実効性を高める。
【解決手段】渋滞や低速走行と言った低要求出力の状況下では、2次電池150をパワーソースとし、加速或いは高速走行状況下では、要求出力も高まることから、燃料電池100をパワーソースに選択する。しかも、燃料電池100をパワーソースとした場合には、0.6A/cm以上の電流密度で燃料電池100を発電運転する。 (もっと読む)


【課題】電磁共鳴を利用して電力の送電および受電の少なくとも一方が可能な共振コイルを備えたコイルユニットにおいて、相手側の共振コイルと位置ずれしたとしても、電力の送電効率または受電効率の低下の抑制が図られたコイルユニット、非接触電力送電装置、非接触電力受電装置、車両および非接触電力給電システムを提供する。
【解決手段】コイルユニットは、間隔をあけて配置された一次共振コイルとの電磁共鳴によって電力の送電および受電の少なくとも一方を行なう二次共振コイル110を含むコイルユニットであって、二次共振コイル110は、複数の単位コイル111〜114を含み、各単位コイル111〜114が形成する磁界の方向は同じ向きとされる。 (もっと読む)


【課題】冷却媒体が必要以上に低温になることを確実に阻止するとともに、レイアウト性の向上を図り、しかもシステム全体の小型化を図ることを可能にする。
【解決手段】燃料電池システム10は、燃料電池スタック12と、前記燃料電池スタック12に冷却媒体を供給するための冷却媒体供給装置14とを備える。冷却媒体供給装置14は、冷却媒体を燃料電池スタック12に循環させる冷却媒体循環路60と、車両の進行方向前方から後方に向かって、放熱器62、送風機64及びケース部材66の順に配設される熱交換機構68と、前記冷却媒体循環路60に前記冷却媒体を循環させるポンプ70と、前記冷却媒体循環路60に配置され、前記冷却媒体の温度に基づいて切り換え制御されるサーモスタット72とを備える。 (もっと読む)


【課題】空冷式燃料電池車両において、空冷式燃料電池スタック及び電気機器冷却用の放熱器の冷却性能を向上させることにある。
【解決手段】空冷式燃料電池スタック(12)は、車両幅方向(Y)の両側部に空気入口(27L、27R)を備えるとともに、車両幅方向(Y)の中央部に空気出口(28L、28R)とこの空気出口(28L、28R)から流出した空気を車両後方に排出する排気ダクト(29)を備え、空気入口(27L、27R)には夫々車両前方へ延びる吸気ダクト(32L、32R)を接続し、この吸気ダクト(32L、32R)の空気取入口(33L、33R)を放熱器(26)の車両幅方向(Y)の両側かつ放熱器(26)よりも車両前側に開口させている。 (もっと読む)


【課題】燃料電池の発電効率を安定に保ちつつ、燃料電池が配置された冷却回路を流れる冷却水を、効率良く上昇させることのできる技術を提供することを目的とする。
【解決手段】冷却システムは、流量制御部の制御モードとして、燃料電池の発電状態に応じて冷却回路を流れる冷媒の流量である第1の流量を制御する第1の流量制御モードと、燃料電池の発電状態に応じて第1の流量を制御する第2の流量制御モードであって、所定の発電状態における第1の流量が第1の流量制御モードに比べ小さい第2の流量制御モードと、を有する。冷却システムの流量制御部は、非連結状態から連結状態に切り替える連結要求があった場合に、燃料電池の出口水温が所定値より小さい場合は、流量制御部に第2の流量制御モードでの運転を実行させる。 (もっと読む)


【課題】電気自動車に搭載された各種機器の適切な温度調整を実現する。
【解決手段】車両用温度調整システム10の制御装置100は、バッテリ暖機モード時に、冷却水循環回路12を、加熱装置131で加熱した冷却水がバッテリ11に流入する第1循環回路13に切替え、ヒートポンプサイクル30の室外熱交換器34に付着した霜を取り除く除霜運転モード時に、加熱装置131で加熱した冷却水が有する熱を室外熱交換器34に放熱する放熱器141に流入する第2循環回路14に切替える。これにより、バッテリ暖機モード時には、加熱装置131にて加熱された冷却水が有する熱量によってバッテリ11を暖機することができ、除霜運転モード時には、車室内空間の暖房を停止することなく、加熱装置131にて加熱された冷却水が有する熱を放熱器141から室外熱交換器34に放熱することで、室外熱交換器34に付着した霜を取り除くことができる。 (もっと読む)


【課題】車両に燃料電池を搭載するための構造を提供する。
【解決手段】この構造は、燃料電池スタック100とリザーブタンク500と制御回路400とを備える。燃料電池スタック100は、第1および第2のエンドプレート110,120と、複数の発電セル130と、を有する。リザーブタンク500は、燃料電池スタック100に流通させる冷却液を保持する。制御回路400は、燃料電池スタック100が生成した電力を制御する。燃料電池スタック100は、第1のエンドプレート110が第2のエンドプレート120よりも低く、かつ後方に位置するように、配される。制御回路400は、燃料電池スタック100の上方であって、第2のエンドプレート120に近い位置に配される。リザーブタンク500は、燃料電池スタック100の上方であって、第1のエンドプレート110に近い位置に配される。 (もっと読む)


【課題】車両に燃料電池を搭載するための構造を提供する。
【解決手段】この構造は、燃料電池スタック100と、燃料ガスポンプ610と、冷却液ポンプ620と、イオン交換器630と、を備える。燃料電池スタック100は、両端に第1と第2のエンドプレート110,120を有する。燃料ガスポンプ610は、燃料電池スタック100に燃料ガスを供給する。冷却液ポンプ620は、燃料電池スタック100に冷却液を流通させる。イオン交換器630は冷却液中のイオンを除去する。第1のエンドプレート110は、第2のエンドプレート120より車両の後方に位置する。燃料ガスポンプ610と冷却液ポンプ620とイオン交換器630とは、第1のエンドプレート110の後方に配される。イオン交換器630は、車両の進行方向について、燃料ガスポンプ610と冷却液ポンプ620との少なくとも一方が存在する範囲Rps内に含まれる。 (もっと読む)


21 - 40 / 1,198