説明

Fターム[5H115PU08]の内容

車両の電気的な推進・制動 (204,712) | 走行用駆動源 (21,653) | 電動機 (9,664) | 交流電動機 (5,920)

Fターム[5H115PU08]の下位に属するFターム

Fターム[5H115PU08]に分類される特許

121 - 140 / 4,022


【課題】 大型化を招くことなく、1次コイルと2次コイルとの相対的な位置が適正位置からずれた場合の充電効率の低下を抑制できる共振型非接触充電用の電力供給装置を提供すること。
【解決手段】 共振型の非接触充電用の電力供給装置は、交流電力を供給されて磁界を発生する1次コイルを含む1次側共振回路と、1次側共振回路の1次側電流を検出する電流検出手段と、1次側共振回路の1次側電圧を検出する電圧検出手段と、1次側電流と1次側電圧とに基づいて力率を算出する力率算出手段と、力率と目標効率に相当するしきい値とを比較し、力率がしきい値を下回る場合に、力率を大きくするように、1次共振回路の特性を調整する特性調整手段と、を備える。 (もっと読む)


【課題】発電用のエンジンを搭載したレンジエクステンダ型の電気自動車において、排出ガス浄化率を確保しながら低コスト化の要求を満たすことができるようにする。
【解決手段】発電用のエンジン10は、要求発電量等に応じて運転モードを切り換えるとき以外は定常運転することができるため、過渡運転時の空燃比制御の応答性をあまり必要としない。この点に着目して、触媒38の下流側に排出ガスセンサ39(例えば酸素センサ)を設置し、この排出ガスセンサ39の出力に基づいて空燃比フィードバック制御を実行する。これにより、触媒の上流側に排出ガスセンサを設置する場合に比べて、排出ガスセンサ39の出力特性の変化(ばらつき)を小さくして、空燃比制御精度の低下を抑制することができ、触媒38の排出ガス浄化率を確保することができる。また、触媒の上流側と下流側の両方に排出ガスセンサを設置する場合に比べて、低コスト化できる。 (もっと読む)


【課題】低電圧電源の電圧低下を確実に検出することが可能な車両制御システムを提供する。
【解決手段】始動スイッチ304が操作されていなくとも特定の条件下において、高電圧電源250の放電電圧を降圧させるコンバータ270を作動させない状態で低電圧電源262から電気機器への電力の供給を許容してそれら電気機器の一部を作動させるように構成されたシステムであって、その状態において、電圧センサ290により検出された電気機器への出力電圧が閾電圧より低下しているか否かによって、低電圧電源262の端子電圧が低下しているか否かを判定するように構成する。 (もっと読む)


【課題】ブレーキ・バイ・ワイヤシステムにおけるブレーキ力の増減時の応答性を簡単な構成で運転者の感覚に合うようにする。
【解決手段】ブレーキペダルのストロークを操作量として操作量制動力変換回路31に入力し、その出力信号を増加用ローパスフィルタ32と減少用ローパスフィルタ33とに入力し、各出力を最大値選択回路34により大きい方を選択し、各ローパスフィルタの出力の大きい方で制御目標値Bmaxを生成し、制御目標値Bmaxが最終的な制動力目標値となる。ブレーキ操作量に対する制動力目標値の応答遅れを、ブレーキ操作量の増加側では小さく、ブレーキ操作量の減少側では大きくすることができ、各ローパスフィルタのカットオフ周波数(時定数)を調整するという簡単な構成で、運転者に違和感の無いブレーキフィーリングを与えることができる。 (もっと読む)


【課題】車両駆動用のモータが回転制限状態となったときに、電力変換部が過熱状態となることを回避すると共に、モータのトルクの増加が許容される状態を形成することを目的とする。
【解決手段】車両駆動装置のコントロールユニットは、トルク指令値とモータジェネレータの回転数とに基づいて、モータジェネレータが回転制限状態にあるか否かを判定する。モータジェネレータが回転制限状態にある旨の判定をした場合、コントロールユニットは、車両が傾斜面に位置するか否かを判定する。車両が傾斜面に位置する旨の判定をしたときは、コントロールユニットは、モータジェネレータの位相検出値に基づいて目標位相を求めた後、モータジェネレータが発生するトルクを減少させて、走行面の傾斜等によって車両を下り方向に移動させることで車輪を回転させ、モータジェネレータの回転位相を目標位相に合わせる。 (もっと読む)


【課題】電動機の出力軸に対する駆動輪の減速比を変更する切替機構を備えたHV−MT車において、運転者が前記減速比の変更に伴うショックを感知し難くすること。
【解決手段】この動力伝達制御装置は、動力源として内燃機関E/GとモータM/Gとを備えたハイブリッド車両に適用され、手動変速機M/Tと、摩擦クラッチC/Tと、減速比切替機構とを備える。減速比切替機構は、「M/Gの出力軸と接続される第1軸」に対する「M/Tの出力軸と接続される第2軸」の減速比を変更可能となっている。第1軸に対する第2軸の減速比を変更することにより、M/Gの出力軸に対する駆動輪の減速比が変更される。運転者がクラッチペダルCPを操作している間に減速比を変更する作動が実行される。即ち、運転者は、何らかの操作を行っている間に減速比変更作動に伴うショックを受けることなり、運転者は係るショックを感知し難くなる。 (もっと読む)


【課題】 原動機と電動機とを駆動源として備える車両のHEV走行中において、プレシフトするときの所謂駆動力抜けを防止できる車両の駆動力制御装置を提供する。
【解決手段】 駆動力制御装置は、HEV走行中における奇数段から偶数段へのアップシフトのイナーシャ相t3〜t6中に、モータトルクTeを0にし、第1噛合機構SM1を、前段を確立させるギア列の駆動ギアと第1駆動軸との連結を断つニュートラル状態に切り替えた後、次段よりも変速比の小さい変速段を確立させるギア列の駆動ギアと第1駆動軸とを連結させる状態に切り替える。そして、第2クラッチトルクTc2をエンジンのイナーシャトルクが伝達されるようにTQ1からTQ4に上昇させ、0となったモータトルクTe分のトルクを補填する。 (もっと読む)


【課題】電池の電圧が規定値より小となるか、或いは電池の残容量が0となると、放電を停止し、さらにシステムの電源が維持できなくなったときシステムの電源を自動的に落としてシャットダウン状態とする。
【解決手段】電池モニタ11からの電池の電圧或いはSOCが規定値より小さいと判定されると、放電制御スイッチ22がオフとされる。端子T1およびT2間の電圧に対応する電圧Vxが制御部21のA/Dポートに入力され、その値が監視される。A/Dポートに入力された電圧Vxが規定値より小さいと判定されると、制御部21によってスイッチ回路12がオフとされ、電池モニタ11に対する電源が断たれる。これと共に、スイッチ制御信号S1によって、制御スイッチ25がオフとされる。その結果、DC−DCコンバータ24の動作が停止し、シャットダウンがなされる。 (もっと読む)


【課題】一方の変速機入力軸にのみモータを取り付けたデュアルクラッチ式変速機において、変速段の切替時等にクラッチの断接によってドライバに与える違和感を解消することができ、効率よくバッテリを駆動することができるハイブリッド電気自動車の制御装置を提供する。
【解決手段】変速ギア機構4は、エンジン1と第1クラッチ2Aを介して接続され且つモータ3が配置された第1入力軸40Aを備えて複数の変速段を有する第1変速機構4Aと、エンジン1と第2クラッチ2Bを介して接続された第2入力軸40Bを備えて複数の変速段を有する第2変速機構4Bと、を備え、ドライバの加速要求を検出するアクセルポジションセンサ58と、ドライバの加速要求が検出されると、第1変速機構4Aの発進変速段の使用時以外は、クラッチ2A,2Bの同時遮断を禁止するクラッチ制御手段60aを備える。 (もっと読む)


【課題】HV−MT車について、クラッチペダル操作に基づいて変化する内燃機関のトルク及び電動機のトルクのそれぞれの変化タイミングの間のずれの発生を抑制すること。
【解決手段】この動力伝達制御装置は、動力源として内燃機関とモータ(MG)とを備えたハイブリッド車両に適用され、手動変速機と、摩擦クラッチとを備える。MGトルクが、アクセル開度に基づいて決定されるMGトルク基準値と、クラッチ戻しストロークに基づいて決定されるMGトルク制限値とのうち小さい方に調整される。摩擦クラッチの実際のミート開始点及び実際のリリース開始点が検出される。MGトルク制限値の決定に使用されるマップに使用されるクラッチのミート開始点及びリリース開始点が、検出された実際のミート開始点及び実際のリリース開始点に一致するように較正される。 (もっと読む)


【課題】バッテリの劣化を防ぎつつ、効率よく電動機を使用することのできる電気自動車の電源制御装置を提供すること。
【解決手段】車両1を駆動する電動機6の電源としてバッテリ18及びキャパシタ20を備えた電気自動車において、バッテリ18の状態が過負荷状態となったときには(S2)、当該バッテリ18における充放電を制限し(S4)、この制限により生じる不足電力または余剰電力を(S5)、キャパシタ20に分配する(S7)。 (もっと読む)


【課題】ハイブリッド電気自動車の制御装置において、電動機の回生制動時にドライバビリティを悪化させることなく、回生エネルギーの効率的な回収を図る。
【解決手段】ハイブリッド電気自動車の制御装置(26)は、電動機(4)の回転数と変速機(5)の変速段Sに基づき算出された基準回生制動トルクTsrが電動機(4)の最大回生制動トルクTmに満たない場合に、ブレーキペダル(13)の踏み込み量、電動機(4)の回転数及び変速機(5)の変速段Sに基づいて算出した上乗せ回生制動トルクTadを基準回生制動トルクTsrに上乗せすることにより、回生制動トルクTrを算出する。 (もっと読む)


【課題】電動車両において、冷間始動時でのバッテリの劣化を防止するとともに、バッテリ温度が上昇した場合に、モータの出力変化が滑らかになるようなマップ切り替えを可能とする。
【解決手段】モータ23に対して電力を供給するバッテリ36と、車速センサ91と、バッテリ36の温度を検出する温度センサ92と、車速に応じてモータ23への出力値を設定したマップに基づいてバッテリ36からモータ23に供給される電力量を制御する制御部71とを備え、前記マップは、バッテリ温度が所定以上時使用の通常マップと、所定未満時使用の冷間マップを有する出力制御装置において、制御部71は、モータ23の始動時に際しバッテリ温度が所定未満の場合に、前記冷間マップを用いてバッテリ36の放電制御を行うとともに、その後の走行時においてバッテリ温度が所定以上の時に、車速がゼロ近傍になるのを待って冷間マップから通常マップへの切り替えを行う。 (もっと読む)


【課題】車両の制御装置において、運転者による運転操作フィーリングの悪化を抑制すると共に燃費の向上を可能とする。
【解決手段】エンジン11とモータジェネレータ14との駆動力を駆動輪16に伝達可能なハイブリッド車両にて、ハイブリッドECU100は、エンジン11の駆動力により車両を走行可能なエンジン走行モードとモータジェネレータ14の駆動力により車両を走行可能なEV走行モードとを切替可能であり、
車速に基づいてモータジェネレータ14による回生量を減少させる減少時間を設定し、クラッチ12により駆動伝達が遮断されたときに設定した減少時間内でモータジェネレータ14による回生トルク(回生量)を減少させるようにする。 (もっと読む)


【課題】ハイブリッド電気自動車のバッテリ充放電制御装置に関し、登坂路走行時に、バッテリの温度上昇に起因したバッテリの充放電電流の抑制を不要にできるようにする。
【解決手段】走行用トルクを出力しうるエンジン1及び電動発電機4と、電動発電機4による発電電力によって充電可能なバッテリ40と、をそなえたハイブリッド電気自動車に装備され、車両の前方の道路状況を取得する手段60と、取得された車両前方の道路状況に基づいて車両前方に登坂路があるか否かを判定する手段30aと、登坂路ありと判定しない限りバッテリ温度がバッテリ40の上限温度近傍の温度よりも高くなった場合にバッテリ40の充放電を制限し、登坂路ありと判定したら車両が登坂路に進入するまではバッテリ40の温度が第1の所定温度よりも低い第2の所定温度よりも高くなった場合にバッテリ40の充放電を制限する制御手段30dと、を備える。 (もっと読む)


【課題】電流センサの故障を容易に検出することができ、かつ、生産コストの上昇を抑制する。
【解決手段】MG−ECUは、電流Ivを検出する2つの電流センサの検出値Iv1とIv2とが一致する場合(S100にてYES)、電流Ivおよび電流Iwの各々の最大値および最小値を計測するステップ(S102)と、電流Ivおよび電流Iwの振幅をそれぞれ算出するステップ(S104)と、電流Ivの振幅と電流Iwの振幅とが一致する場合に(S108にてYES)、第1乃至第3の電流センサが正常状態であると判定するステップ(S110)と、電流Ivの振幅と電流Iwの振幅とが一致しない場合(S108にてNO)、電流Iwを検出する電流センサが異常状態であると判定するステップ(S112)とを含む、プログラムを実行する。 (もっと読む)


【課題】第2歯車機構のプレシフト要求と走行モードの切換要求とが相前後して発生したとき、これに応じたエンジン吹き上がり制御による燃料消費の増大及び騒音発生を抑制できるハイブリッド電気自動車の変速制御装置を提供する。
【解決手段】電動機単独走行中において偶数歯車機構G2に対するプレシフト要求があったときに(S2,4)、エンジン・電動機併用走行への走行モードの切換要求があるまで待機し、この走行モードの接続要求があると(S6がYes)、インナクラッチC1を接続し、電動機3の駆動力を0にしていくと共にエンジン駆動力を増加させて(S8,10)、電動機3の駆動力の瞬断を防止しつつ偶数歯車機構G2に対するプレシフトを実行し(S12)、同時にエンジン・電動機併用走行への走行モードの切換を完了する(S14)。 (もっと読む)


【課題】電動車両において、電池パックの数が変動しても、充放電制御の処理が複雑化することを抑制できる電池制御システムを提供する。
【解決手段】スレーブ電池ECU20b、20cは、自身に対応するサブ電池パックの特性(定格容量の現在値および充電容量の現在値)をマスタ電池ECU20aに送信する。マスタ電池ECU20aは、スレーブ電池ECU20b〜20cから送信された定格容量の現在値および充電容量の現在値と、メイン電池パックの定格容量の現在値および充電容量の現在値とから、総定格容量の現在値および総充電容量の現在値を算出し、充放電制御ECU50へ送信する。充放電制御ECU50は、この総定格容量の現在値および総充電容量の現在値を用いて充放電制御を行うので、充放電制御ECU50は、電池パックの数によらず、同じ制御ロジックで充放電制御を行うことができる。 (もっと読む)


【課題】シールドシェルをより好適に固定することを可能とするシールドカバーを提供することである。
【解決手段】シールドカバー70は、筐体11a上に設けられる電力線部30の先端側に設けられノイズを筐体11a側に逃がすためのシールドシェル60よりもさらに先端側に設けられ、筐体11aと電力線部30とを接続する終端接続部50に用いられるシールドカバー70であって、筐体11aの外部側から拘束される拘束部74と、終端接続部50の外形に沿った凹形状を有するフード部72と、シールドシェル60を圧接固定するカール部76と、を備える。 (もっと読む)


【課題】ハイブリッド電気自動車の制御装置において、様々な運転状況下で発生する駆動輪のスリップに対して各運転状況に応じた制御を行ない適切にスリップの抑制を行なう。
【解決手段】走行駆動源としてのエンジン1及びモータ3と、エンジン1とモータ3との間に介装されたクラッチ2と、駆動輪8の実スリップ率を算出するスリップ率算出手段60bと、駆動輪8のスリップが検出されたら、クラッチ2の断接状態と、車両の走行状態に基づいて、駆動輪8の目標スリップ率を設定する目標スリップ率設定手段60dと、駆動輪8のスリップが検出されたら、実スリップ率が目標スリップ率になるように走行駆動源の出力トルクを制御する出力トルク制御手段60eとを備える。 (もっと読む)


121 - 140 / 4,022