説明

Fターム[5H115SE04]の内容

車両の電気的な推進・制動 (204,712) | 主な制御対象 (12,865) | 電気機械 (3,767) | 発電機、電動機兼用のもの (1,643)

Fターム[5H115SE04]に分類される特許

41 - 60 / 1,643


【課題】エンジン及び電動機を全体として効率的に運転でき、もって燃費向上を達成できるハイブリッド電気自動車の走行制御装置を提供する。
【解決手段】バッテリ18のSOCが十分であるときに変速機8の変速段を一段飛び越えて切り換えるスキップ制御モードを実行し、通常制御モードで第3速または第5速が選択されるべき領域で第4速または第6速を選択することにより、エンジン2の回転域を低回転側に移行させて燃料消費量を低減する。これにより生じるエンジントルクの不足分を電動機6のトルク増加で補償することにより、運転者の要求トルクを達成する。 (もっと読む)


【課題】セミトレーラ式のハイブリッド車両に関し、燃費を効果的に改善する。
【解決手段】トラクタ10及びトレーラ20を有するセミトレーラ式のハイブリッド車両1に、トラクタ10に搭載されたエンジン11と、トラクタ10に搭載された第一の電動発電機13と、トレーラ20に搭載され、第一の電動発電機13に電力を供給可能に接続されるバッテリ25と、トレーラ20に搭載され、発電した電力をバッテリ25に供給する第二の電動発電機26と、トレーラ牽引走行時に、走行用の動力源としてエンジン11及び第一の電動発電機13の少なくとも一方の動力を用いるように制御し、かつ、トラクタ単体走行時に、走行用の動力源としてエンジン11の動力を用いるように制御する動力制御手段60,61とを備えた。 (もっと読む)


【課題】HV−MT車について、運転フィーリングを通常MT車の運転フィーリングに一致させたいという要求を考慮しながらエネルギー効率(燃費)を向上すること。
【解決手段】この動力伝達制御装置は、動力源として内燃機関とモータ(MG)とを備えたハイブリッド車両に適用され、手動変速機と、摩擦クラッチとを備える。MGトルクが車両減速側の回生トルクに調整されている状態において、運転者によるクラッチペダル操作によりクラッチが完全分断状態に移行したとき(t2)、回生トルクの大きさが「ゼロより大きい微小値A」まで減少させられ、その後、微小値Aに維持される。クラッチの完全分断状態への移行に伴って回生トルクが直ちにゼロに調整される場合と比べて、回生により発生するより多くのエネルギーをバッテリに蓄えることができ(ドットで示した領域を参照)、エネルギー効率(燃費)が向上する。 (もっと読む)


【課題】バッテリの長寿命化と充電効率の改善を好適に実現可能な電気自動車の制御装置を提供する。
【解決手段】本発明の電気自動車(1)は、バッテリ(11)の充電電力で力行駆動する電動機(4)を搭載し、下り勾配を走行する際に電動機を回生駆動させてバッテリに充電を行う。その制御装置は、走行路面の勾配情報を取得する手段(17)と、バッテリ(11)の充電量を検出する手段(15)と、勾配継続距離を走行した際にバッテリの充電量が上限充電量となるように、下り勾配を走行中の電動機(4)の回生量を設定する制御手段(26)とを備えたことを特徴とする。 (もっと読む)


【課題】ブレーキ・バイ・ワイヤシステムにおけるブレーキ力の増減時の応答性を簡単な構成で運転者の感覚に合うようにする。
【解決手段】ブレーキペダルのストロークを操作量として操作量制動力変換回路31に入力し、その出力信号を増加用ローパスフィルタ32と減少用ローパスフィルタ33とに入力し、各出力を最大値選択回路34により大きい方を選択し、各ローパスフィルタの出力の大きい方で制御目標値Bmaxを生成し、制御目標値Bmaxが最終的な制動力目標値となる。ブレーキ操作量に対する制動力目標値の応答遅れを、ブレーキ操作量の増加側では小さく、ブレーキ操作量の減少側では大きくすることができ、各ローパスフィルタのカットオフ周波数(時定数)を調整するという簡単な構成で、運転者に違和感の無いブレーキフィーリングを与えることができる。 (もっと読む)


【課題】エンジン始動時にクラッチを係合する際に、エンジンが逆回転するのを抑制可能なハイブリッド車両の制御装置を提供する。
【解決手段】ハイブリッド車両の制御装置は、ハイブリッド車両に搭載され、エンジンと、第1回転電機と、第2回転電機と、動力伝達機構と、クラッチ同期制御手段と、ポンピングロス制御手段と、を備える。動力伝達機構は、相互に差動回転可能な複数の回転要素を備える。クラッチ同期制御手段は、第1走行モードから、第2走行モードへ走行モードを切り替える場合、エンジンの始動前に、第1回転電機のトルクに基づきクラッチの係合要素の回転を同期させる制御を行う。ポンピングロス制御手段は、上述の制御時に、ポンピングロスを大きくする制御を行う。 (もっと読む)


【課題】車両発進直後のブレーキ操作時には既に錆取りが行われていることを保証すること。
【解決手段】車両の主電源(イグニッションスイッチ43)オン時に、ディスクロータ15の摩擦面15Aの発錆が検出されている場合には、摩擦制動手段19が摩擦制動力を発生する制御を行う。 (もっと読む)


【課題】動力分割機構24のリングギアRにオルタネータ40を機械的に連結するのみでは、回生運転時において、駆動輪16側からフライホイール36側への動力の伝達量が十分とならないこと。
【解決手段】動力分割機構24は、1の遊星歯車機構によって構成されており、そのキャリアCには、駆動輪16が機械的に連結され、サンギアSには、フライホイール36が機械的に連結されている。リングギアRに、オルタネータ40に加えて、オイルポンプ44の従動軸を機械的に連結する。これにより、回生運転時にリングギアRに加わる負荷トルクを大きくすることができ、ひいては駆動輪16からフライホイール36に伝達される動力を大きくすることができる。 (もっと読む)


【課題】ハイブリッド電気自動車の制御装置において、電動機の回生制動時にドライバビリティを悪化させることなく、回生エネルギーの効率的な回収を図る。
【解決手段】ハイブリッド電気自動車の制御装置(26)は、電動機(4)の回転数と変速機(5)の変速段Sに基づき算出された基準回生制動トルクTsrが電動機(4)の最大回生制動トルクTmに満たない場合に、ブレーキペダル(13)の踏み込み量、電動機(4)の回転数及び変速機(5)の変速段Sに基づいて算出した上乗せ回生制動トルクTadを基準回生制動トルクTsrに上乗せすることにより、回生制動トルクTrを算出する。 (もっと読む)


【課題】モータ走行時における燃費を向上できる車両用駆動システムを提供すること。
【解決手段】この車両用駆動システム1は、エンジン2と、モータ6と、入力軸41および出力軸42の間の変速比を変更できる変速機4と、エンジン2および変速機4の入力軸41の間に配置されるクラッチ3と、モータ6の接続先を変速機4の入力軸41および出力軸42の間で切り替える接続切替装置7と、接続切替装置7を駆動制御する制御装置9とを備える。また、車両用駆動システム1は、エンジン2を動力源とするエンジン走行と、モータ6を動力源とするモータ走行とを切り替え得る。そして、制御装置9は、モータ走行中におけるアクセル開度θが所定の条件を満たすときに、接続切替装置7を駆動制御してモータ6の接続先を変速機4の入力軸41および出力軸42の間で切り替える。 (もっと読む)


【課題】電流センサの故障を容易に検出することができ、かつ、生産コストの上昇を抑制する。
【解決手段】MG−ECUは、電流Ivを検出する2つの電流センサの検出値Iv1とIv2とが一致する場合(S100にてYES)、電流Ivおよび電流Iwの各々の最大値および最小値を計測するステップ(S102)と、電流Ivおよび電流Iwの振幅をそれぞれ算出するステップ(S104)と、電流Ivの振幅と電流Iwの振幅とが一致する場合に(S108にてYES)、第1乃至第3の電流センサが正常状態であると判定するステップ(S110)と、電流Ivの振幅と電流Iwの振幅とが一致しない場合(S108にてNO)、電流Iwを検出する電流センサが異常状態であると判定するステップ(S112)とを含む、プログラムを実行する。 (もっと読む)


【課題】車両停車中にバッテリのSOC低下に応じて停車発電制御を適切に実行でき、もって確実にバッテリのSOCを回復できるハイブリッド電気自動車の停車発電制御装置を提供する。
【解決手段】PレンジまたはNレンジでの車両停車中においてバッテリのSOCが充電判定値SOC0以上のときには(S10がNo)、インナクラッチC1及びアウタクラッチC2を切断状態に保持して油圧ポンプ駆動のためのエンジン負荷を軽減する一方(S12)、SOCが充電判定値SOC0未満のときには(S10がYes)、電動機3側のアウタクラッチC2のみを接続状態に切り換え(S16)、停車発電制御により電動機3をジェネレータ作動させてバッテリ5を充電する(S18)。 (もっと読む)


【課題】第1モータに対する速度制御の性能が低下した状態で、エンジン運転点追従性能を向上できるようにしたハイブリッド車両のエンジン運転点追従システム。
【解決手段】エンジンと、2個のモータと、2組の遊星ギアセットと、を含むハイブリッド車両のエンジン運転点追従システムであって、エンジン目標速度を第1モータの目標速度に変換するエンジン目標速度変化部と、第1モータの目標速度をトルク値に換算するPI制御部と、第1モータのトルク不足分をエンジントルク補償部にフィードバックするアンチワインドアップフィードバック部と、第1モータのトルク不足分をエンジントルク値に変換するトルク変換計算部と、換算されたエンジントルクを追加してエンジン目標トルクを補償し、エンジン運転点をエンジン目標速度に追従させるエンジントルク補償部と、を含んで構成されるハイブリッド車両のエンジン運転点追従システムを提供する。 (もっと読む)


【課題】車両の制御装置において、運転者による運転操作フィーリングの悪化を抑制すると共に燃費の向上を可能とする。
【解決手段】エンジン11とモータジェネレータ14との駆動力を駆動輪16に伝達可能なハイブリッド車両にて、ハイブリッドECU100は、エンジン11の駆動力により車両を走行可能なエンジン走行モードとモータジェネレータ14の駆動力により車両を走行可能なEV走行モードとを切替可能であり、
車速に基づいてモータジェネレータ14による回生量を減少させる減少時間を設定し、クラッチ12により駆動伝達が遮断されたときに設定した減少時間内でモータジェネレータ14による回生トルク(回生量)を減少させるようにする。 (もっと読む)


【課題】第2歯車機構のプレシフト要求と走行モードの切換要求とが相前後して発生したとき、これに応じたエンジン吹き上がり制御による燃料消費の増大及び騒音発生を抑制できるハイブリッド電気自動車の変速制御装置を提供する。
【解決手段】電動機単独走行中において偶数歯車機構G2に対するプレシフト要求があったときに(S2,4)、エンジン・電動機併用走行への走行モードの切換要求があるまで待機し、この走行モードの接続要求があると(S6がYes)、インナクラッチC1を接続し、電動機3の駆動力を0にしていくと共にエンジン駆動力を増加させて(S8,10)、電動機3の駆動力の瞬断を防止しつつ偶数歯車機構G2に対するプレシフトを実行し(S12)、同時にエンジン・電動機併用走行への走行モードの切換を完了する(S14)。 (もっと読む)


【課題】惰行運転時においてエンジン減速モードとモータ減速モードとの間の制動力の格差に起因する減速感の相違を解消した上で、モータ減速モードでは電動機の回生制御により最大限の発電量を実現できるハイブリッド電気自動車の回生制御装置を提供する。
【解決手段】モータ減速モードによる車両の蛇行運転時において、エンジンと電動機との間のクラッチを切断して、電動機の回生トルクを最大トルクライン上で制御することにより車両の減速エネルギの全てを回生発電に利用すると共に、最大トルクライン上におけるエンジンブレーキ近傍の回生トルクが得られる電動機の回転域でシフトダウンを実行することにより、エンジン減速モードと同様に減速感を実現する。 (もっと読む)


【課題】シールドシェルをより好適に固定することを可能とするシールドカバーを提供することである。
【解決手段】シールドカバー70は、筐体11a上に設けられる電力線部30の先端側に設けられノイズを筐体11a側に逃がすためのシールドシェル60よりもさらに先端側に設けられ、筐体11aと電力線部30とを接続する終端接続部50に用いられるシールドカバー70であって、筐体11aの外部側から拘束される拘束部74と、終端接続部50の外形に沿った凹形状を有するフード部72と、シールドシェル60を圧接固定するカール部76と、を備える。 (もっと読む)


【課題】エンジンの始動中にP段またはN段からD段またはR段への静的変速が行われても、ショックの発生が防止できるハイブリッド車両のエンジン始動時の変速制御システム及び方法を提供する。
【解決手段】エンジンと、第1モータと、第2モータと、エンジンと第1モータとの間を連結する第1遊星ギアセットと、エンジンと第2モータとの間を連結する第2遊星ギアセットとを含むハイブリッド車両のエンジン始動時の変速制御システムで、始動時に第2遊星ギアセットのリングギアに対する目標速度追従のための第2モータの目標速度の入力を受け、第2モータの目標速度に該当するトルクを計算するとともに、計算されたトルクを第2モータに指令するPI制御部40と、エンジンの始動時に、第2モータMG2へ伝達される反力に該当するトルクをフィードフォワードターム制御方式でPI制御部に入力するエンジン摩擦トルクフィードフォワード部30とを含んでいる。 (もっと読む)


【課題】ハイブリッド電気自動車のバッテリ充放電制御装置に関し、登坂路走行時に、バッテリの温度上昇に起因したバッテリの充放電電流の抑制を不要にできるようにする。
【解決手段】走行用トルクを出力しうるエンジン1及び電動発電機4と、電動発電機4による発電電力によって充電可能なバッテリ40と、をそなえたハイブリッド電気自動車に装備され、車両の前方の道路状況を取得する手段60と、取得された車両前方の道路状況に基づいて車両前方に登坂路があるか否かを判定する手段30aと、登坂路ありと判定しない限りバッテリ温度がバッテリ40の上限温度近傍の温度よりも高くなった場合にバッテリ40の充放電を制限し、登坂路ありと判定したら車両が登坂路に進入するまではバッテリ40の温度が第1の所定温度よりも低い第2の所定温度よりも高くなった場合にバッテリ40の充放電を制限する制御手段30dと、を備える。 (もっと読む)


【課題】ハイブリッド電気自動車の制御装置において、モータのトルク制御を用いて駆動輪のスリップの抑制を行なう場合に、該モータトルク制御を適切に終了させるようにする。
【解決手段】走行駆動源としてのエンジン1及びモータ3と、エンジンとモータとの間に介装されたクラッチ2と、駆動輪8の実スリップ率を算出するスリップ率算出手段60bと、駆動輪8のスリップが検出されたら、クラッチの断接状態と、車両の走行状態に基づいて、駆動輪の目標スリップ率を設定するとともに、駆動輪のスリップが検出されたら、実スリップ率が目標スリップ率になるようにモータの出力トルクを制御し、この制御中に、実スリップ率が安定したら制御を緩やかに終了し、ドライバの加速要求があったら制御を速やかに終了する出力トルク制御手段60eとを備える。 (もっと読む)


41 - 60 / 1,643