説明

Fターム[5H115TO23]の内容

車両の電気的な推進・制動 (204,712) | その他の検出 (15,876) | ブレーキ操作量 (1,884)

Fターム[5H115TO23]の下位に属するFターム

Fターム[5H115TO23]に分類される特許

81 - 100 / 1,597


【課題】モータ走行時における燃費を向上できる車両用駆動システムを提供すること。
【解決手段】この車両用駆動システム1は、エンジン2と、モータ6と、入力軸41および出力軸42の間の変速比を変更できる変速機4と、エンジン2および変速機4の入力軸41の間に配置されるクラッチ3と、モータ6の接続先を変速機4の入力軸41および出力軸42の間で切り替える接続切替装置7と、接続切替装置7を駆動制御する制御装置9とを備える。また、車両用駆動システム1は、エンジン2を動力源とするエンジン走行と、モータ6を動力源とするモータ走行とを切り替え得る。そして、制御装置9は、モータ走行中におけるアクセル開度θが所定の条件を満たすときに、接続切替装置7を駆動制御してモータ6の接続先を変速機4の入力軸41および出力軸42の間で切り替える。 (もっと読む)


【課題】HV−MT車について、クラッチペダル操作に基づいて変化する内燃機関のトルク及び電動機のトルクのそれぞれの変化タイミングの間のずれの発生を抑制すること。
【解決手段】この動力伝達制御装置は、動力源として内燃機関とモータ(MG)とを備えたハイブリッド車両に適用され、手動変速機と、摩擦クラッチとを備える。MGトルクが、アクセル開度に基づいて決定されるMGトルク基準値と、クラッチ戻しストロークに基づいて決定されるMGトルク制限値とのうち小さい方に調整される。摩擦クラッチの実際のミート開始点及び実際のリリース開始点が検出される。MGトルク制限値の決定に使用されるマップに使用されるクラッチのミート開始点及びリリース開始点が、検出された実際のミート開始点及び実際のリリース開始点に一致するように較正される。 (もっと読む)


【課題】ハイブリッド電気自動車の制御装置において、電動機の回生制動時にドライバビリティを悪化させることなく、回生エネルギーの効率的な回収を図る。
【解決手段】ハイブリッド電気自動車の制御装置(26)は、電動機(4)の回転数と変速機(5)の変速段Sに基づき算出された基準回生制動トルクTsrが電動機(4)の最大回生制動トルクTmに満たない場合に、ブレーキペダル(13)の踏み込み量、電動機(4)の回転数及び変速機(5)の変速段Sに基づいて算出した上乗せ回生制動トルクTadを基準回生制動トルクTsrに上乗せすることにより、回生制動トルクTrを算出する。 (もっと読む)


【課題】車両停止時において効率的な停止を行うことのできる車両停止制御装置を提供することにある。
【解決手段】車両1が惰性走行中であり(S1)、前方の信号機の表示が赤または黄である場合(S2)、当該信号機に対応する停止線までの距離(信号機距離)と、惰性走行により到達する到達距離とを比較し(S3、S4)、到達距離が信号機距離を超えるときには各種ブレーキを作動し(S5)、到達距離が信号機距離に達しない場合は駆動力を発生させるよう制御する。 (もっと読む)


【課題】ハイブリッド電気自動車の制御装置において、様々な運転状況下で発生する駆動輪のスリップに対して各運転状況に応じた制御を行ない適切にスリップの抑制を行なう。
【解決手段】走行駆動源としてのエンジン1及びモータ3と、エンジン1とモータ3との間に介装されたクラッチ2と、駆動輪8の実スリップ率を算出するスリップ率算出手段60bと、駆動輪8のスリップが検出されたら、クラッチ2の断接状態と、車両の走行状態に基づいて、駆動輪8の目標スリップ率を設定する目標スリップ率設定手段60dと、駆動輪8のスリップが検出されたら、実スリップ率が目標スリップ率になるように走行駆動源の出力トルクを制御する出力トルク制御手段60eとを備える。 (もっと読む)


【課題】ハイブリッド電気自動車の制御装置において、モータのトルク制御を用いて駆動輪のスリップの抑制を行なう場合に、該モータトルク制御を適切に終了させるようにする。
【解決手段】走行駆動源としてのエンジン1及びモータ3と、エンジンとモータとの間に介装されたクラッチ2と、駆動輪8の実スリップ率を算出するスリップ率算出手段60bと、駆動輪8のスリップが検出されたら、クラッチの断接状態と、車両の走行状態に基づいて、駆動輪の目標スリップ率を設定するとともに、駆動輪のスリップが検出されたら、実スリップ率が目標スリップ率になるようにモータの出力トルクを制御し、この制御中に、実スリップ率が安定したら制御を緩やかに終了し、ドライバの加速要求があったら制御を速やかに終了する出力トルク制御手段60eとを備える。 (もっと読む)


【課題】車両停車中にバッテリのSOC低下に応じて停車発電制御を適切に実行でき、もって確実にバッテリのSOCを回復できるハイブリッド電気自動車の停車発電制御装置を提供する。
【解決手段】PレンジまたはNレンジでの車両停車中においてバッテリのSOCが充電判定値SOC0以上のときには(S10がNo)、インナクラッチC1及びアウタクラッチC2を切断状態に保持して油圧ポンプ駆動のためのエンジン負荷を軽減する一方(S12)、SOCが充電判定値SOC0未満のときには(S10がYes)、電動機3側のアウタクラッチC2のみを接続状態に切り換え(S16)、停車発電制御により電動機3をジェネレータ作動させてバッテリ5を充電する(S18)。 (もっと読む)


【課題】回生協調ブレーキ制御時、マスターシリンダ圧発生開始ポイントのメカバラツキ影響を排除した制動目標値を設定することにより、良好なブレーキフィーリングと回生エネルギーの確保を達成すること。
【解決手段】ハイブリッド車のブレーキ制御装置は、マスターシリンダ13と、ホイールシリンダ4FL,4FR,4RL,4RRと、VDCブレーキ液圧ユニット2と、モータコントローラ8と、統合コントローラ9と、を備える。統合コントローラ9は、ブレーキ操作時、目標減速度を基本液圧分と上乗せ制動分(回生分と加圧分)で達成する回生協調ブレーキ制御を行う。そして、ブレーキ操作によりマスターシリンダ圧の発生が開始されるブレーキペダルストローク位置を検出し、検出された実マスターシリンダ圧発生開始ポイントでの目標減速度が、上乗せ制動分の最大値(回生ギャップ)になるように、ストローク変化に対して滑らかに変化する目標減速度特性を設定する(図4)。 (もっと読む)


【課題】ハイブリッド電気自動車のバッテリ充放電制御装置に関し、登坂路走行時に、バッテリの温度上昇に起因したバッテリの充放電電流の抑制を不要にできるようにする。
【解決手段】走行用トルクを出力しうるエンジン1及び電動発電機4と、電動発電機4による発電電力によって充電可能なバッテリ40と、をそなえたハイブリッド電気自動車に装備され、車両の前方の道路状況を取得する手段60と、取得された車両前方の道路状況に基づいて車両前方に登坂路があるか否かを判定する手段30aと、登坂路ありと判定しない限りバッテリ温度がバッテリ40の上限温度近傍の温度よりも高くなった場合にバッテリ40の充放電を制限し、登坂路ありと判定したら車両が登坂路に進入するまではバッテリ40の温度が第1の所定温度よりも低い第2の所定温度よりも高くなった場合にバッテリ40の充放電を制限する制御手段30dと、を備える。 (もっと読む)


【課題】惰行運転時においてエンジン減速モードとモータ減速モードとの間の制動力の格差に起因する減速感の相違を解消した上で、モータ減速モードでは電動機の回生制御により最大限の発電量を実現できるハイブリッド電気自動車の回生制御装置を提供する。
【解決手段】モータ減速モードによる車両の蛇行運転時において、エンジンと電動機との間のクラッチを切断して、電動機の回生トルクを最大トルクライン上で制御することにより車両の減速エネルギの全てを回生発電に利用すると共に、最大トルクライン上におけるエンジンブレーキ近傍の回生トルクが得られる電動機の回転域でシフトダウンを実行することにより、エンジン減速モードと同様に減速感を実現する。 (もっと読む)


【課題】駆動軸の回転数に急変が生じるものとしても、二次電池が過大な電力により充放電するのを抑制する。
【解決手段】低μ路の路面上を走行するなどアクセルペダルの踏み込みにより駆動輪にスリップが生じその後アクセルペダルの踏み込みを維持しながらブレーキペダルの踏み込みによりスリップしている駆動輪をグリップさせた両踏みグリップ状態を判定し、両踏みグリップ状態でないときには要求パワーPeをエンジンから効率良く出力するための目標運転ポイントでエンジンを運転すると共に要求トルクを駆動軸に出力するために設定されたモータMG1のトルク指令Tm1*を実行トルクT1*に設定してモータMG1を駆動制御し、両踏みグリップ状態であるときには実行トルクT1*に値0を設定することによりモータMG1のトルクを制限する。 (もっと読む)


【課題】電動機に接続されたギヤ機構での異音の抑制と内燃機関の運転効率の低下の抑制との両立を図る。
【解決手段】効率優先運転ポイントでエンジンが運転されると共に要求トルクTr*が駆動軸に出力されるようエンジンと二つのモータとを制御すると第2モータから出力されるトルクが異音トルク範囲内となるときには(S170)、異音抑制動作ラインと要求パワーPe*とを用いて得られる第1仮運転ポイントと(S180)、第2モータから出力されるトルクが異音トルク範囲の上限よりも大きくなると共に要求パワーPe*がエンジンから出力されるよう設定される第2仮運転ポイントと(S190)、のうち回転数が小さい方の運転ポイントでエンジンが運転されると共に要求トルクTr*が駆動軸に出力されるようエンジンと二つのモータとを制御する(S200〜S270)。 (もっと読む)


【課題】車両の大きさに対して限られたバッテリ容量であっても、回生発電による発電電力を有効に利用することができるハイブリッド電気自動車の制御装置を提供する。
【解決手段】バッテリ40の温度を検出するバッテリ温度検出手段53と、バッテリ温度検出手段53により、バッテリ40の温度が所定温度よりも高くなった場合、バッテリ40の充放電を制限するバッテリ充放電制限手段30と、ハイブリッド電気自動車のエネルギ回生による発電中に、バッテリ充放電制限手段30の作動によりバッテリ40の充放電が制限された場合には、電気ヒータ21の作動禁止条件が成立しない限り、電気ヒータ21に発電電力を供給する制御手段30とを備える。 (もっと読む)


【課題】アクセルオフに伴って車両に制動力を付与するときに、バッテリが所定蓄電割合を超えて充電される状態が継続するのを抑制する。
【解決手段】アクセルオフに伴って車両に制動力を付与するとき、蓄電割合SOCが所定割合SOCref以上となると共に蓄電割合SOCの時間変化率kが値0を超えているときには(S100)、要求トルクTr*からモータ駆動トルクTmref(正の値)を減じたものをブレーキトルクTb*に設定して、設定したブレーキトルクTb*(制動力)が電気自動車に付与されるように油圧ブレーキ装置を制御し(S110)、その後、トルク指令Tm*にモータ駆動トルクTmrefを設定すると共に設定したトルク指令Tm*でモータが駆動するようインバータやバッテリの電圧を昇圧する昇圧コンバータを制御する(S120)。 (もっと読む)


【課題】二次電池の温度が低いときにその蓄電割合が過剰に高くなるのを抑制する。
【解決手段】電池温度Tbが所定温度未満のときに、電池温度Tbが所定温度以上のときに比してモータからの動力だけを用いて走行する電動走行が行なわれにくくなると共にエンジンからの動力とモータからの動力とを用いて走行するハイブリッド走行が行なわれやすくなるものにおいて、バッテリの蓄電割合SOCに応じて蓄電割合調整用パワーPbsocを設定し(S300)、電池温度Tbが所定温度未満のときに所定温度以上のときに比して小さな値を嵩上げパワーPbηに設定し(S310)、これらの和をバッテリの充放電用パワーPb*に設定する(S320)。そして、ハイブリッド走行によって走行するときには、充放電用パワーPb*を走行用パワーに加えたパワーがエンジンから出力されながら走行するようエンジンと二つのモータとを制御する。 (もっと読む)


【課題】四輪駆動状態と二輪駆動状態との切り換え機能、及び、高速レンジと低速レンジとの切り換え機能を有する四輪駆動車に対し、構成の簡素化及び小型化を図ることができる四輪駆動車の動力伝達装置を提供する。
【解決手段】遊星歯車機構30のキャリアCAをモータジェネレータ2の出力軸26に、リングギヤRをリヤプロペラシャフト51に、サンギヤSをフロントプロペラシャフト41にそれぞれ接続する。サンギヤSを車体側に固定可能とするスリーブ機構と、フロントディファレンシャルギヤ44と右側車輪4Rとの間のトルク伝達を遮断可能とするディスコネクト機構46とを備えさせる。スリーブ機構を解放状態とし且つディスコネクト機構46を係合状態とすることで4WD−Loモードを成立させる。スリーブ機構を係合状態とし且つディスコネクト機構46を解放状態とすることで2WD−Hiモードを成立させる。 (もっと読む)


【課題】 アップシフト時の変速ショックを抑制すると共に、イナーシャトルクを有効に利用してエネルギー効率を向上できる車両の駆動力制御装置を提供する。
【解決手段】 車両は、エンジンENG、電動機MG、二次電池1、及び検知手段21cを有する駆動力制御装置21を備える。駆動力制御装置21は、アップシフト時のイナーシャ相中に、エンジンENGのイナーシャトルクが駆動輪に伝達されることを阻止するように、検知手段21cで検知されたイナーシャトルクに基づいて電動機MGで発電させて二次電池1に充電する回生を行なうか、又は電動機MGの駆動力を減少させる。 (もっと読む)


【課題】電動機を駆動源とした搭載した車両の異音の発生を低減する。
【解決手段】MG−ECUは、車両の停止中にブレーキペダルの踏み込み量が減少されたときに、第2MG14からの出力トルクを増加させるとともに、出力トルクの増加の期間中に第2MG14からの出力トルクが増加側から減少側に変化する期間を有するように、第2MG14を制御する。 (もっと読む)


【課題】高効率での電動車両モータ駆動制御を行い、低電費な電動車両向け走行制御装置を提供する。
【解決手段】電動車両の走行制御装置は、実車速とモータの力行及び回生に関する駆動状態とに基づいて、電費効果代をもたらすモータの制駆動に必要な最高効率モータトルクを演算する演算部と、アクセル開度及び実車速に基づいて、モータを最高効率モータトルクで制駆動させて車両を走行させる第1期間と、モータを制駆動させずに車両を惰行させる第2期間との期間配分を演算する演算部と、第1期間における走行と第2期間における惰行とが交互に繰り返されるように、モータをパルス状に制駆動するための目標モータトルクを演算する演算部と、目標モータトルクに応じてモータをパルス状に制駆動することにより車両の走行制御を行う制駆動ECUとを備える。 (もっと読む)


【課題】内燃機関をより正確に目標停止範囲内に停止させる。
【解決手段】ブレーキペダルが踏み込まれて減速走行中にエンジンの運転を停止させる際には、ブレーキペダルポジションセンサからのブレーキペダルポジションBP(ブレーキ踏力)が大きいほどエンジンの回転数を減少させる向きのトルクが小さくなるよう補正トルクTadjを設定し(S130)、補正トルクTadjでベーストルクTbaseを補正することによりトルク指令Tm1*を設定してモータMG1を駆動制御する(S140,S150)。これにより、ブレーキペダルの踏み込み状態に拘わらず、安定した制動トルクでエンジンを停止させることができるから、エンジンを次回の始動に適した目標停止範囲内のクランク角により正確に停止させることができる。 (もっと読む)


81 - 100 / 1,597