説明

Fターム[5H420EA12]の内容

電気的変量の制御(交流、直流、電力等) (13,664) | 主制御部 (1,336) | 主制御素子の種類 (840) | 半導体素子 (707) | トランジスタ (418) | 電界効果トランジスタ(FET) (223)

Fターム[5H420EA12]の下位に属するFターム

Fターム[5H420EA12]に分類される特許

41 - 60 / 130


【課題】太陽電池の最大出力電力追従制御において、最大出力電力の探索に要する所要時間を短くし、太陽電池の出力効率の向上をはかる。
【解決手段】太陽電池11を用いた発電設備の最大出力電力追従制御装置10は、太陽電池の出力電圧を検出する電圧検出部12と、太陽電池の出力電流を検出する電流検出部13と、出力電圧と出力電流との関係により予め定義された、太陽電池出力制御用スイッチング素子14のデューティ値が記憶される記憶部16と、電圧検出部により検出された出力電圧に基づき、記憶部から対応するデューティを読み出し、太陽電池出力制御用スイッチング素子のデューティを制御する制御部17と、により構成される。 (もっと読む)


【課題】変圧回路が出力する直流電圧のリップルを小さくし、高品質な交流電流波形を生成、および電力変換効率を高くすることができるインバータ装置を提供する。
【解決手段】変圧回路106が出力する直流電圧を計測する変圧電圧計測手段107と、変圧電圧計測手段107で計測する電圧を基に変圧回路106が出力する直流電圧が所定範囲となるように変圧回路106を制御するための制御信号を出力する変圧制御手段115と、変圧回路106に入力される電流を計測する入力電流計測手段104と、入力電流計測手段104で計測する電流の変化量に応じて変圧回路106が出力する直流電圧のリップルが小さくなるように変圧制御手段115の制御信号を補正する補正手段116とを備えた。 (もっと読む)


【課題】 高い電源電圧であっても、低い耐圧のスイッチングレギュレータICを用いることが可能なLED駆動回路を提供すること。
【解決手段】 電源電圧をスイッチングレギュレータICの動作電圧にクランプする電圧クランプ回路を備え、LEDに流れる電流を検出する電流検出回路の出力電圧を、スイッチングレギュレータICの動作電圧に変換して出力する構成とした。 (もっと読む)


【課題】回路構成が簡素な交流用電子スイッチ装置を提供すること。
【解決手段】交流用電子スイッチ装置1では、商用交流電圧を負荷LDへ印加する素子として、PW MOSFETQ1,Q2を用いている。そして、このPW MOSFETQ1,Q2を、商用交流電圧から生成された正制御電圧および負制御電圧の入力期間に応じて導通させることで、商用交流電圧を負荷LDへ印加している。よって、本実施形態の交流用電子スイッチ装置1では、トライアックを用いた交流用電子スイッチ装置と比較して、交流電圧がゼロ点になる正確なタイミングでトリガ電圧を生成する回路が不要となる。従って、本実施形態の交流用電子スイッチ装置1によれば、回路構成を簡素化することができる。 (もっと読む)


【課題】構成が簡単で、太陽電池を入力電源として接続可能な二次電池を充電するための充電装置を提供することにある。
【解決手段】
太陽電池1を入力電源とする二次電池3aを充電するための充電装置40であって、スイッチング電源回路8と、入力電圧フィードバック回路7と、充電電圧フィードバック回路9と、充電電流フィードバック回路10とを具備し、各フィードバック回路7、9および10の誤差検出信号を、オペアンプを介して相互に合成してスイッチング電源回路8に制御信号としてフィードバックすることによって、太陽電池1がその出力特性の最適出力動作点(Vmax)付近で動作するように、二次電池3aの充電電圧Vcおよび充電電流Icを制御する。 (もっと読む)


【課題】検出したバッテリの出力電圧値に応じたデューティ比でバッテリの出力電圧をオン/オフ制御(PWM制御)する際に、正しい時点でバッテリの出力電圧を検出することができる車両用電源装置の提供。
【解決手段】バッテリ8の出力電圧を検出する検出手段3,5と、バッテリ8の出力電圧をオン/オフするスイッチング素子2と、検出手段3,5が検出した出力電圧値に応じたデューティ比でスイッチング素子2をオン/オフ制御する制御手段4,6とを備え、制御手段4,6によりスイッチング素子2がオン/オフしたバッテリ8の出力電圧を、給電すべき電気負荷7・・へ与える車両用電源装置。検出手段3,5は、制御手段4,6がスイッチング素子2をオンにしているオン期間の終期で、バッテリ8の出力電圧を検出する構成である。 (もっと読む)


【課題】広範囲のデューティ比に対応して過電流検出できるようにする。
【解決手段】過電流保護回路12が、コイルL1、コンデンサC1、微分回路8、過電流判定回路11を主とした回路によって形成されている。微分回路8は、コンデンサC1の時間変動に基づくノードN4の電圧Vkの変動を検出して出力電圧V0とする。過電流判定回路11はこの出力電圧V0の出力結果に基づいてNMOSトランジスタ4に通ずる電流が過電流であるか否かを判定する。 (もっと読む)


【課題】定電流源を構成するトランジスタに電流ばらつきがあっても、所望の出力電流に調整できる定電流回路(カレントミラー)回路を提供する。
【解決手段】このカレントミラー回路は、第1の電圧印加部分120の第1の電圧印加トランジスタであるNMOSトランジスタ102からPMOSトランジスタ101(電流源トランジスタ)のゲートに、PMOSトランジスタ101のソースに印加する電源電圧(第2の電圧)VCCよりも低い電圧Vneg(第1の電圧)を印加し、第3の電圧印加部分130で上記PMOSトランジスタ101のドレインにグランド(GND)電位を印加してPMOSトランジスタ101の閾値を調整できる。 (もっと読む)


【課題】ソーラーパネルによって発生される電力は、安定していない可能性がある。
【解決手段】電力変換回路は、ソーラーパネルと電力変換器とを備えている。ソーラーパネルは、出力電圧を有する電力を供給するために動作可能である。ソーラーパネルに接続されている電力変換器は、充電モードおよび給電モードで選択的に動作することができる。電力変換器は、充電モード中、ソーラーパネルから電源に電力を伝達して、出力電圧を閾値電圧に維持する。電力変換器は、給電モード中、電源から負荷に電力を配電する。 (もっと読む)


【課題】大幅なコストアップを招くことなく耐圧を高めることができる基準電圧発生回路を提供する。
【解決手段】ダイオード接続されたエンハンスメント型のMOSトランジスタ(Q1)とデプレッション型のMOSトランジスタ(Q3)とを直列形態に接続してなる基準電圧発生回路において、前記エンハンスメント型MOSトランジスタとデプレッション型MOSトランジスタとの間にエンハンスメント型の第3のMOSトランジスタ(Q2)を介在させ、前記デプレッション型MOSトランジスタとして標準耐圧の素子を使用し、前記エンハンスメント型MOSトランジスタおよび前記第3のMOSトランジスタとして高耐圧の素子を使用するようにした。 (もっと読む)


【課題】絶縁層を厚くして電極間の寄生容量を低く抑えることができ、かつ、当該絶縁層に精度良く開口部を形成して作製される小型の半導体装置、その半導体装置の製造方法、及びその半導体装置を含むパワーモジュールを提供する。
【解決手段】セル160は、基板104と、基板104上に形成されるドレイン電極180、ソース電極182、及びゲート電極184と、基板104及び各電極上に形成され、ドレイン電極180の表面を露出する開口部220が形成された絶縁層142とを含む。開口部220は、ドレイン電極180の表面から絶縁層142の表面に向かってその径を広げながら所定高さまで立上がる壁面222と、基板104の表面から当該所定高さで基板104の表面に平行となった踊り場状の平坦面224と、平坦面224から絶縁層142の表面に向かってその径を広げながら立ち上がる壁面226とを有する。 (もっと読む)


【課題】本発明は、PWM駆動のリニアリティ低下やダイナミックレンジ縮小を招くことなく、単一の外部制御信号のみを用いて装置自体のオン/オフ制御と負荷のPWM駆動の双方を実現することが可能な負荷駆動装置を提供することを目的とする。
【解決手段】本発明に係るLEDドライバIC1は、PWM駆動される輝度制御信号PWMからイネーブル信号ENを生成するイネーブル制御部10A(図1では平滑回路)と;イネーブル信号ENに応じてオン/オフ制御され、かつ、輝度制御信号PWMに応じてLED2のPWM駆動を行う負荷駆動部20と;を有して成る構成とされている。 (もっと読む)


【課題】回路規模が小さくて遅延が少なく且つ特性に与える素子バラツキの影響が小さいDC-DCコンバータの異常電流防止回路を提供する。
【解決手段】検出抵抗12の電圧は通常時(正常時)には負電圧であるが異常時に逆電流が生じた場合には正電圧が現れるようになる。電流コンパレータ30は検出抵抗12の電圧を監視し、検出抵抗12の電圧が負電圧の間はハイ出力をAND回路20に送ってドライバ10の出力信号がローサイド側スイッチ素子14,19に伝わるようにし、検出抵抗12の電圧が正電圧になると電流コンパレータ30の出力電圧はローになり、ローサイド側スイッチ素子14,19を強制的にOFFにする。電流コンパレータ30は従来の電圧コンパレータに比べ出力電流値を大きくすることができ、異常電流発生の判定に遅延が生じず速度が極めて速くなり、且つ変化幅を大きく取ることができる。 (もっと読む)


【課題】起動時に高いレベルを維持する三角波状の電圧を出力できる三角波発生回路を提供する。
【解決手段】充放電回路31は、起動直後に初期充電を開始し、この初期充電期間にコンデンサC31の端子間電圧Vcが第1しきい値電圧Vth1(+4.0V)に達すると初期放電に切り替え、この初期放電期間に端子間電圧Vcが第2しきい値電圧Vth2(+1.0V)に達した後は、継続的に通常充放電を行い、端子間電圧Vcを第3しきい値電圧Vth3(+3.5V)と第4しきい値電圧Vth4(+1.5V)との間で変化させる。初期充電の電流を通常充電の電流より大きく設定し、初期放電の電流を通常放電の電流より小さく設定する。 (もっと読む)


【課題】 キャリア信号周波数にかかわらず、しかも制御負荷が重くなることなく、インバータ出力電圧の歪みを解消することができる信頼性にすぐれた電源装置を提供する。
【解決手段】 単相インバータ20に対するスイッチング用のPWM信号をキャリア信号と指令信号との電圧比較により生成する際に、その指令信号の正レベル電圧および負レベル電圧にそれぞれ補正バイアスV3を付加する。 (もっと読む)


【課題】構成を複雑化することなく、電流出力の直線性を向上させることができる電流出力装置を提供する。
【解決手段】ソース電流出力回路2は、制御回路1からの上記設定値(電圧値)をレベルシフトするレベル変換回路21と、レベル変換回路21の出力値(電圧値)を電流値に変換する電圧/電流変換回路22と、を備える。また、シンク電流出力回路3は、制御回路1からの上記設定値(電圧値)をレベルシフトするレベル変換回路31と、レベル変換回路31の出力値(電圧値)を電流値に変換する電圧/電流変換回路32と、を備える。 (もっと読む)


【課題】パワーグランドとシグナルグランドとの差電圧がそれほど大きくない場合に、回路規模を大きくせずに信号のレベルシフトを行うことができるようにする。
【解決手段】入力部1は、一定電流が流れるバイアス部5と、一定電流に比例した比例電流を出力部2に流すための差動対回路部7とを備えている。一方、出力部2は、差動対回路部7を介して流れ込む比例電流によって信号のレベル変換を行う第1変換部17および第2変換部18を備えている。このような回路構成によると、入力部1側のシグナル電源電位SVDDと出力部2側のパワーグランド16の電位PGNDとの間に電位差を設けることができ、入力部1から出力部2に比例電流を流すことができる。こうして、信号のレベル変換が可能となる。 (もっと読む)


本発明の様々な態様により、パワーストリップ、ウオールプレート・システム、電源モジュールなどでの電力消費を低減させる方法および回路を提示する。例示的な一実施形態で、電源回路が、電気接続部を電力入力部から切り離すことによってアイドル・モード中の電力を低減または削除するように構成される。例示的な電源回路は、AC電力入力部と連絡することができ、変流器、制御回路、およびスイッチを含むことができる。変流器2次巻線は、アウトレット負荷に比例する出力電力レベル信号を供給する。変流器2次巻線の挙動が、電源回路がAC電力入力部から引き出している電力が実質的に無いことを示す場合、スイッチは、変流器の1次を電源回路から切り離すことを促進する。
(もっと読む)


【課題】電流制御用MOSトランジスタに流れる電流をカレントミラー方式で検出して制御する充電制御用ICにおいて、トランジスタのサイズ比がばらついても電流検出精度を向上させることができるようにする。
【解決手段】カレントミラー方式の電流検出回路(13)に、バイアス状態制御用トランジスタ(Q3)と、電流制御用トランジスタ(Q1)と電流検出用トランジスタのドレイン電圧を入力とする演算増幅回路(AMP1)とを設け、該演算増幅回路の出力に基づいて電流検出用MOSトランジスタのバイアス状態が、電流制御用MOSトランジスタのバイアス状態と同一になるように構成するとともに、電流制御用トランジスタと電流検出用トランジスタの各ドレイン電極から演算増幅回路の対応する入力点までの配線の寄生抵抗による電圧降下が同一となるように、電流検出用トランジスタのドレイン配線の長さを調整するようにした。 (もっと読む)


【課題】電流制御用MOSトランジスタに流れる電流をカレントミラー方式で検出して制御する充電制御用ICにおいて、出力電流が増加した場合でも電流検出精度を向上させることができるようにする。
【解決手段】電流検出回路(13)に、電流検出用トランジスタ(Q2)と接地点との間に電流−電圧変換手段(Rp)と共に直列に接続されるバイアス状態制御用トランジスタ(Q3)と、電流制御用トランジスタ(Q1)と電流検出用トランジスタのドレイン電圧を入力とする演算増幅回路(AMP1)とを設け、該演算増幅回路の出力に基づいて電流検出用MOSトランジスタのバイアス状態が、電流制御用MOSトランジスタのバイアス状態と同一になるように構成するとともに、電流制御用トランジスタと電流検出用トランジスタの各ドレインから前記演算増幅回路の対応する入力点までの配線等の寄生抵抗を含めた抵抗の電圧降下が同一となるように設定した。 (もっと読む)


41 - 60 / 130