説明

Fターム[5H730BB14]の内容

DC−DCコンバータ (106,849) | 主変換部の型式 (20,669) | 非絶縁型チョッパー方式 (5,778) | BOOST型 (2,695)

Fターム[5H730BB14]に分類される特許

361 - 380 / 2,695


【課題】電源入力がオフした後、一定時間必要な電源出力を維持できる電源装置を提供することである。
【解決手段】入力電圧から第1の電圧へ変換する第1のコンバータ3と、該第1のコンバータからの第1の電圧を第2の電圧へ変換する第2のコンバータ4と、第1のコンバータから出力される第1の電圧と所定の基準電圧とを比較する電圧比較部46と、該電圧比較部により第1の電圧が所定の基準電圧より大きいとされるまでは第1の信号を出力し、第1の電圧が所定の基準電圧より大きいとされた後は第2の信号の出力を保持する電圧比較結果出力部47と、該電圧比較結果出力部から第1の信号が出力されている時、第2のコンバータを停止するよう制御し、電圧比較結果出力部から第2の信号が出力されている時、第2のコンバータを動作させるよう制御するコンバータ制御部48とを備える。 (もっと読む)


【課題】イグニッションオフ時のコンデンサの電荷をより適正な態様で処理する。
【解決手段】イグニッションオフされたときにおいて、処理モードとしてバッテリ優先モードが設定されているときには、充電条件が成立していることを条件としてリレーがオンの状態でコンデンサの電荷を昇圧コンバータを介してバッテリに充電する充電制御を実行し(S120〜S140)、その後に、空調条件が成立していることを条件としてリレーがオフの状態でコンデンサの電荷を昇圧コンバータを介して用いて空調装置のコンプレッサを駆動する空調制御を実行する(S150〜S200)。一方、処理モードとして空調優先モードが設定されているときには、空調条件が成立していることを条件として空調制御を実行し(S220〜S270)、その後に、充電条件が成立していることを条件として充電制御を実行する(S300〜S320)。 (もっと読む)


【課題】高負荷時の電流検出手段での損失を低減することにより電流検出手段の小型化が行なえ、かつ、低負荷時の制御を安定させる電源装置を提供する。
【解決手段】電源装置に備えられた昇圧コイル12とダイオード13との間には2個のスイッチング素子が整流回路11の出力側に対して並列接続されている。また、スイッチング動作時に常にオンオフ動作を行う第1スイッチング素子16にシャント抵抗18が直列接続されている。電源装置の負荷の大きさに応じて駆動するスイッチング素子数を決定するので、高負荷時のシャント抵抗18での損失を低減することによりシャント抵抗18の小型化が行なえる。また、高負荷時のシャント抵抗18での損失を低減することができるので、シャント抵抗18の抵抗値を大きくして低負荷時のシャント抵抗18での検出レベルを上げることができ低負荷時の制御を安定させることができる。 (もっと読む)


【課題】昇降圧チョッパの損失低下と制御応答の高速化を目的とする。
【解決手段】昇降圧チョッパ制御装置のデューティ演算器において、第1スイッチング素子のオンデューティの最大制限値をd1とし、第3スイッチング素子のオンデューティの最大制限値をd2とし、第1直流電圧源の電圧をV1とし、第2直流電圧源の電圧をV2として、電圧指令Vrefにd2・V2−d1・V1を加算して新たな電圧指令Vrを求め、Vr≧0の場合はD1=d1およびD2=d2−Vr/V2とし、Vr<0の場合はD1=d1+Vr/V1およびD2=d2とする。 (もっと読む)


【課題】本発明は、短時間で出力電流値を出力電流目標値に近づけることができるスイッチング電源装置、及びLED照明装置を提供する。
【解決手段】本発明は、入力電源からの電力を変換し、変換した電力を出力する電力変換回路と、フィードバック制御信号に応じて、電力変換回路が有するスイッチング素子Qをオン/オフすることで、電力変換回路で変換する電力の出力電流を制御する第1制御回路2と、第1制御回路2に出力するフィードバック制御信号を、PI制御又はPID制御により、入力される出力電流目標値と電力変換回路から出力する出力電流値との誤差に基づいて生成する第2制御回路3とを備えるスイッチング電源装置である。第2制御回路3は、出力電流目標値が小さくなるに従い、PI制御又はPID制御の積分制御要素のゲインを大きくする。 (もっと読む)


【課題】昇圧型PFC回路としても昇圧回路としても使用することができる。
【解決手段】整流回路11と、昇圧回路12と、誤差比較器21と、発振器28と、第1の比較信号生成回路26と、鋸歯状波生成回路24と、第2の比較信号生成回路27と、前記第1の比較信号生成回路26の出力と前記発振器28の出力とに基づきスイッチング素子M1を駆動するPFC・昇圧制御用の第1の駆動信号と、前記第2の比較信号生成回路27の出力と前記発振器28の出力とに基づき前記スイッチング素子M1を駆動する昇圧制御用の第2の駆動信号と、のいずれかを外部入力に基づき出力するPWM駆動回路20とを具備する。 (もっと読む)


【課題】従来のものよりも効率が優れた電力変換装置を提供する。
【解決手段】直流電源10Aから供給された第1直流電圧VDC1を昇圧して第2直流電圧VDC2とするDC/DCコンバータ部2Aと、第2直流電圧VDC2を商用交流電圧に変換して商用電力系統11に連系するインバータ部3Aとを備えた電力変換装置1Aであって、連系点電圧VACの電圧値を検知する連系点電圧検知部6と、第2直流電圧VDC2の目標値が連系点電圧VACの電圧値に対応付けられて格納された目標値記憶部5と、所定時間おきに連系点電圧VACの電圧値を取得するとともに目標値記憶部5を参照して該電圧値に対応する目標値を取得し、第2直流電圧VDC2の電圧値が目標値となるようにDC/DCコンバータ部2Aのスイッチング素子SWを制御する制御部4Aとを備えている。 (もっと読む)


【課題】所望の出力を確保しつつ、高電圧系での損失を抑制する。
【解決手段】電動車両用電源装置1は、第1ノードAと第2ノードBとの間に接続されたバッテリ11と、第2ノードBと第3ノードCとの間に接続された第1スイッチ14と、第3ノードCと第4ノードDとの間に接続された燃料電池スタック12と、第1ノードAと第3ノードCとの間に接続された第2スイッチ15と、第2ノードBに接続されたDC−DCコンバータ13とを備える。DC−DCコンバータ13は、第1ノードAを第3ノードCに接続可能にするようにして第2ノードBの電位を変更することで第2ノードBからバッテリ11を介した第1ノードAの電位VAを調整する、又は、第2ノードBを第3ノードCに接続可能にするようにして第2ノードBの電位VBを変更しており、第1ノードAと第4ノードDとの間から取り出される出力電力は電動機(M)2に供給される。 (もっと読む)


【課題】電力効率の良いDC−DCコンバータを提供する。
【解決手段】ハイサイドスイッチQ1と直列に接続されたローサイドスイッチQ2と、ハイサイド制御回路6と、ローサイド制御回路7と、を備え、ハイサイド制御回路6は、ハイサイドスイッチQ1をオンまたはオフしてPWM制御する。ローサイド制御回路7は、ローサイドスイッチQ2の電流を検出する第1の検出回路3と、ローサイドスイッチQ2がオフのときの第1の検出回路3の出力をオフセット電圧として保持し、ローサイドスイッチQ2がオンのとき第1の検出回路3の出力からオフセット電圧を減算した値を出力するオフセットキャンセル回路14と、を有する。ローサイド制御回路7は、ハイサイドスイッチQ1がオフしたときローサイドスイッチQ2をオンし、オフセットキャンセル回路14の出力の電圧と基準となる電圧とを比較してローサイドスイッチQ2をオフする。 (もっと読む)


【課題】通常動作時におけるスイッチング損失を低減することができるLED点灯装置および、これを用いた照明器具を提供する。
【解決手段】スイッチング素子Q1を有し、スイッチング素子Q1がスイッチング制御されることで、直流電源9からの出力電圧を昇圧して出力する昇圧部2と、スイッチング素子Q2,Q3を有し、スイッチング素子Q2,Q3からなる直列回路は昇圧部2の出力端間に接続され、低圧側に接続されたスイッチング素子Q3をオフした状態で、高圧側に接続されたスイッチング素子Q2がスイッチング制御されることで、昇圧部2の出力電圧を降圧して光源部8に印加する降圧部3と、スイッチング素子Q1,Q2,Q3のスイッチング制御を行う制御部とを備え、スイッチング素子Q2のドレイン−ソース間寄生容量Cds2を、スイッチング素子Q3のドレイン−ソース間寄生容量Cds3よりも大きくする。 (もっと読む)


【課題】リップルを低減する。
【解決手段】メインリンク電圧生成部6mは2次電池1に供給される電圧Vbに応じた第1直流リンク電圧VDC_mを生成する。サブリンク電圧生成部6sは、2次電池1に供給される電圧Vbに応じた第2直流リンク電圧VDC_sを生成する。メインDC/DCコンバータ8mは、第1直流リンク電圧VDC_mを受け、それを昇圧または降圧して2次電池1に供給し、サブDC/DCコンバータ8sは、第2直流リンク電圧VDC_sを受け、それを昇圧または降圧して2次電池1に供給する。サブDC/DCコンバータ8sの電流リップルによってメインDC/DCコンバータ8mの電流リップルをキャンセルする。 (もっと読む)


【課題】アルミ電解コンデンサのESRを低減することができる昇圧装置および昇圧回路を提供する。
【解決手段】アルミ電解コンデンサ20を囲む筒状とされ、当該筒状のうちの回路基板10の一面11側に回路配線63に電気的に接続されると共に回路基板10に固定される第1固定端子31および第2固定端子32を有する固定ケース30において、回路配線63を介して第1固定端子31から第2固定端子32までの経路に電流を流すことによって固定ケース30を発熱させることにより、アルミ電解コンデンサ20を加熱する。これにより、アルミ電解コンデンサ20の温度が上昇するので、アルミ電解コンデンサ20のESRを低減することができる。 (もっと読む)


【課題】昇圧回路の過昇圧の解消をインジェクタの駆動条件に適したように行うこと、昇圧実施中に電流回生が発生し、過昇圧解消動作と昇圧動作が同時に発生して、昇圧回路内で昇圧コンデンサと電源グランドのショートが発生して、昇圧回路の破損を防止すること、過昇圧を解消するために発生する、発熱、部品追加、ノイズ発生も少なくできる昇圧回路を備えた内燃機関制御装置を提供すること。
【解決手段】昇圧コイルによりバッテリ電圧を昇圧して昇圧コンデンサに高電圧充電する昇圧回路と、内燃機関に燃料を直接噴射するためのインジェクタを駆動するためのインジェクタ駆動回路と、前記インジェクタへ燃料を加圧して圧送する高圧燃料ポンプを通電して駆動するためのポンプ駆動回路と、を備え、前記ポンプ駆動回路による通電電流を下降させるときに、電気エネルギーを前記昇圧回路の昇圧コンデンサへ単発で回生するための回生回路を有すること。 (もっと読む)


【課題】 無駄な電力消費を防ぎつつ、PFC回路の起動に遅れが生じない、高効率かつ安定性の高いスイッチング電源装置を提供することを目的とする。
【解決手段】 スイッチング電源装置が、PFC回路と、PFC回路に電源を供給する電源供給回路とを有する一次側回路と、二次巻線と、二次巻線に生じる電圧から直流電圧を生成し負荷回路に供給する直流化回路とを有する二次側回路とを有し、一次側回路は、負荷回路の負荷に対応した電圧を出力する出力回路を有し、PFC回路は、入力される電流を制御するスイッチング素子と、PFC回路の検出電圧を生成する検出電圧生成回路と、検出電圧が所定の一定電圧となるようにスイッチング素子を制御するPFC制御回路とを有し、電源供給回路は、PFC回路の電源を出力回路の電圧に応じた所定の周期で間欠的にオン/オフし、検出電圧は、PFC回路の電源がオンする時にのみ生成される。 (もっと読む)


【課題】系統連係装置において、スイッチング周波数を高くした場合における変換効率の向上と、スイッチングノイズの低減等を図る。
【解決手段】系統連係装置は、直流電源1から出力される直流電力を昇圧する昇圧部10と、DC/AC変換部11と、このDC/AC変換部11と系統12との間に挿入されたフィルター部14と、DC/AC変換部11から生じるノイズを抑制するノイズフィルター部13を含んで構成されている。昇圧部10において、逆流阻止ダイオード3はSiCダイオードで形成され、MOSFET4は、逆流阻止ダイオード3と同程度のスイッチング周波数特性及びオン抵抗を有している。また、DC/AC変換部11において、回生ダイオードD1〜D6として、SiCダイオードを採用し、スイッチング素子T1〜T6としてIGBTを採用している。 (もっと読む)


【課題】 無駄な電力消費を防ぎつつ、PFC回路の起動に遅れが生じない、高効率かつ安定性の高いスイッチング電源装置を提供することを目的とする。
【解決手段】 スイッチング電源装置が、PFC回路と、一次巻線と、一次巻線に流れる電流をオン/オフするスイッチング素子と、スイッチング素子のオン/オフを制御する制御回路と、PFC回路を駆動するための電源を供給する電源供給回路とを有する一次側回路と、二次巻線と、二次巻線に生じる電圧から直流電圧を生成し負荷回路に供給する直流化回路とを有する二次側回路とを有し、一次側回路が、負荷回路の負荷を判定する負荷判定回路を有し、電源供給回路は、負荷が無負荷と判定された時に、PFC回路を駆動するための電源をスイッチング素子のオン/オフと同期して間欠的にオン/オフし、PFC回路は、PFC回路を駆動するための電源がオンする時に所定の直流電圧を出力する。 (もっと読む)


本発明の実施の形態は電力増幅器の電力供給回路及び端末を提供し、本発明は通信の技術分野に関連する。電力増幅器の電力供給回路は入力ピンとインダクタンスピンとフィードバックピントを有する直流/直流コンバータチップを含み、入力ピンは電源に接続され、インダクタンスピンはLCストレージ回路を介して電力増幅器の電圧入力端子に接続される。電力増幅器の電圧入力端子とフィードバックピンとの間に制御回路が接続され、制御回路は可変の制御電圧を有し、制御回路を介して制御電圧により電力増幅器の電圧入力端子の電圧を調整する。
(もっと読む)


【課題】来るべき負荷変動に対する調整を電圧レギュレータが可能にするための技術が提示される。
【解決手段】来るべき負荷変動に対する調整を電圧レギュレータが可能にするための技術が提示される。いくつかの実施例では、関連するクロック信号を有するマイクロプロセッサ・コアのような機能ブロックに対して、少なくとも1つのスイッチング・タイプの電圧レギュレータによって電力が供給される。機能ブロックが電力レベルの増大を要求しようとするとき、低い周波数である通常の駆動信号をオーバーライドして、関連するクロックが少なくとも1つのレギュレータのスイッチを駆動するために提供される。このように、スイッチは、負荷変動に十分に先立って(例えば、少し前に)より高い周波数で駆動され、そうでなければ生じたであろう垂下量を低減させる。 (もっと読む)


【課題】選択可能な機能の制約を小さくし、既存の端子に機能を併用させる(隠し機能を持たせる)ことで、端子数の増加を抑えたスイッチング制御回路及び小型・低コストなスイッチング電源装置を構成する。
【解決手段】スイッチング制御用IC202のフィードバック端子FBには、帰還回路12から帰還信号が入力される。このフィードバック端子FBとグランド端子との間にはコンデンサC4及びツェナーダイオードD4が接続されている。ツェナーダイオードD4は選択的に接続される外部回路であり、この外部回路の有無によって、過電流動作時のフィードバック端子FBの電圧が変化する。復帰/ラッチ判別回路26は、フィードバック端子FBの電圧を検知して、過電流動作状態での自動復帰方式とラッチ方式を切り替える。 (もっと読む)


【課題】 適切な電流制御を可能とする昇圧コンバータ制御装置を提供する。
【解決手段】 昇圧コンバータ制御装置1は、リアクトル電流ILのサンプリングを所定のタイミングで行うことによりリアクトル電流ILの電流値の平均値を取得するAD変換器123と、デッドタイムDTにおけるリアクトル電流ILの電流値に基づいて、リアクトル電流ILの電流状態を判定する電流状態判定部122bと、電流状態判定部122bの判定結果に応じて、リアクトル電流ILのサンプリングのタイミングを修正する起動タイミング生成部122aと、を備えている。 (もっと読む)


361 - 380 / 2,695