説明

Fターム[5H730BB26]の内容

DC−DCコンバータ (106,849) | 主変換部の型式 (20,669) | 絶縁型インバータ方式 (3,948) | FORWARD型 (2,107) | ハーフブリッジ、シングルエンデッド (324)

Fターム[5H730BB26]に分類される特許

21 - 40 / 324


【課題】回路素子の動作損失を低減し、変換効率の高効率化を図ることができる電力変換装置を提供する。
【解決手段】絶縁トランス12の二次側の整流回路13の後段に、平滑リアクトルLb、平滑コンデンサCbを有するフィルタ回路14が備えられるDC−DCコンバータ10において、絶縁トランス12の二次側コイル12bと整流回路13との間に共振コンデンサCxが直列に接続される。一次側のインバータ回路11は、スイッチング素子SW1,SW2のハーフブリッジ回路よりなり、フィルタ回路14の平滑リアクトルLbと共振コンデンサCxとの共振周波数に応じたスイッチング周波数にてスイッチング動作が行われる。 (もっと読む)


【課題】通常負荷時の負荷変動特性が良く、軽負荷時の電気的特性が保証され、小型、かつ簡易な構成、制御のスイッチング電源装置を提供する。
【解決手段】スイッチング電源装置20は、力率改善回路30と、直列共振コンバータ40と、負荷状態検出部50と、軽負荷判定部60と、軽負荷制御部70とから構成されている。軽負荷判定部60は、負荷状態検出部50が出力する負荷状態検出値S50と閾値Vaを比較し、S50の値が閾値Va以下であるとき軽負荷であると判定する。軽負荷制御部70は、軽負荷判定部60の判定結果S60が軽負荷である場合、力率改善回路30の出力電圧Vpfcを一定値低下させる制御を行う。 (もっと読む)


【課題】軽負荷から重負荷までさらに幅広く高効率を実現することができるDC/DCコンバータ装置を得る。
【解決手段】DC/DCコンバータ装置2の定格電力Pよりも小さい定格電力P1を持つ第1コンバータユニット21と、第1コンバータユニット22に並列接続され、定格電力Pよりも小さく、定格電力P1と異なる定格電力P2を持つ第2コンバータユニット22と、第1の出力電力領域では、第1コンバータユニット21だけを駆動制御し、第1の出力電力領域と異なる第2の出力電力領域では、第2コンバータユニット22だけを駆動制御し、第1及び第2の出力電力領域と異なる第3の出力電力領域では、第1コンバータユニット21及び第2コンバータユニット22を駆動制御する制御装置27とを備える。 (もっと読む)


【課題】直流電圧の大きさに応じて、フルブリッジとハーフブリッジをスイッチで切替える高周波インバータ回路では、いずれの回路でも、半導体スイッチの遮断時に高周波変圧器の一次巻線の電圧が大きく変化し、ノイズ発生量が大きい。
【解決手段】コンデンサ直列回路と、ダイオードを逆並列接続した半導体スイッチ素子を2個直列接続した第1及び第2の半導体スイッチ直列回路とを直流電源と並列接続し、コンデンサ直列回路内部の接続点と第1の半導体スイッチ直列回路内部の接続点との間に第1の双方向スイッチを、コンデンサ直列回路内部の接続点と第2の半導体スイッチ直列回路内部の接続点との間に第2の双方向スイッチを、各々接続し、第1の半導体スイッチ直列回路内部の接続点と第2の半導体スイッチ直列回路内部の接続点との間に高周波交流電圧を出力する。 (もっと読む)


【課題】変化範囲が大きい入力電圧に対応して制御容易に任意一定の大きさの出力電圧に変換できる電圧制御回路を提供すること。
【解決手段】トランス一次側TPと、トランス二次側TSと、を含む。トランス一次側TPは、複数のトランス一次巻線TL11,TL21と、複数の共振回路RS1,RS2と、複数のスイッチング素子回路SW1,SW2と、複数の駆動回路DV1,DV2と、を含む。トランス二次側TSは、複数の二次巻線TL21,TL22と、複数のダイオードD1−D4を含む整流回路DCと、整流回路DC出力を合成する合成回路SUMと、を含む。トランス一次側TPの駆動回路DV1,DV2は、太陽電池PV1からの入力電圧Viに対してその周波数をf0の同一に維持し、かつ、その位相を変えることでトランス二次側TSで合成回路SUMにより合成される出力電圧VOの大きさを可変する制御を可能とした。 (もっと読む)


【課題】直流電源側への電力回生機能や正負両極性出力機能を備えた絶縁型電力変換装置を提供する。
【解決手段】絶縁トランス(T)の一次側を順方向に駆動するための第1のスイッチング手段(スイッチS1)と、絶縁トランスの一次側を逆方向に駆動するための第2のスイッチング手段と、絶縁トランスの二次側に設置された負荷(16)とインダクタ(L)の直列回路と、直列回路に並列に設けられ、双方向性を持つ1又は複数の第3のスイッチング手段(スイッチS3)と、直列回路と絶縁トランスの二次側との間に設けられ、双方向性を持つ1又は複数の第4のスイッチング手段(スイッチS4)とを備え、インダクタLの蓄積エネルギが第3のスイッチング手段を経由して負荷に供給され、第4のスイッチング手段のスイッチングによって出力極性が決定され、第4のスイッチング手段のオン時間のデューティ比率によって出力電圧が決定される。 (もっと読む)


【課題】負荷が破壊される可能性を防止することができるイッチング電源装置を提供する。
【解決手段】入力された直流電圧を交流電圧に変換するスイッチング回路1と、スイッチング回路1の出力側に直列に接続された第1のコンデンサ5と、第1のコンデンサ5に直列に接続された第1のインダクタ6と、第1のインダクタ6に直列に接続されたトランスTの1次側コイル7と、で構成された共振回路8と、トランスTの2次側コイル9a、9bに接続され、2次側コイル9a、9bの出力交流電圧を直流電圧に変換し、その直流電圧を出力直流電圧として負荷へ供給する平滑整流回路12と、前記出力直流電圧に応じて、スイッチング回路1のスイッチング周波数を制御する共振回路制御部14とを有するスイッチング電源装置において、第1のインダクタ6と並列に接続された第2のコンデンサ15を有することを特徴とするスイッチング電源装置とした。 (もっと読む)


【課題】二次補助巻線の電圧に制御されるスイッチング素子の動作タイミングをより適切にすることを課題とする。
【解決手段】一次巻線W1と二次主巻線W21,W22と二次補助巻線AW1,AW2をボビン10の巻回部に巻いた電源トランスT1において、前記巻回部が互いに離間した一次側巻回部21と二次側巻回部22とを有している。二次側巻回部22には、二次主巻線W21,W22が巻回されている。一次側巻回部21には、一次巻線W1及び二次補助巻線AW1,AW2が巻回されている。電源トランスT1を備える電源回路1の二次側電源回路P2には、二次主巻線W21,W22を流れる電流をそれぞれオンオフするためのFET Q1,Q2と、FET Q1,Q2のオンオフをそれぞれ制御するオンオフ制御回路31,32とが設けられる。 (もっと読む)


【課題】入力電圧が変動した場合においても補正による適切な過電流検出を行うことができるスイッチング電源装置を提供する。
【解決手段】直流電源Viの両端に接続され、スイッチング素子Qhとスイッチング素子Qlとが直列に接続された第1直列回路と、スイッチング素子Qlに並列に接続され、共振コンデンサCriと共振リアクトルLrとトランスT1の1次巻線Npとが直列に接続された第2直列回路と、トランスT1の2次巻線Nsの電圧を整流平滑する整流平滑回路と、スイッチング素子Qhとスイッチング素子Qlとを交互にオン/オフさせる制御回路と、スイッチング素子Qhがオン時の共振コンデンサCriに流れる電流を検出する電流検出部と、電流検出部により検出された電流を電圧信号に変換するとともに、電圧信号の電圧値が第1基準電圧値以上である期間に電圧信号を積分する積分回路と、積分回路による出力電圧が第2基準電圧値以上である場合にスイッチング素子Qhをオフさせる過電流保護部とを備える。 (もっと読む)


【課題】電力変換器に適用可能な適応ブリーダ回路を提供すること。
【解決方法】適応ブリーダ回路は、トランスの一次側及びトランスの二次側を有する電力変換器に適用可能であり、電力変換器によって入力電力を、パルス幅変調信号を通してトランスの一次側に選択的に入力する又は入力しないようにすることが可能となる。適応ブリーダ回路は、スイッチブリーダ回路を含み、ブリーダ回路は、トライアック(TRIAC)の保持電流及び交流(AC)トライアックの変換器入力電流に従ってスイッチ素子のON/OFF比(又はデューティ比と呼ばれる)を動的に調節する。入力電力が保持電流よりも小さいと、ブリーダ回路は、パルス幅変調信号の導通時間比を増加させて、入力電力が保持電力まで回復してACトライアックの正常な導通が維持されるようにする。 (もっと読む)


【課題】共振型の電源装置の起動時に発生する貫通電流を低減する。
【解決手段】制御回路7は、トランス11の2次側の出力電圧をフィードバックとしてハイサイドFET8とローサイドFET9とを交互に駆動する駆動信号を生成する。比較器6は、電流共振コンデンサ14の両端電圧と基準電圧とを比較する。とりわけ、制御回路7は、電源装置が動作を開始してから直列共振回路が定常状態に移行するまでの期間は、比較器6の比較結果に対応した駆動信号を生成する。一方、直列共振回路が定常状態に移行した後の期間は、制御回路7が、比較器7の比較結果を使用せずに、2次側の出力電圧に対応した駆動信号を生成する。基準電圧は、例えば、直流電源から供給される電源電圧の二分の一の大きさの電圧とする。 (もっと読む)


【課題】待機電流を流さず動作時電圧より低い出力電圧に制御する。
【解決手段】スイッチング素子Q1とスイッチング素子Q2を交互にオン/オフさせる第1制御回路10、スイッチング素子Q1の両端に接続されたリアクトルLrと一次巻線Pと電流共振コンデンサCriとの直列回路、二次巻線S1,S2の電圧を整流平滑して出力電圧を出力する整流平滑回路D1,D2,Coの出力両端に接続された負荷LED1と外部信号Vdimからのオン/オフ信号により負荷電流をオン/オフ制御するスイッチ素子Q3と電流検出抵抗R1との直列回路、電流検出抵抗の電圧と基準電圧との誤差信号を増幅する誤差増幅器OP1、外部信号がオン期間に誤差信号をサンプルホールドし誤差信号を第1制御回路に出力し、外部信号がオンからオフに切り替わる直前で誤差信号をホールドし、外部信号がオフ期間に誤差増幅器の増幅度を所定倍率増加させ増加された誤差信号を第1制御回路に出力する第2制御回路20を備える。 (もっと読む)


【課題】ハイサイド用にノーマリオン型スイッチを使用できるドライブ回路。
【解決手段】互いに直列に接続されて直流電源V1に並列に接続されるハイサイドのノーマリオン型スイッチQ5及びローサイドのノーマリオフ型スイッチQ1をドライブするドライブ回路で、ハイサイド制御信号を所定の信号レベルに変換するレベルシフト回路LST、レベルシフト回路で所定の信号レベルに変換されたハイサイド制御信号でノーマリオン型スイッチをドライブするハイサイドドライブ回路HDRV、ローサイド制御信号でノーマリオフ型スイッチをドライブするローサイドドライブ回路LDRV、ノーマリオン型スイッチとノーマリオフ型スイッチとの接続点と直流電源の一端との間に接続され第2コンデンサC3と第1コンデンサC1とが直列接続された直列回路を有し、第2コンデンサからハイサイドドライブ回路の電源電圧が供給され第1コンデンサからローサイドドライブ回路の電源電圧が供給される。 (もっと読む)


【課題】非常用バッテリ上がりを回避して確実にDC/DCコンバータを始動させることのできる電源装置を提供する。
【解決手段】 電源装置10は、据付け型のメインバッテリ12と、メインバッテリ12の出力電圧を降圧するDC/DCコンバータ14と、DC/DCコンバータ14を制御する制御部31と、制御部31に接続された据付け型のサブバッテリ30と、を備えている。DC/DCコンバータ14の稼働していない期間であって、サブバッテリ30の電圧値が制御部31の定格電圧値を下回っている場合には、制御部31に繋がる電源端子54に携帯型の外部電源52を接続することによって外部電源52から制御部31に電力が供給される。制御部31は外部電源52からの電力供給によりDC/DCコンバータ14を始動させる。 (もっと読む)


【課題】インダクタに起因するサージ電圧を低減することが可能な、双方向動作が可能なスイッチング電源装置を得る。
【解決手段】第1の直流電圧を降圧して第2の直流電圧を生成する降圧動作モードと、第2の直流電圧を昇圧して第1の直流電圧を生成する昇圧動作モードとを有するスイッチング電源装置1であって、1次側巻線31と2次側巻線32A,32Bとを有するトランス30と、降圧動作モードにおいて、第1の直流電圧を交流電圧に変換する1次側スイッチング回路10と、昇圧動作モードにおいて、第2の直流電圧を交流電圧に変換する2次側スイッチング回路20と、降圧動作モードにおいて、第2の直流電圧を生成するための平滑回路を構成するインダクタLchと、インダクタに蓄積されたエネルギーを放出する放出手段(抵抗素子Rp)と、放出手段を制御するための1または複数の放出スイッチ(スイッチング素子SW23)とを備える。 (もっと読む)


【課題】スイッチングロスを低減し、電力伝送効率の悪化を抑制することが可能な電力伝送システムを提供する。
【解決手段】本発明の電力伝送システムは、直流電圧を交流電圧に変換して出力するスイッチング素子(SW1、SW2)と、第1インダクタ(121)と第1キャパシタ(122)で構成されると共に、前記第1インダクタ(121)と前記第1キャパシタ(122)が直に連結され、前記出力された交流電圧が入力される送電側磁気共鳴アンテナ部(120)と、を有する送電側システムと、第2インダクタ(221)と第2キャパシタ(222)で構成されると共に、前記第2インダクタ(221)と前記第2キャパシタ(222)が直に連結され、電磁場を介して前記送電側磁気共鳴アンテナ部(120)と共鳴することにより、前記送電側磁気共鳴アンテナ部(120)から出力される電気エネルギーを受電する受電側磁気共鳴アンテナ(220)と、を有する受電側システムと、からなることを特徴とする。 (もっと読む)


【課題】高周波変成器分離を備えたオンボードのパワー電子回路を用いてエネルギーを移行する。
【解決手段】パワー電子駆動回路(10、134、136、142、174、178)は、dcバス(52、176)と第1のエネルギー蓄積デバイス(12)とを含む。第1のエネルギー蓄積デバイス(12)及びdcバス(52、176)に対して第1の双方向dc対ac電圧インバータ(54、144)を結合させ、該第1の双方向dc対ac電圧インバータ(54、144)に対して第1の電気機械式デバイス(74、144)を結合させ。充電バス(94)を介してdcバス(52、176)に結合された充電システム(92)は、外部にある電圧源(132)に結合されたコネクタ(126)と係合するレセプタクル(120)と、該レセプタクル(120)から充電バス(94)を電気的に分離する分離変成器(112)とを備える。 (もっと読む)


【課題】複数の出力を備えるトランスの各巻線間の共振周波数を揃えた共振型の多出力スイッチング電源装置を提供する。
【解決手段】直流電源に複数のスイッチ素子が直列に接続され、トランスの第1の1次巻線とコンデンサの直列回路が複数のスイッチ素子の接続点と直流電源の一端とに接続され、複数のスイッチ素子を交互にオン・オフすることによって、トランスを介してエネルギーを1次巻線から複数の2次巻線に伝達し、トランスの各々の2次巻線に接続された整流平滑回路から複数の直流電圧を取り出すスイッチング電源装置において、コア定数C1が0.4以下のコアを有したトランスと、トランスの1次巻線はコア中央部に近接して巻回され、複数の2次巻線は1次巻線の外周に巻回され、かつ、1次巻線からみた各2次巻線のリーケージインダクタンスの値が同じ値になるように1次巻線の外周に各2次巻線が巻回された構造のトランスを備えたことを特徴とする。 (もっと読む)


【課題】周波数の変動範囲を調節可能な負荷駆動回路を提供する。
【解決手段】メイントランス20は、その2次巻き線側に負荷2が接続される。第1誤差増幅器40は、負荷2の電気的状態を示す検出信号ISと所定の第1基準電圧VREFとの誤差に応じたフィードバック信号FBを生成する。電流生成用抵抗RRTは、電流生成用トランジスタM3と固定電圧端子の間に設けられる。第2誤差増幅器42は、その第1入力端子に電流生成用トランジスタM3と電流生成用抵抗RRTの接続点の電位が入力され、その第2入力端子に所定の第2基準電圧VRTが入力され、その出力端子が電流生成用トランジスタM3の制御端子に接続される。調節用抵抗RADJは、電流生成用トランジスタM3と電流生成用抵抗RRTの接続点と、第1誤差増幅器40の出力端子の間に設けられる。 (もっと読む)


【課題】昇圧チョッパ回路を用いず安価で複数の出力電圧を安定化できる多出力スイッチング電源装置。
【解決手段】制御回路は、コンデンサC4に充電された充電電圧と第1出力電圧VFBHとを比較し第1パルス信号を生成して第1スイッチング素子Q1に出力する第1比較手段CMP1、充電電圧と第2出力電圧VFBLとを比較し第2パルス信号を生成して第2スイッチング素子に出力する第2比較手段CMP2、第1比較手段の出力と第2比較手段の出力とを交互に切り替える切替手段AND1,2と、切替手段による切替が行なわれたとき第1パルス信号又は第2パルス信号によりコンデンサの電荷を放電させる放電手段Q4、充電電圧と第1出力電圧との比較により得られる充電時間に基づき第1比較手段からの第1パルス信号のオン時間を決定し充電電圧と第2出力電圧との比較により得られる充電時間に基づき第2比較手段からの第2パルス信号のオン時間を決定するオン時間決定手段とを備える。 (もっと読む)


21 - 40 / 324