説明

Fターム[5J055FX17]の内容

電子的スイッチ (55,123) | 制御、帰還信号の発生 (8,841) | 制御、帰還信号の特徴 (2,064) | 制御、帰還信号はデジタル値であるもの (1,286)

Fターム[5J055FX17]の下位に属するFターム

Fターム[5J055FX17]に分類される特許

61 - 80 / 491


【課題】インバータなどの遅延が無視できない高速動作時において、クロックフィールドスルーの影響を改善するのが困難
【解決手段】MOST4はソース端子に入力されるアナログ入力信号を矩形波パルスのサンプル信号によりオンオフしてサンプリングする。MOST5はMOST4のドレイン端子にソース端子およびドレイン端子が接続されサンプル信号の極性を反転した反転サンプル信号によりオンオフしてMOST4の寄生容量を補償する。論理回路10,11はサンプル信号と反転サンプル信号の位相差を検出して誤差信号を出力する。MOST6,7はMOST5のソース端子およびドレイン端子にソース端子およびドレイン端子が接続され、位相差を補償する。 (もっと読む)


【課題】オン駆動用スイッチング素子のオン故障や誤動作によって発生する、スイッチング素子をオフできない異常状態を検出することができる電子装置を提供する。
【解決手段】オン駆動用FET121aがオン故障や誤動作によってオンしたときにオフ駆動用FET122aがオンすると、IGBT110dのゲート電圧が低下せず、IGBT110dをオフできない異常状態が発生する。このとき、オン駆動用FET121aには、正常時には流れることがない、所定閾値Ith以上の電流が所定時間Tth以上流れる。制御回路128は、オン駆動用FET121aに所定閾値Ith以上の電流が所定時間Tth以上流れているとき、IGBT110dが異常状態にあると判断する。そのため、オン駆動用FET121aのオン故障や誤動作によって発生する、IGBT110dをオフできない異常状態を検出することができる。 (もっと読む)


【課題】より確実に安定した減電圧監視を行うことが可能な減電圧リセット回路及び電源装置を提供する。
【解決手段】減電圧リセット回路15は、ドレインがリセット信号出力端子T5に接続されたNチャネル型の第1トランジスタ153と、ドレインがリセット信号出力端子T5に接続されたNチャネル型の第2トランジスタ154と、監視対象電圧V1の供給を受けて動作し、監視対象電圧V1が第1閾値電圧を下回っているときに第1トランジスタ153をオンさせる第1監視部151と、監視対象電圧V1とは異なる駆動電圧V0の供給を受けて動作し、監視対象電圧V1が第1閾値電圧よりも低く第1監視部151の下限動作電圧よりも高い第2閾値電圧を下回っているときに第2トランジスタ154をオンさせる第2監視部152と、を有する。 (もっと読む)


【課題】オン駆動用スイッチング素子がオン故障等した場合であっても、スイッチング素子の熱破壊を防止することができる電子装置を提供する。
【解決手段】オン駆動用抵抗121b、121dとオフ駆動用抵抗122b、122dの抵抗値は、オン駆動用FET121aとオフ駆動用FET122a、122cがともにオンした場合、及び、オン駆動用FET121cとオフ駆動用FET122a、122cがともにオンした場合に、IGBT110dのゲート電圧が、オン電圧が増加するオン、オフの閾値電圧付近の所定範囲外であって、オン、オフの閾値電圧より低くなるように設定されている。そのため、オン駆動用FET121a、121cのいずれかがオン故障等したときにオフ駆動用FET122a、122cがオンしても、オン電圧が増加してIGBT110dの発熱が増大することなく、IGBT110dをオフすることができる。従って、IGBT110dの熱破壊を防止できる。 (もっと読む)


【課題】本実施例におけるセレクタ回路は、所定ノードに対する充電と放電により入力信号の選択動作を行う前段の選択回路において余計な消費電流が生じるのを防止し、回路の消費電力を低減することを目的とする。
【解決手段】本実施例におけるセレクタ回路は、第1選択制御信号に基づいて複数の入力信号のうちの1つを選択して第1出力信号を出力する複数の第1選択回路と、第2選択制御信号に基づいて複数の第1出力信号のうちの1つを選択して出力する第2選択回路を含み、第1選択回路の各々が、第1期間に第1ノードと第1電源を電気的に接続して第1ノードを充電する充電回路と、第1ノードと第2電源の間に設けられ、第1期間の後に続く第2期間に第1選択制御信号、複数の入力信号及び第2選択制御信号に基づいて、第1ノードと第2電源を電気的に接続して、充電された第1ノードを放電させる否かを制御する放電制御回路を含むことを特徴とする。 (もっと読む)


【課題】制御電圧以外の電源を用いることなく低消費電力かつ低コストで高性能に切り替え動作を行うことができる高周波用スイッチ回路を提供する。
【解決手段】第1および第2MOSFET回路11,21のゲート端子と第1および第2制御端子CT1,CT2との間に一端が接続され、他端がグランドGNDに接続されることにより、第1および第2制御端子CT1,CT2からグランドGNDへ向かう方向が順方向となるような少なくとも1つの整流素子D11,D12,D21,D22を含む第1および第2整流回路12,22と、第1および第2整流回路12,22の整流素子の少なくとも1つの順方向電流入力端子側と第1および第2MOSFET回路11,21の何れかの主端子側とが接続された接続部3とを備えている。 (もっと読む)


【課題】ハイサイドスイッチの過電流の検出精度を高めることが可能なハイサイドスイッチ回路、および、そのハイサイドスイッチ回路を含む装置を提供する。
【解決手段】ハイサイドスイッチ回路10は、入力端子11と出力端子12との間に電気的に接続されるスイッチ(MOSトランジスタ15)と、ゲート制御部16と、過電流検出部20とを備える。過電流検出部20は、抵抗素子21と、比較器22とを含む。比較器22は、抵抗素子21の電圧V1がしきい電圧を超える場合に、過電流を検出する。比較器22は、過電流時の検出電圧V1がしきい電圧を上回るように、予め調整される。抵抗素子21の抵抗値の精度が高くない場合にも、比較器22の調整によって、過電流の検出精度が高められる。 (もっと読む)


【課題】ハイサイドスイッチの過電流が検出された場合に、ハイサイドスイッチだけでなくハイサイドスイッチに接続される回路を保護することが可能なハイサイドスイッチ回路、および、そのハイサイドスイッチ回路を含む装置を提供する。
【解決手段】ゲート電圧降圧部31は、過電流検出部20からの電流制限信号に応じて、MOSトランジスタ15のゲート電圧を第1の電圧から、第1の電圧と第2の電圧との間の第3の電圧まで、第1の時間変化率で低下させる。これによりMOSトランジスタ15のオン抵抗がMOSトランジスタ15の完全オン時のオン抵抗より高くなる。ゲート電圧降圧部32は、ゲート電圧が第3の電圧に達した後に、ゲート電圧を第3の電圧から第2の電圧まで第2の時間変化率で低下させる。第1の時間変化率は、第2の時間変化率よりも大きい。 (もっと読む)


【課題】駆動信号がスイッチング素子のオフを指示しているにもかかわらず、制御端子の電圧が低下せず、スイッチング素子をオフできない場合であっても、スイッチング素子の熱破壊を防止できる電子装置を提供する。
【解決手段】制御回路は、正常時に、オン駆動用FET121aがオフするタイミング(t6)、オフ駆動用FET122aがオンするタイミング(t7)、及び、オン保持用FET123aがオンするタイミング(t9)の後であって、駆動信号がIGBT110dのオン指示からオフ指示に切替わるタイミング(t5)から一定の時間Toffの経過後に、オン保持用FET123aをオンする(t10)。そのため、オン駆動用FET121aがオン故障し、駆動信号がIGBT110dのオフを指示しているにもかかわらずIGBT110dをオフできない異常状態であっても、IGBT110dを確実にオフできる。従って、IGBT110dの熱破壊を防止できる。 (もっと読む)


【課題】回路面積および製造コストの増大を招くことなく、ゲート電圧をクランプ値に収束するまでの応答時間を短くすることができるゲート駆動回路を提供する。
【解決手段】トランジスタQ11に過電流が流れる異常が生じると異常検出信号SaがHレベルになり、スイッチS11がオンする。その状態において信号線L13、L12間の電位差がクランプ値を超えて上昇しようとすると、ツェナーダイオードD11が降伏し、その降伏電流の大部分が増幅用トランジスタT12のベース電流となる。増幅用トランジスタT12の増幅作用によって、降伏電流を増幅した電流がクランプ用トランジスタT11のベースに供給される。クランプ用トランジスタT11は、供給されるベース電流に応じたコレクタ電流を信号線L11、L12間に流す。これにより、信号線L11、L12間の電位差が低下する。 (もっと読む)


【課題】回生電流がモータ等の負荷から駆動回路を構成するプリドライバ回路側に流れても、駆動回路の制御に影響を与えないようにすること。
【解決手段】第1の電源電圧(VM)に接続された第1の駆動トランジスタと、接地に接続された第2の駆動トランジスタとの間の負荷に接続される接続ノード(N1)を出力端子とするブリッジ回路に接続されたプリドライバ回路において、接続ノード(N1)である出力端子に接続された出力モニタ回路を有し、該出力モニタ回路を用いて、出力端子に現れる電圧(Vout)に基づいて電圧のみをフィードバックさせる第1のフィードバック信号(S1)を生成し、第1のフィードバック信号(S1)に基づいて第2のフィードバック信号(S2)を生成して、出力端子に現れる電圧(Vout)が第1の電源電圧(VM)に近づくように、第1の駆動トランジスタを駆動制御する。 (もっと読む)


【課題】電源回路における回路素子の破壊を防止することが可能な誘導性負荷駆動装置を提供する。
【解決手段】誘導性負荷駆動装置の構成として、電源回路の出力端子と誘導性負荷の一端との間に介挿された第1のスイッチング素子と、前記誘導性負荷の他端とアースとの間に介挿された第2のスイッチング素子と、前記第1及び第2のスイッチング素子の両方がオフの時に前記誘導性負荷の他端から出力される逆起電流を前記電源回路の出力端子に回生させる逆起電流回生回路と、前記電源回路の出力電圧が予め設定された閾値以上となった場合に、前記第2のスイッチング素子をオンにする回路素子保護回路と、を備えた構成を採用する。 (もっと読む)


【課題】端子切替時の挿入損失の増加を抑制した半導体スイッチを提供する。
【解決手段】実施形態によれば、電源回路部と制御回路部とスイッチ部とを備えた半導体スイッチが提供される。前記電源回路部は、内部電位生成回路と第1のトランジスタとを有する。前記内部電位生成回路部は、電源線に接続され、入力電位よりも高い第1の電位を生成する。前記第1のトランジスタは、前記内部電位生成回路の入力と出力との間に接続され、前記第1の電位が前記入力電位よりも低下したときオンして前記第1の電位を前記入力電位以上に保持するようにしきい値電圧が設定されたことを特徴とする。前記制御回路部は、前記第1の電位を供給され、ハイレベルまたはローレベルの制御信号を出力する。前記スイッチ部は、前記制御信号を入力して端子間の接続を切り替える。 (もっと読む)


【課題】スイッチの切替時間を短縮できる高周波半導体スイッチ装置を提供する。
【解決手段】制御回路は、負電圧発生回路に接続されるとともに、出力ノードが高周波スイッチ回路に接続され、高周波スイッチ回路に供給するローレベルの制御信号として負電位の信号を供給するレベルシフト回路を有し、出力ノードに蓄積されている電荷を、レベルシフト回路が動作する前に放電させる。 (もっと読む)


【課題】 異なる通信システムに対応可能で、受信感度が高く送信電力の損失が抑制された高周波回路、高周波部品及びこれを用いた通信装置を提供する。
【解決手段】 第1及び第2のアンテナ端子と、第1の通信システム用の送信端子並びに第1及び第2の受信端子と、前記第1及び第2のアンテナ端子を選択して前記送信端子と接続するスイッチ回路を少なくとも備えた高周波回路であって、前記スイッチ回路と第1のアンテナ端子をつなぐ信号経路と、前記スイッチ回路と第2のアンテナ端子をつなぐ信号経路のそれぞれに整合回路を配置したことを特徴とする。 (もっと読む)


【課題】FET(T1)のドレイン電流IDが急激に増加し、電圧Vdsが増加する過渡期間であっても、FET(T1)の温度上昇量を忠実に示す信号を生成することが可能な負荷回路の保護装置を提供する。
【解決手段】FET(T1)の両端に生じる電圧Vdsに比例する電流Iaを流す電流変換回路21と、この電流Iaを通電するインピーダンス回路22を備える。そして、FET(T1)の過渡熱抵抗の時間に対する変化を示す関数を過渡熱関数Rth(t)としたとき、FET(T1)に、ゼロから階段状に増加する電流を通電した際に、インピーダンス回路22の点P2に生じる電圧V5が、過渡熱関数Rth(t)の平方根に比例した電圧となるように、前記インピーダンス回路のインピーダンスを設定する。そして、電圧V5が判定電圧V6を上回った場合に、FET(T1)を遮断して負荷駆動回路を過熱から保護する。 (もっと読む)


【課題】PWM信号の傾きを制御する場合でも、本来意図したデューティと同じ期間だけ、半導体スイッチング素子をオンできる駆動装置を提供する。
【解決手段】ゲート駆動回路4が、入力されるPWM信号の立ち上がり及び立ち下がりにそれぞれ傾きを付与したゲート信号をNチャネルMOSFET1のゲートに出力する場合、デューティ調整部3は、NチャネルMOSFET1を介してランプ2に出力される電圧信号を検出し、入力信号の立ち上がりから電圧信号が立ち上がるまでの時間aと、PWM信号の立ち下がりから電圧信号が立ち下がるまでの時間bとを求め、デューティz=(x+a−b)に設定した駆動信号をゲート駆動回路4に出力する。 (もっと読む)


【課題】半導体素子のスイッチング時において、スイッチング損失の増加を抑制しつつ、サージ電圧を低減すること。
【解決手段】ターンオフ用di/dt帰還部23OFFは、IGBT11Uがターンオフするときに、IGBT11Uのコレクタ電流Icの時間変化に基づいて、帰還電圧VFBを生成する。ターンオン用di/dt帰還部23ONは、IGBT11Uがターンオンするときに、FWD12Dの転流電流IFWDに基づいて、帰還電圧VFBを生成する。この場合、ターンオン用di/dt帰還部23ONは、転流電流IFWの方向が、リバースリカバリー区間に対応する方向、即ち図13に示すFWD12Dのカソードからモータ等の負荷L側に流れる方向である場合、帰還電圧VFBを生成し、それ以外の場合、帰還電圧VFBの生成を禁止する。 (もっと読む)


【課題】出力信号遅延を抑制し、消費電流の増大を抑制する出力回路の提供。
【解決手段】入力端子101と出力端子102の電圧を差動入力する差動入力段110からなる差動増幅回路と、第1及び第2の電源端子VDD、VSSに接続された第1及び第2のカレントミラー130、140と、前記第1及び第2のカレントミラーの入力間、出力間に接続される第1、第2の連絡回路150L、150Rと、第1導電型の第1のトランジスタ121と第2導電型の第2のトランジスタ122とからなる出力増幅回路と、前記第1、第2の電源端子VDD、VSSの電源電圧の間の電圧が供給される第3の電源端子VMLの電圧に応じたバイアス信号を受ける第1導電型の第3のトランジスタ161からなる制御回路160と、を備えている。 (もっと読む)


【課題】電圧クランプ回路構成を用いてスイッチ両端の電圧を制限するためのシステム、方法、および装置を提供する。
【解決手段】電圧クランプ回路構成125は、入力227および出力229を備えた整流器回路225であって、入力227は動作回路構成に渡って並列に連絡する整流器回路225と、整流器回路225の出力229と並列に連絡する電子能動スイッチング素子205と、電子能動スイッチング素子205と並列に連絡する少なくとも1つのツェナー・ダイオード210と、を備えていても良い。電子能動スイッチング素子205およびツェナー・ダイオード210に渡る電圧が所定の値を満たすかまたは超えた場合には、電流が電子能動スイッチング素子205を通って流れて、動作回路構成に渡る電圧を電圧クランプ回路構成125の電圧制限内に制限する。 (もっと読む)


61 - 80 / 491