説明

Fターム[5J500AH17]の内容

増幅器一般 (93,357) | 回路素子 (16,323) | 半導体素子 (6,058) | FET (3,573) | P型とN型の組み合わせ (774)

Fターム[5J500AH17]に分類される特許

81 - 100 / 774


【課題】混合信号プロセスにおいてアナログ回路の性能を向上させる方法および装置を提供すること
【解決手段】順方向バイアスおよび修正された混合信号プロセスを用いた回路設計を用いて、アナログ回路性能を向上させる方法が提示される。複数のNMOSトランジスタおよびPMOSトランジスタを含む回路が規定される。NMOSトランジスタのボディ端子は、第1の電圧ソースに連結され、PMOSトランジスタのボディ端子は、第2の電圧ソースに連結される。回路内のトランジスタは、各選択されたNMOSトランジスタのボディ端子に該第1の電圧ソースを適用することと、各選択されたPMOSトランジスタのボディ端子に該第2の電圧ソースを適用することとによって、選択的にバイアスされる。一実施形態において、第1の電圧ソースおよび第2の電圧ソースは、順方向バイアスおよび逆方向バイアスをトランジスタのボディ端子に提供するように修正可能である。 (もっと読む)


【課題】利得可変手段として連続したバイアス電流制御と、離散的に利得を変化させる可変利得手段を併せ持ち、出力電力に応じてバイアス電流を削減することで最大出力電力以外の出力条件でも消費電流の削減が可能な手段を提供する。
【解決手段】線形電力増幅器の初段増幅器102−1、102−2のバイアス電流を内部温度補償電流制御回路105が生成する。この内部温度補償電流制御回路105が出力する電流値は設定回路106によって決定される。設定回路106は線形電力増幅器の期待する後段増幅器103−1、103−2の増幅率及び線形電力増幅器の内部温度によって2つの温度補正特性を有する。 (もっと読む)


【課題】従来の差動増幅器は出力誤差が増大する問題がある。
【解決手段】本発明の差動増幅器は、内挿機能を有し、第1導電型トランジスタで形成される第1、第2の差動対(21、22)と、第2導電型トランジスタで形成される第3、第4の差動対(23、24)と、第1、第2の差動対に動作電流を供給する第1、第2の電流源(41、42)と、第3、第4の差動対に動作電流を供給する第3、第4の電流源(43、44)と、第1、第2の差動対にそれぞれ流れる電流量が第1、第2の電流源が出力する動作電流よりも小さくなる第1の動作範囲において、第1の差動対に供給される動作電流の変化点を制御する第1の制御回路51と、第3、第4の差動対にそれぞれ流れる電流量が第3、第4の電流源が出力する動作電流よりも小さくなる第2の動作範囲において、第4の差動対に供給される動作電流の変化点を制御する第2の制御回路52と、を有する。 (もっと読む)


【課題】出力期間の切替時における出力信号の遅延発生を抑制する出力回路、データドライバと表示装置の提供。
【解決手段】出力回路は差動増幅回路110、105,出力増幅回路120と第1の制御回路160、入力端子101、出力端子104、第1乃至第3の電源端子VDD、VSS、VMLを備える。差動増幅回路は前記入力端子の入力信号と前記出力端子の出力信号を入力する差動入力段110と第1及び第2のカレントミラー130、140を備える。出力増幅回路120は第1の電源端子VDDと出力端子104との間に接続された第1導電型の第1のトランジスタ121と出力端子104と第3の電源端子VMLとの間に接続された第2導電型の第2のトランジスタ122とを備える。第1の制御回路160は、第1導電型の第3のトランジスタ161と第1のスイッチ162を備える。 (もっと読む)


【課題】消費電流を増加させずにスルーレートを向上する差動増幅回路、表示用駆動回路を提供する。
【解決手段】差動増幅回路は、差動信号を入力する入力段と、入力段の出力に基づいて容量性負荷を駆動する出力段とを具備する。入力段は、差動信号を入力する差動信号入力部(MN1/MN2、MN11/MN12/MP21/MP22)と、差動入力部にバイアス電流を供給する電流源(MN3、MN10/MP20)と、電流源(MN3、MN10/MP20)に並列に挿入される可変容量(Cs)を含むスルーレート調整部(414、415)とを備える。 (もっと読む)


【課題】単一の演算増幅器を使用して積分器と加算器の両方を実現するスイッチトキャパシタ回路を提供する。
【解決手段】1つの入力信号は、(1)1つまたは複数の積分ブランチと、(2)1つまたは複数の第1の加算ブランチとを介して演算増幅器の入力に送られる。第2の入力信号は、1つまたは複数の第2の加算ブランチを介して演算増幅器の入力に送られる。ブランチの各々は、キャパシタと、異なるクロック位相によって制御されるいくつかのスイッチとを含む。スイッチトキャパシタ回路はシングルエンドまたは差動とすることができる。 (もっと読む)


【課題】受信雑音性能の低下をともなうことなく簡易な構成により受信用トランジスタを過入力による破壊から防ぐことのできるバイアス回路を得る。
【解決手段】過入力保護回路を有さない受信用増幅器に用いられるバイアス回路であって、受信用増幅器を構成する受信用トランジスタ2のゲート端子に接続されたゲートバイアス回路8と、受信用トランジスタ2のドレイン端子に接続されたドレインバイアス回路9とを備える。ゲートバイアス回路8は、過入力時における受信用トランジスタ2のゲート電流Igまたはゲート電圧Vgの変化を検知して変化信号を生成する変化検知手段を有する。ドレインバイアス回路9は、過入力時の変化信号に応答して、受信用トランジスタ2に対するドレイン電圧Vdを低減させる。 (もっと読む)


【課題】高い周波数までの二次歪成分を除去し、出力電流信号の線形性を向上させることができ、二次歪耐性(IIP2)を向上させることができる広帯域増幅器を実現する。
【解決手段】第1及び第2のMOSトランジスタQ1,Q2による差動対が発生する二次歪成分電流と逆極性の電流信号を差動対の負荷電流源となる第3及び第4のMOSトランジスタQ3,Q4によって発生し、逆極性の二次歪電流を相互に打ち消し合うように作用させて線形性を向上させ、更に、第1及び第2のMOSトランジスタQ1,Q2の入力へのバイアスを設定する第1のバイアス回路を第1及び第2のMOSトランジスタのドレイン電流が流れるように、且つ、該ドレイン電流をゲート電圧で二回微分した成分の絶対値が極小となるようなバイアス値を得るようにし、且つ、第3及び第4のMOSトランジスタQ3,Q4のサイズを二次歪み成分が主成分である電流を生成するように設定する。 (もっと読む)


【課題】DCオフセットキャンセル回路の回路規模と消費電力とを低減する。
【解決手段】差動増幅器5の非反転出力端子と反転出力端子にDCオフセットキャンセル回路51の差動入力端子が接続され、キャンセル回路51の出力信号は差動増幅器5の出力DCオフセット電圧を低減する。回路51はオンチップローパスフィルタ51と直流制御増幅器512を有し、フィルタ511は第1定電流源CS1、差動対の第1と第2のトランジスタ素子Mp1、Mp2、オンチップ容量C1を含む。第1定電流源CS1は素子Mp1、Mp2の共通電極に接続され、回路51の差動入力端子Vinp、Viinは素子Mp1、Mp2の制御入力電極に接続される。オンチップ容量C1の一端と他端に素子Mp1、Mp2の出力電極とが接続され、直流制御増幅器512は容量C1の両端の電圧に直流的に応答する。 (もっと読む)


【課題】RFで動作するシングルエンド出力であるフィードバック型の広帯域増幅器における二次歪み耐性を向上させる。
【解決手段】主増幅MOSトランジスタQ1を含むシングルエンド出力であるフィードバック型の主増幅器310における電圧−電流変換抵抗素子R1と並列に主増幅器310とは逆極性のMOSトランジスタで構成されたバイパス回路320を設け、このバイパス回路320の副増幅MOSトランジスタQ3へのバイアス値を所定値に合わせ込むことによって、主増幅器310に生じる二次歪成分のみに対し逆極性で且つ相似な特性を呈するバイパス作用信号を生成し、該バイパス作用信号で主増幅器310に生じる二次歪成分をバイパス回路320側に引き込むことによって、主増幅器310とバイパス回路320とを含む広帯域増幅器300の二次歪み耐性を向上させる。 (もっと読む)


【課題】0VからVDDの範囲でダイナミックに変化する差動入力電圧の全ての入力電圧範囲において出力電流を変化させることができる電圧電流変換回路を提供する。
【解決手段】電圧電流変換回路は、第1および第2の負荷抵抗と第1の電流源との間に接続された第1および第2のMOSトランジスタと、第1および第2の負荷抵抗と第2の電流源との間に接続された第3および第4のMOSトランジスタとを備える。第1および第4のMOSトランジスタのゲートには差動入力電圧の一方および他方が入力され、第2および第3のMOSトランジスタのゲートにはバイアス電圧が入力される。バイアス電圧は、差動入力電圧のいずれかが電源電圧のときを除いて第2および第3のMOSトランジスタの両方がオンする電圧に設定されている。 (もっと読む)


【課題】線形性能が優れたGmアンプ、このGmアンプを用いて高速動作が可能で、入力電圧範囲が広く、かつ線形性能の優れたGm−Cフィルタを提供する。
【解決手段】入力信号が端子17、18から供給され、ソース端子が電源端子に接続されるMOSトランジスタ11、12、同相制御信号がゲート端子から供給されるMOSトランジスタ13、14、出力信号を出力する出力端子対の平均電圧を一定にするためMOSトランジスタ13、14のゲート端子に同相制御信号を出力する同相制御アンプ15、入力信号を入力して、MOSトランジスタ11、12に入力される入力信号の大小に応じて基板電圧を制御する基板制御信号をMOSトランジスタ11、12の基板端子に供給する基板電圧制御回路21、22によってGmアンプを構成する。 (もっと読む)


【課題】外部から入力される電圧の変動による演算増幅器の入力電圧の変動を増幅器としての機能を維持したまま十分に低減することができるシングル差動変換回路を提供する。
【解決手段】シングル差動変換回路を、入力信号と基準電圧を示す信号とがそれぞれ入力され、互いに極性が逆である反転入力端子104a、非反転入力端子104cと、互いに極性が逆である非反転出力端子104b、反転出力端子104dと、を備える演算増幅器104と、2つの入力端子のうちの一の入力端子と、2つの出力端子のうち、この一の入力端子と極性が同じである出力端子との間に接続される正帰還インピーダンス素子103a)と、を含むように構成する。 (もっと読む)


【課題】出力電圧におけるひずみを低減すること。
【解決手段】制御回路27は、第1の差動対21と高電位電源VDとの間に接続されたトランジスタTP11に流れるバイアス電流ia1と等しい電流ia3を高電位電源VDとノードN13との間に生成する。また、制御回路27は、バイアス電圧VG1に応じた電流ib2をノードN13とグランドGNDとの間に生成する。ノードN13は、トランジスタTP13に接続され、電流源として動作するトランジスタTP12は、トランジスタTP13に流れる電流ia5と等しいバイアス電流ia2を第2の差動対22に供給する。そして、制御回路27は、入力電圧VPがゲートに供給されるトランジスタTN33により、ノードN13とグランドGNDとの間に流れる電流を制限する。 (もっと読む)


【課題】回路構成を簡素化した電流電圧変換回路を提供することである。
【解決手段】NPNトランジスタQ1のエミッタとPNPトランジスタQ2のエミッタとが入力端子INに接続される。NPNトランジスタQ1のコレクタが定電源V1ラインに接続され、PNPトランジスタQ2のコレクタが電源C2ラインにされる。NPNトランジスタQ1のベースと、PNPトランジスタQ2のベースとの間に、バイアス回路20が接続され、フローティング状態とされる。 (もっと読む)


【課題】100kHz程度以上の高周波領域でも正弦波入力での低ノイズ動作が可能であり、かつ安価な乗算器を提供する。
【解決手段】トランスリニア回路よりなる乗算器要素回路101,102を備え、乗算器要素回路101の入力信号電流源Iin1および乗算器要素回路102の入力信号電流源Iin3の各電流として、いずれも直流のバイアス電流と変調信号の電流との和の電流を入力するとともに、乗算器要素回路101の入力信号電流源Iin2および乗算器要素回路102の入力信号電流源Iin4の各電流として、それぞれ直流のバイアス電流とキャリア信号の電流との和の電流,および,直流のバイアス電流とキャリア信号の電流との差の電流を入力し、変調信号の電流とキャリア信号の電流との積に比例した電圧値として、乗算器要素回路101,102の各出力電圧の電位差Voutを乗算出力信号とする。 (もっと読む)


【課題】消費電流が小さな駆動回路を提供する。
【解決手段】駆動回路76は、入力電位VIよりも所定電圧高い電位をノードN22に出力するレベルシフト回路61と、ノードN22の電位よりも所定電圧低い電位をノードN30に出力するプルアップ回路30と、入力電位VIよりも所定電圧低い電位をノードN27に出力するレベルシフト回路63と、ノードN27の電位よりも所定電圧高い電位をノードN30に出力するプルダウン回路33と、一方電極がそれぞれ信号φB,/φBを受け、他方電極がそれぞれノードN22,N27に接続されたキャパシタ76,77とを備える。入力電位VIの変化時、信号φB,/φBは、それぞれパルス的に「H」レベルおよび「L」レベルになる。したがって、低消費電流化と応答速度の高速化が図られる。 (もっと読む)


【課題】バイアス調整回路やプリドライバ回路が不要で、しかも出力波形の波形歪みを低減することが可能なドライバアンプ回路および通信システムを提供する。
【解決手段】スイッチングトランジスタM11〜M14を駆動するゲート電圧を均一にするため、スイッチングトランジスタM11〜M14を電源およびGND側に配置し、さらに、スイッチングトランジスタM11〜M14の駆動振幅を安定させるために、各スイッチングトランジスタM11のドレインと出力ノードND11、ND12間にそれぞれ第1から第4の抵抗素子R11〜R14を接続している。 (もっと読む)


【課題】消費電流と回路規模を削減しつつ、同相信号除去比を高めることが可能な増幅回路を提供する。
【解決手段】P型トランジスタM1のソース端子がN型トランジスタM3のゲート端子に接続され、P型トランジスタM2のソース端子がN型トランジスタM4のゲート端子に接続され、P型トランジスタM1のドレイン端子がN型トランジスタM3のソース端子に接続され、P型トランジスタM2のドレイン端子がN型トランジスタM4のソース端子に接続され、入力差動対と出力差動対が逆極性を有するトランジスタで構成される。 (もっと読む)


【課題】水晶発振回路の一定の電力消耗を維持できる水晶発振回路用の電圧源回路を提供する。
【解決手段】水晶発振回路用の電圧源回路が提供され、そのうち、電圧源回路および水晶発振回路が同一プロセスにより形成される。電圧源回路が、電流源と、第1PMOSと、第1NMOSと、調整器ユニットとを含む。電流源が電圧源および出力端間に連結され、そのうち、出力端が参考電圧を出力する。第1PMOSおよび第1NMOS双方のゲートおよびドレインが互いに連結されるとともに、第1PMOSおよび第1NMOSが出力端ならびに接地間に連結される。調整器ユニットが、参考電圧に従って水晶発振回路の電圧源として水晶発振回路への作業電圧を発生させる。 (もっと読む)


81 - 100 / 774