説明

国際特許分類[B01J23/75]の内容

国際特許分類[B01J23/75]に分類される特許

61 - 70 / 246


【課題】 貴金属元素の使用を低減しつつ、高温下または酸化還元変動下、さらには、長期使用時において、Coの優れた触媒活性を発現することのできる、排ガス浄化用触媒を提供すること。
【解決手段】 Alを含有する酸化物にCoを混合することにより前駆体を調製し、その前駆体を、酸化還元雰囲気において焼成することにより、排ガス浄化用触媒を調製する。また、この排ガス浄化用触媒において、Coの含有量を1〜10重量%とする。この排ガス浄化用触媒を使用すれば、Coを活性成分として使用できるため、貴金属元素を低減しながら、低コストで、高温下または酸化還元変動下、長期にわたって優れた触媒活性を発現することができる。 (もっと読む)


本発明は石油化学、ガス化学に関するものであり、発熱法、特にフィッシャー−トロプシュ法、メタノール合成、水素化、排気ガスの精製のための触媒用担体を開示する。該触媒用担体は、薄片状および球状アルミニウム分散粉体の混合物形態の金属アルミニウムを含有するものであり、該担体は、押出、ペレット化、タブレット化、球状化または液状成形により得られたペレット、好ましくは円柱体、タブレット、球状体である。該担体で製造された触媒は、Co,Fe,Ni,Ru,Rh,Pt,Pd,Cuおよび/またはそれらの混合物の群から選択された活性金属を含有する。 (もっと読む)


本発明は、脂肪族シアノアルデヒドの脂肪族ジアミンへの還元的アミノ化のための方法、およびかかる方法により製造される脂肪族ジアミンを提供する。この脂肪族シアノアルデヒドの脂肪族ジアミンへの還元的アミノ化のための方法は、(1)1つまたは複数の脂環式シアノアルデヒド、場合によって水、および場合によって1つまたは複数の溶媒の混合物を用意するステップであって、前記1つまたは複数の脂環式シアノアルデヒドが、1,3−シアノシクロヘキサンカルボキシアルデヒド、1,4−シアノシクロヘキサンカルボキシアルデヒド、それらの混合物、およびそれらの組合せからなる群から選択されるステップと、(2)前記混合物を、金属炭酸塩に基づく固体床または弱塩基性アニオン交換樹脂床と、15〜40℃の範囲の温度で少なくとも1分間以上、例えば5分間以上接触させるステップと、(3)それによって前記混合物を処理し、前記処理された混合物が、6〜9の範囲のpHを有するステップと、(4)前記処理された混合物、水素、およびアンモニアを、連続還元的アミノ化反応装置系に供給するステップと、(6)前記処理された混合物、水素、およびアンモニアを、1つまたは複数の不均一系の金属系触媒システムの存在下で80℃から約160℃の範囲の温度および700から3500psigの範囲の圧力で互いに接触させるステップと、(7)それによって1つまたは複数の脂環式ジアミンを生成させるステップであって、前記1つまたは複数の脂環式ジアミンが、1,3−ビス(アミノメチル)シクロヘキサン、1,4−ビス(アミノメチル)シクロヘキサン、それらの組合せ、およびそれらの混合物からなる群から選択されるジアミンであるステップとを含む。 (もっと読む)


本発明の脂環式アミンを脂肪族ジアミンに転化する方法は、(1)1種又はそれ以上の環式アミンを選択する工程、(2)前記1種又はそれ以上の環式アミンを、1つ又はそれ以上の反応器系において、少なくとも1時間又はそれ以上の期間、120℃から約250℃の範囲の温度及び700から3500psigの範囲の圧力で、1種又はそれ以上の不均一金属ベース触媒系の存在下、アンモニア及び水素、場合により水、並びに場合により1種又はそれ以上の溶媒と接触させる工程、(3)1種又はそれ以上の脂肪族ジアミン、場合により前記1種又はそれ以上の環式アミンの一部、場合により前記アンモニアの一部、場合により前記水素の一部、場合により水、及び場合により前記1種又はそれ以上の溶媒の一部を含む生成混合物を形成する工程などを含む。 (もっと読む)


【課題】Ptを用いずとも有害物質を酸化することが可能な、酸化触媒を提供すること。
【解決手段】遷移金属化合物及び窒素含有有機物、又は、遷移金属化合物、窒素含有有機物及び窒素非含有炭素化合物、を焼成させてなる炭素材料から構成され、NO、CO、NH及び芳香族炭化水素からなる群より選ばれる対象物質の少なくとも1種を酸化する、酸化触媒。 (もっと読む)


【課題】基板上に成膜するナノ炭素材料への電界集中を好適に行なうことの出来るナノ炭素材料複合基板の製造方法を提供することを目的とする。
【解決手段】本発明のナノ炭素材料複合基板製造方法は、ナノ炭素材料を形成前に触媒層の一部を剥離しスポットを形成する。ナノ炭素材料は触媒層の残存部から生成されることから、生成されたナノ炭素材料の極近傍にナノ炭素材料の存在しないスポットが存在する。このため、電界の集中しやすいナノ炭素材料よりなるエッジ部位を多数備えたナノ炭素材料複合基板を製造することが出来る。 (もっと読む)


本発明は、単層カーボンナノチューブの形成方法に関する。本方法は、ガス状炭素源を適切な条件においてメソポーラスTUD‐1シリケートに接触させることを含む。メソポーラスTUD‐1シリケートは、元素周期表の3〜13族の金属を備える。
(もっと読む)


【課題】カーボンナノチューブ長さの均一性を向上させたカーボンナノチューブ集合体の製造方法を提供する。
【解決手段】本発明のカーボンナノチューブ集合体の製造方法は、基板上に形成された触媒粒子を基点として有機化合物蒸気の熱分解によってカーボンナノチューブを成長させるCVD工程において、前記触媒粒子を、前記触媒粒子の凝集の程度と前記カーボンナノチューブの成長速度とを平衡させる温度に加熱することを特徴とする。 (もっと読む)


【課題】燃料電池の燃料等として用いる水素ガスを、高温に加熱することなく、制御可能な条件下で発生させることができ、しかも低コストで効率よく水素ガスを発生でき、更には繰り返し使用しても高い水素発生速度を維持する水素発生方法を提供する。
【解決手段】水の存在下において、化学式:NHBHで表されるボラン・アンモニアを、コバルト内包球状シリカ触媒に接触させることを特徴とする水素発生方法。 (もっと読む)


【課題】触媒金属微粒子を用いて炭素元素からなる線状構造体を成長する線状構造体の成長方法及び成長装置に関し、触媒金属微粒子の凝集を抑制して高密度で線状構造体を成長しうる線状構造体の成長方法及び成長装置を提供する。
【解決手段】 基板10上に微粒子状の触媒金属14a,18aを堆積する工程と、触媒金属14a,18aに炭素を含む原料ガスを作用させ、少なくとも触媒金属14a,18aの表面を覆う炭素元素からなる構造体16を成長する工程とを少なくとも2回繰り返して行う工程と、触媒金属14a,18aに炭素を含む原料ガスを作用させ、基板10上に、炭素元素からなる線状構造体20を成長する工程とを有する。 (もっと読む)


61 - 70 / 246