説明

国際特許分類[C22C1/10]の内容

化学;冶金 (1,075,549) | 冶金;鉄または非鉄合金;合金の処理または非鉄金属の処理 (53,456) | 合金 (38,126) | 非鉄合金の製造 (1,801) | 非金属を含む合金 (306)

国際特許分類[C22C1/10]に分類される特許

31 - 40 / 306


【課題】金属−セラミックス複合材料を覆う余剰金属の除去作業の負荷軽減を図ることができる金属−セラミックス複合材料を製造する方法等を提供する。
【解決手段】本発明の方法によれば、複数のセラミック成形体1’が介装体4に密着するように当該複数の成形体1’に圧力がかけられるため、複合材料1のうち介装体4と密着している箇所は余剰金属3により覆われずに済む(図2参照)。また、複合材料1と余剰金属3との間に介在している板状粒子2が離型材の役割を果たす。各複合材料1は介装体4から容易に離型されうる。 (もっと読む)


【課題】金属−セラミックス複合材料を覆う余剰金属の除去作業の容易を図ることができる金属−セラミックス複合材料を製造する方法等を提供する。
【解決手段】板状粒子2を含むスラリー2’が、セラミックス成形体1’の表面に塗布された上で乾燥される。続いて、溶融金属3’が板状粒子2同士の間隙を通じてセラミックス成形体1’に加圧浸透させられる。そして、余剰金属3が離型材としての板状粒子2とともに複合材料1の表面から除去されることにより、最終製品としての金属−セラミックス複合材料1が得られる。 (もっと読む)


【課題】繊維強化金属マトリックス複合材料物品の製造方法を提供する。
【解決手段】少なくとも一つの繊維プレフォーム20の少なくとも一つの金属被覆された繊維14の少なくとも一つの第1部分の金属70を、少なくとも一つの繊維プレフォーム20の少なくとも一つの金属被覆された繊維14の少なくとも一つの第2部分の金属72に結合し、少なくとも一つの繊維14を所定位置に保持する。少なくとも一つの繊維プレフォーム20を第1金属構成要素70と第2金属構成要素72との間に配置する。第2金属構成要素72を、第1金属構成要素70にシールし、少なくとも一つの繊維プレフォーム20を団結し、少なくとも一つの繊維プレフォーム20の繊維上に設けられた金属18、第1金属構成要素70、及び第2金属構成要素72を拡散結合し、一体の複合材料物品を形成するように熱及び圧力を加える。結合74は超音波溶接によって行われる。 (もっと読む)


【課題】所望の耐摩耗性を維持して摺動寿命を延長できる金属複合材およびその製造方法を提案する。
【解決手段】平均孔径が1nm以上かつ80nm以下の微細孔を有する多孔質状のセラミック粒子が、金属母材内に分散されてなり、外表面に、多孔質状を維持したセラミック粒子が露出されてなる金属複合材であるから、外表面に露出したセラミック粒子の微細孔内に潤滑オイルを侵入して保持できるため、耐摩耗性が向上して摺動寿命を延長できる。この金属複合材は、所定の焼結温度により焼結することにより、平均孔径が1nm以上かつ80nm以下の微細孔を有する多孔質状のセラミック粒子を備えたプリフォームを成形し、該プリフォームに金属の溶湯を含浸し、その外表面を研磨することにより成形することができる。 (もっと読む)


【課題】パワーモジュール用ベース板として好適なアルミニウム−炭化珪素質複合体を提供する。
【解決手段】アルミニウム粉末を主成分とする金属粉末20〜40体積%と、平均粒径が10〜350μmの炭化珪素を90体積%以上含有するセラミックス粉末60〜80体積%との混合粉末4を金型1,2,3に充填して成形し、金属粉末の中で最も低い融点より100K低い温度〜金属粉末の中で最も低い融点未満の温度T(K)に加熱し、30MPa以上の圧力(P)で、セラミックス粉末体積%(Vf)とし、92≦16.23+(−0.54)×Vf+5.60×ln(P)+0.10×T+ln(t)を満たす時間t(秒)加圧成形し、一主面の形状を凸形状に形成すると共に、相対密度92%以上に緻密化させて、25〜150℃までの熱膨張係数、及び200mmあたりの加熱冷却処理時の反り変化量が所定の値を満足する、板状のアルミニウム−炭化珪素質複合体。 (もっと読む)


【課題】高温になると短寿命になったり、故障したりするLEDパッケージ、高負荷半導体、高負荷コンデンサー、集光型太陽光発電素子などの冷却に有用な電気絶縁性を有する放熱基板を提供する。
【解決手段】電気絶縁性を有するセラミック板3と、熱拡散率の良好な黒鉛板4を隣接させて、高圧鋳造することにより、安価で、接合強度も強く、かつ良好な熱拡散率を有する放熱基板を完成する。黒鉛として、炭素繊維の黒鉛化したものの使用も可能である。 (もっと読む)


【課題】アルミニウム−セラミック複合材料からなる基材2の外周面が、高い熱伝導率を有し厚みが小さくかつ均一で、接合強度に優れた被覆層9によって被覆され、面方向のトータルの熱膨張率が小さい上、厚み方向のトータルの熱伝導率にも優れたヒートスプレッダ1とその製造方法を提供する。
【解決手段】ヒートスプレッダ1は、アルミニウム−セラミック複合材料中のアルミニウムの純度を99質量%以上、素子搭載面10を構成する被覆層9の厚みを0.05〜0.5mm、被覆層9を形成するアルミニウム−マグネシウム合金のマグネシウム含量を0.4〜8.5質量%、基材2と被覆層9との接合強度を100MPa以上とした。製造方法は、アルミダイカスト金型内に非酸化性または還元性の加熱ガスを導入して基材を加熱後、密閉状態としてアルミニウム−マグネシウム合金を、圧をかけながら押し込む。 (もっと読む)


【課題】 スパッタリングのターゲットとして用いられた場合に、スパッタリング装置内に水分等が含まれるのを抑制することにより、DLC膜の諸特性を飛躍的に向上させることができる金属‐炭素複合材料を提供することを目的としている。
【解決手段】 炭素、バインダー、及び、金属又は金属化合物を混練、粉砕した後、粉砕物を成形して成形体を作製し、更に、この成形体を1300℃以上で熱処理する工程を有することを特徴としている。 (もっと読む)


【課題】放熱性に優れ、かつ高剛性の金属−セラミックス複合材料を提供する。
【解決手段】セラミックス粒子と結合材のシリカとからなる多孔体の気孔に、金属を浸透させてなる金属−セラミックス複合材料であって、前記金属−セラミックス複合材料の断面において粒径100μm以上のセラミックス粗大粒子の占める面積が35%以上であり、前記セラミックス粗大粒子のシリカ被覆率は30%以下である金属−セラミックス複合材料。断面における前記セラミックス粗大粒子のシリカ被覆率は30%以下である。 (もっと読む)


【課題】本発明は、マグネシウム基複合材料及びその製造方法、マグネシウム基複合材料を利用した音声再生装置に関するものである。
【解決手段】本発明のマグネシウム基複合材料は、マグネシウム基材料及び該マグネシウム基材料の中に分散したナノ材料からなり、前記ナノ材料の質量パーセントは、0.01%〜10%である。本発明のマグネシウム基複合材料の応用において、マグネシウム基複合材料を音声再生装置に応用し、前記マグネシウム基複合材料は、マグネシウム基材料及び該マグネシウム基材料の中に分散したナノ材料からなる。 (もっと読む)


31 - 40 / 306