説明

国際特許分類[H01J37/30]の内容

電気 (1,674,590) | 基本的電気素子 (808,144) | 電子管または放電ランプ (32,215) | 放電にさらされる物体または材料を導入する設備を有する電子管,例,その試験や処理をするためのもの (7,637) | 物体の局所的な処理のための電子ビームまたはイオンビーム管 (1,896)

国際特許分類[H01J37/30]の下位に属する分類

国際特許分類[H01J37/30]に分類される特許

81 - 90 / 150


【課題】試料の同一視野から表面構造情報、内部構造情報および内部組成情報を同時に取得できる機能を有する集束イオンビーム加工観察装置を提供し、また、この集束イオンビーム加工観察装置を用いて試料の多方向から取得される試料の構造および組成に関する情報を基づき試料加工位置を正確に設定して、試料加工および試料観察を行う方法を提供する。
【解決手段】前記試料構造および組成情報を同時に取得するため、二次電子検出器、透過電子検出器、エネルギー分散型X線分光器あるいは電子線エネルギー損失分光器を備えつける。また、試料回転および傾斜機能を備えた試料台を用いる。さらに、マーキング加工を行う。 (もっと読む)


【課題】加速電圧を下げたSTEM観察での電子ビームの試料透過能力の低下やイオンビームの照射により生じるダメージ層の悪影響を防ぎ、試料の所望の領域への損傷を最小限にしてダメージ層を効果的に除去すること、および薄膜試料の厚さがより薄くなっても最適な加工終了時点を検出して加工失敗を防ぐ。
【解決手段】仕上げ加工に使用するイオンビームのエネルギーを低くすると共に、試料への入射角度を試料形状に合わせて最適化し、STEM像の着目する要素の変化をモニタして加工の終了時点を検出する。 (もっと読む)


【課題】本発明の目的は、微細試料の確実・容易なピックアップ法に関する。
【解決手段】本発明は、デポジション用ガスを供給しながら荷電粒子ビームを照射して形成されるビームアシスト堆積膜により微細試料とマニピュレータを保持し、エッチング用ガスを供給しながら荷電粒子ビームを照射してビームアシスト堆積膜を除去することにより微細試料とマニピュレータを分離することに関する。例えば、マニピュレータプローブと微細試料との接続を炭素を主な成分とするビームアシストデポジション膜で接続し、キャリアへの固定後にプローブと微細試料を分離する際、水を主成分とするアシストガスを用いたビームアシストエッチングにより、前記アシストデポジション膜を選択的にエッチングする、荷電粒子ビーム装置における微細試料のピックアップ方法である。 (もっと読む)


【課題】基板上に金属層を堆積させる方法および基板のトポグラフィカルフィーチャを3次元で測定するための方法の提供。
【解決手段】前駆体ガスは、直径約0.7mmのガス噴射システムの管状ノズル50を用いてサンプル上方に導入される。約8×1017mol/cm2sのガス流が用いられる。図2に例示される実施形態においては、2つのノズル50および60が存在し、2種類の異なる前駆体ガス55、65が基板上方に導入される。対象となる領域を走査する走査電子顕微鏡の電子ビーム70は、前駆体ガス55、65を活性化させるために用いられ、この結果、選択された領域40の基板のトポグラフィカルフィーチャ上に金属層が堆積される。 (もっと読む)


【課題】電子ビームで検出した欠陥を正確に取り出して解析する技術を提供する。
【解決手段】電子ビーム12の照射により検出したウェーハ31の欠陥部にデポガス52を供給しながら電子ビーム12を照射することでデポジション膜によるマークを形成し、そのマークを基準に、ガスイオン源21で発生させたプロジェクションイオンビーム22により、試料片に加工して取り出す。 (もっと読む)


【課題】気体イオンビーム装置とFIBとSEMを用いて、効率よくTEM試料作製ができる複合荷電粒子ビーム装置としての構成方法を提供する。
【解決手段】FIB鏡筒1と、SEM鏡筒2と、気体イオンビーム鏡筒3と、ユーセントリックチルト機構とユーセントリックチルト軸8と直交する回転軸10とを持つ回転試料ステージ9と、を含む複合荷電粒子ビーム装置であり、集束イオンビーム4と電子ビーム5と気体イオンビーム6とは、1点で交わり、かつFIB鏡筒1の軸とSEM鏡筒2の軸はそれぞれユーセントリックチルト軸8と直交し、かつFIB鏡筒1の軸と気体イオンビーム鏡筒3の軸とユーセントリックチルト軸8とは一つの平面内にあるように配置する。 (もっと読む)


【課題】軸方向磁場の強度変化によるプラズマ密度或いはイオンビーム電流の変化を低減し、精密な磁場調整なしでビーム電流を安定化するマイクロ波イオン源或いはプラズマ源と、それを利用した線形加速器システム、医療用加速器システム等の機器等の応用装置を提供する。
【解決手段】永久磁石6を放電容器4の周囲に16個、隣り合う磁石の極性が異なるように設置し、放電で発生するプラズマを閉じ込める多極磁場B2を放電容器壁近傍に局部的に発生させる。また、この多極磁場により軸方向磁場B1の変化によるプラズマ密度の変化が低減され、電極9a〜9cの孔より引き出されるイオンビームの電流の変化も低減される。これにより磁場B1の精密な調整なしでイオンビーム電流を安定化できる。また、軸方向磁場B1を永久磁石15で発生させた場合でも、大電流のイオンビームが安定に得られる。 (もっと読む)


【課題】短時間で試料から微小片試料を切り出すことができる装置及び方法を提供する。
【解決手段】本発明によると、V溝の所望の深さから、実験式を用いて、加工時間が最小となるようにV溝の深さの設定値とV溝の幅の設定値を計算する。こうして求めた設定値によって、集束イオンビームによってV溝加工を行う。V溝加工のみから、試料表面より微小片を切り出す。試料表面に対して傾斜したイオンビームを用いる。 (もっと読む)


【課題】荷電粒子ビーム装置により試料の加工を行う際に、試料の加工領域の形状によらず、輪郭線の精度を上げる。
【解決手段】コンピュータ13は、マスク8を観察して得られた画像を基に加工領域を設定し、加工領域の輪郭を構成する代表点の位置をピクセル毎に、ピクセルよりも高い精度であるサブピクセル精度で、ピクセルの中心位置からずらした位置または中心位置に設定可能に求める。さらに、コンピュータ13は、加工領域内のピクセルについては、該ピクセルの中心位置を代表点として求め、代表点の粗密を減らすように加工領域内のピクセルの代表点の位置をサブピクセル単位で補正する。マスク8の加工を行う際、加工領域の輪郭が含まれるピクセルについては、輪郭を構成する代表点の位置へ、加工領域内のピクセルについては、補正した代表点の位置へ、サブピクセル精度で荷電粒子ビーム2を照射する。 (もっと読む)


【課題】
試料となるウェーハを割ることなしにウェーハ断面を水平から垂直迄の方向からの断面
観察や分析を高分解能,高精度かつ高スループットで行える微小試料加工観察装置および
微小試料加工観察方法を実現することを目的とする。
【解決手段】
上記課題を解決するために本発明装置では、同一真空装置に集束イオンビーム光学系と
電子光学系を備え、試料の所望の領域を含む微小試料を荷電粒子線成型加工により分離し
、分離した該微小試料を摘出するプローブを備えた。 (もっと読む)


81 - 90 / 150