説明

エポキシ樹脂組成物及びその硬化物

【課題】
耐熱性及び高い熱伝導率を有する硬化物の得られるエポキシ樹脂組成物を提供する。
【解決手段】
下記式(1)


(式中、Rは水素原子又はメチル基を表し、R1〜R4はそれぞれ独立して水素原子、炭素数1〜8の炭化水素基、トリフルオロメチル基、アリール基又はメトキシ基を表す。)で表されるエポキシ樹脂と硬化剤を含有してなるエポキシ樹脂組成物を硬化して得られた硬化物は、耐熱性に優れると共に高い熱伝導率を有していた。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、高性能、高機能を有する特定構造のエポキシ樹脂を含有する、液晶性と高熱伝導性を示し、低融点化が達成されたエポキシ樹脂組成物及びその硬化物を提供することを目的とする。
【背景技術】
【0002】
エポキシ樹脂は電気的、熱的及び力学的性質や接着性等種々の特性のバランスに優れた樹脂である。このため古くから塗料やコーティング剤、接着剤等の分野で用いられてきたが、最近では電気・電子部品製造用材料等の分野でも使用されており、ますますその応用範囲が広がりつつあることはよく知られている。この様な使用分野の拡大に伴い、エポキシ樹脂には更に高い性能と新しい機能の付与が要望されている。特に電気・電子部品製造用の材料には、これら部品が稼動する際に発生する熱を速やかに外部に放出することを目的に、高い熱伝導性を有するエポキシ樹脂硬化物が求められており、種々の新しいエポキシ樹脂の開発が積極的に進められているが未だ市場要求を満足するものは得られていない。
このような新しい高性能・高機能エポキシ樹脂の開発を目的とした研究の一つとして、エポキシ樹脂硬化物の網目構造へメソゲン基を導入することが試みられている。尚、ここでいうメソゲンは液晶相を形成するための中心となる原子団のことで、剛直な棒状あるいは平面状の構造を持ち、高い配列性を示すことが特徴である。
特許文献1〜4には、種々のメソゲン基が導入されたエポキシ化合物が記載されている。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開平02−232220号公報
【特許文献2】特開平02−275872号公報
【特許文献3】特開平04−233934号公報
【特許文献4】特表平08−503728号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
しかしながら、上記特許文献1〜4に記載されているようなメソゲン基を有するエポキシ樹脂は、構造ならびに製造方法が複雑である上に、その融点は一般的なエポキシ樹脂よりも高い250〜350℃であり、成型条件が非常に厳しいという課題があった。また上記特許文献1〜4には、これらエポキシ樹脂の硬化物が高い熱伝導率を有することは開示されていない。
【課題を解決するための手段】
【0005】
本発明者らは前記課題を解決するため鋭意研究の結果、本発明を完成した。
即ち、本発明は
(1)下記式(1)
【0006】
【化1】

【0007】
(式中、Rは水素原子又はメチル基を表し、R1〜R4はそれぞれ独立して水素原子、炭素数1〜8の炭化水素基、トリフルオロメチル基、アリール基又はメトキシ基を表す。)及び硬化剤を含有してなるエポキシ樹脂組成物、
(2)無機充填剤を含有する前項(1)記載のエポキシ樹脂組成物、
(3)硬化促進剤を含有する前項(2)または(3)記載のエポキシ樹脂組成物、
(4)前項(1)〜(3)のいずれか1項に記載のエポキシ樹脂組成物を硬化してなる硬化物、
に関する。
【発明の効果】
【0008】
本発明のエポキシ樹脂組成物は、分子配向性が非常に高い式(1)で表されるエポキシ樹脂を含有しているにもかかわらず融点が低く、その硬化物は強靭性に優れると共に高い熱伝導性を示す。よって高信頼性半導体封止材料等の電気電子部品用絶縁材料、プリント配線板やビルドアップ基板等の積層版、CFRPを始めとする各種複合材料、接着剤及び塗料等に有用である。
【図面の簡単な説明】
【0009】
【図1】合成例1で得られた式(1)で表されるエポキシ樹脂の1H−NMRスペクトルである。
【発明を実施するための形態】
【0010】
本発明のエポキシ樹脂組成物の必須成分である式(1)で表されるエポキシ樹脂は、下記式(2)で表されるアルデヒド類又はケトン類と下記式(3)で表されるアミノフェノール類
【0011】
【化2】

【0012】
(式中、R及びR1〜R4は、式(1)におけるのと同じ意味を表す。)との反応により得られる下記式(4)
【0013】
【化3】

【0014】
(式中、R及びR1〜R4は、式(1)におけるのと同じ意味を表す。)で表される多価フェノール化合物と、エピハロヒドリン類とを反応させるグリシジル化反応により得ることができる。
【0015】
式(1)におけるR1〜R4が表す炭素数1〜8の炭化水素基とは、炭素数1〜8の飽和又は不飽和の、直鎖状、分岐鎖状又は環状の炭化水素基であり、その具体例としては、例えばメチル基、エチル基、n−プロピル基、iso−プロピル基、n−ブチル基、iso−ブチル基、tert−ブチル基、ヘキシル基、オクチル基、シクロペンチル基、シクロヘキシル基等が挙げられる。
式(1)におけるR1〜R4が表すアリール基の具体例としては、例えばフェニル基、トリル基、キシリル基等が挙げられる。
【0016】
式(2)で表されるアルデヒド類又はケトン類と式(3)で表されるアミノフェノール類との反応は通常溶媒中で行われる。ここで用いることができる溶媒は、原料であるアルデヒド類又はケトン類及びアミノフェノール類が溶解し、反応に悪影響を与えなければ特に限定されない。たとえば、メタノール、エタノール、プロパノールなどのアルコール類やジメチルスルホン、ジメチルスルホキシド、N,N−ジメチルホルムアミド、1,3−ジメチル−2−イミダゾリジノン、ジオキサン、アセトニトリル、テトラヒドロフラン、ジグライム等の非プロトン性極性溶媒が好適であり、これらを混合して用いてもよい。
溶媒の使用量は原料化合物に対し、通常50〜1000質量%、好ましくは100〜500質量%である。
触媒は必要に応じて用いることができ、塩化亜鉛等を用いることが出来る。触媒量は、原料化合物に対して0.01〜5質量%、好ましくは0.05〜1質量%である。反応温度は−10〜120℃、好ましくは25〜80℃である。反応時間は1〜12時間、好ましくは2〜6時間である。
反応の際に用いた溶媒が揮発性の場合は、反応終了後溶媒を留去し、水洗、再結晶により多価フェノール化合物を得ることが出来る。反応の際に用いた溶媒が不揮発性の場合は、水洗及び溶媒抽出により多価フェノール化合物を得ることが出来る。
【0017】
式(4)で表される多価フェノール化合物のグリシジル化反応に使用されるエピハロヒドリン類としては、エピクロルヒドリン、エピブロムヒドリン、エピヨードヒドリン等が挙げられるが、工業的利用の観点からエピクロルヒドリンが好ましい。
グリシジル化反応は、上記多価フェノール化合物とエピハロヒドリン類との混合物に、触媒として水酸化ナトリウム、水酸化カリウムなどのアルカリ金属水酸化物の固体を添加し、または添加しながら20〜120℃で0.5〜10時間反応させる。アルカリ金属水酸化物は水溶液を使用してもよく、その場合は該アルカリ金属水酸化物を連続的に添加すると共に、反応混合物中から減圧下又は常圧下で連続的に水及びエピハロヒドリン類を留出せしめた後、分液により水を除去しエピハロヒドリン類のみを反応混合中に連続的に戻す方法でもよい。
エピハロヒドリン類の好ましい使用量としては、多価フェノール化合物の水酸基1モルに対して0.5〜20モル、より好ましくは0.5〜15モルである。アルカリ金属水酸化物の使用量は、多価フェノール化合物中の水酸基1モルに対し通常0.5〜2.0モル、好ましくは0.7〜1.5モルである。
【0018】
反応溶媒は、原料である多価フェノール化合物を溶解し、反応に悪影響を与えなければ特に限定されない。たとえば、メタノール、エタノール、プロパノールなどのアルコール類やジメチルスルホン、ジメチルスルホキシド、N,N−ジメチルホルムアミド、1,3−ジメチル−2−イミダゾリジノン、ジオキサン、アセトニトリル、テトラヒドロフラン、ジグライム等の非プロトン性極性溶媒が好適であり、これらを混合して用いてもよい。溶媒の使用量は多価フェノール化合物に対し、通常50〜1000質量%、好ましくは100〜500質量%である。
また、反応に際してテトラメチルアンモニウムクロライド、テトラメチルアンモニウムブロマイド、トリメチルベンジルアンモニウムクロライドなどの第四級アンモニウム塩を触媒として使用することもできる。この場合の第四級アンモニウム塩の使用量は多価フェノール化合物の水酸基1モルに対して通常0.001〜0.2モル、好ましくは0.05〜0.1モルである。これら触媒は上記の溶媒と併用してもよい。
【0019】
反応終了後、反応混合物から式(1)で表されるエポキシ樹脂を含む析出物(場合により無機塩を含む)を濾別し、水洗及び必要により再結晶等の精製工程を経て、式(1)で表されるエポキシ樹脂を得ることができる。また、析出物を除去した濾液から無機塩のみを濾過や水洗または両者の組み合わせにより除去し、加熱減圧下、過剰のエピハロヒドリン類を除去した後、トルエン、キシレン、メチルイソブチルケトン等の溶媒に溶解し、水酸化ナトリウム、水酸化カリウムなどのアルカリ金属水酸化物の水溶液を加えて再び反応を行うと更に収率が向上する場合がある。この場合、アルカリ金属水酸化物の使用量は仕込んだ多価フェノール化合物のフェノール性水酸基1モルに対して通常0.01〜0.2モル、好ましくは0.05〜0.1モルである。反応温度は通常50〜120℃、反応時間は通常0.5〜2時間である。
【0020】
式(1)で表されるエポキシ樹脂は非常に結晶性が高い。溶融状態から過冷却することでアモルファスな樹脂状固体とすることもできるが、徐冷することで結晶性を帯びた樹脂状固体とすることも出来る。また晶析を行うことで結晶化物とすることもできる。晶析方法としては温度差、溶解度差による晶析等が適応でき、具体的には例えば上述の反応溶媒に加熱溶解して冷却する、あるいは貧溶剤である水や高級アルコール類を添加するなどの手法により結晶を析出させ、結晶をろ過及び乾燥することで結晶状のエポキシ樹脂とすることができる。
こうして得られた式(1)で表されるエポキシ樹脂のDSC(示差走査熱量)測定においては、液晶性を有するものの特徴である融点付近での結晶構造が崩れることに起因する吸熱ピークと、その後の液晶状態で維持されていた配列が乱れ等方状態に転移することに起因する吸熱ピークの2つが観察される。
【0021】
つぎに、本発明のエポキシ樹脂組成物について説明する。
本発明のエポキシ樹脂組成物は、式(1)で表されるエポキシ樹脂及び硬化剤を含有する。本発明のエポキシ樹脂組成物において、式(1)で表されるエポキシ樹脂は、単独でまたは他のエポキシ樹脂と併用して使用することができる。併用する場合、式(1)で表されるエポキシ樹脂の全エポキシ樹脂中に占める割合は30質量%以上が好ましく、特に40質量%以上が好ましい。
式(1)で表されるエポキシ樹脂と併用されうる他のエポキシ樹脂としては、ビスフェノールA、ビスフェノールF、ビスフェノールS、フルオレンビスフェノール、テルペンジフェノール、4,4−ビフェノール、2,2−ビフェノール、3,3,5,5−テトラメチル−[1,1−ビフェニル]−4,4−ジオール、ハイドロキノン、レゾルシン、ナフタレンジオール、トリス−(4−ヒドロキシフェニル)メタン、1,1,2,2−テトラキス(4−ヒドロキシフェニル)エタン、フェノール類(フェノール、アルキル置換フェノール、ナフトール、アルキル置換ナフトール、ジヒドロキシベンゼン、ジヒドロキシナフタレン等)とホルムアルデヒド、アセトアルデヒド、ベンズアルデヒド、p−ヒドロキシベンズアルデヒド、o−ヒドロキシベンズアルデヒド、p−ヒドロキシアセトフェノン、o−ヒドロキシアセトフェノン、ジシクロペンタジエン、フルフラール、4,4−ビス(クロルメチル)−1,1−ビフェニル、4,4−ビス(メトキシメチル)−1,1−ビフェニル、1,4−ビス(クロロメチル)ベンゼン、1,4−ビス(メトキシメチル)ベンゼン等との重縮合物及びこれらの変性物、テトラブロモビスフェノールA等のハロゲン化ビスフェノール類及びアルコール類から誘導されるグリシジルエーテル化物、脂環式エポキシ樹脂、グリシジルアミン系エポキシ樹脂、グリシジルエステル系エポキシ樹脂等の固形または液状エポキシ樹脂が挙げられるが、これらに限定されるものではない。これらは単独で用いてもよく、2種以上を用いてもよい。
【0022】
本発明のエポキシ樹脂組成物が含有する硬化剤としては、例えばアミン系化合物、酸無水物系化合物、アミド系化合物、フェノール系化合物などが挙げられる。用いうる硬化剤の具体例としては、ジアミノジフェニルメタン、ジエチレントリアミン、トリエチレンテトラミン、ジアミノジフェニルスルホン、イソホロンジアミン、ジシアンジアミド、リノレン酸の2量体とエチレンジアミンより合成されるポリアミド樹脂、無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水マレイン酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、前記式(4)で表される多価フェノール化合物、ビスフェノールA、ビスフェノールF、ビスフェノールS、フルオレンビスフェノール、テルペンジフェノール、4,4−ビフェノール、2,2−ビフェノール、3,3,5,5−テトラメチル−[1,1−ビフェニル]−4,4−ジオール、ハイドロキノン、レゾルシン、ナフタレンジオール、トリス−(4−ヒドロキシフェニル)メタン、1,1,2,2−テトラキス(4−ヒドロキシフェニル)エタン、フェノール類(フェノール、アルキル置換フェノール、ナフトール、アルキル置換ナフトール、カテコール、レゾルシン、ヒドロキノン、ジヒドロキシナフタレン等)とホルムアルデヒド、アセトアルデヒド、ベンズアルデヒド、p−ヒドロキシベンズアルデヒド、o−ヒドロキシベンズアルデヒド、p−ヒドロキシアセトフェノン、o−ヒドロキシアセトフェノン、ジシクロペンタジエン、フルフラール、4,4−ビス(クロルメチル)−1,1−ビフェニル、4,4−ビス(メトキシメチル)−1,1−ビフェニル、1,4−ビス(クロロメチル)ベンゼン、1,4−ビス(メトキシメチル)ベンゼン等との重縮合物及びこれらの変性物、テトラブロモビスフェノールA等のハロゲン化ビスフェノール類、イミダゾール、BF3−アミン錯体、グアニジン誘導体などが挙げられるが、これらに限定されるものではない。これらは単独で用いてもよく、2種以上を用いてもよい。
本発明のエポキシ樹脂組成物において硬化剤の使用量は、エポキシ樹脂のエポキシ基1当量に対して0.5〜2.0当量が好ましく、0.6〜1.5当量が特に好ましい。エポキシ基1当量に対して0.5当量に満たない場合、あるいは2.0当量を超える場合は硬化が不完全になり良好な硬化物性が得られない恐れがある。
【0023】
また上記硬化剤を用いる際に硬化促進剤を併用しても差し支えない。用いうる硬化促進剤としては、例えば、2−メチルイミダゾール、2−エチルイミダゾール、2−フェニルイミダゾール、2−エチル−4−メチルイミダゾール等のイミダゾール類、2−(ジメチルアミノメチル)フェノール、トリエチレンジアミン、トリエタノールアミン、1,8−ジアザビシクロ(5,4,0)ウンデセン−7等の第3級アミン類、トリフェニルホスフィン、ジフェニルホスフィン、トリブチルホスフィン等の有機ホスフィン類、オクチル酸スズなどの金属化合物、テトラフェニルホスホニウム・テトラフェニルボレート、テトラフェニルホスホニウム・エチルトリフェニルボレート等のテトラ置換ホスホニウム・テトラ置換ボレート、2−エチル−4−メチルイミダゾール・テトラフェニルボレート、N−メチルモルホリン・テトラフェニルボレート等のテトラフェニルボロン塩などが挙げられる。
硬化促進剤を使用する場合の使用量はエポキシ樹脂100質量部に対して0.01〜15質量部が必要に応じ用いられる。
【0024】
更に、本発明のエポキシ樹脂組成物には、必要に応じて無機充填剤やシランカップリング剤、離型剤、顔料等の種々の配合剤、各種熱硬化性樹脂を添加することができる。無機充填剤としては、結晶シリカ、溶融シリカ、アルミナ、ジルコン、珪酸カルシウム、炭酸カルシウム、炭化ケイ素、窒化ケイ素、窒化ホウ素、ジルコニア、フォステライト、ステアタイト、スピネル、チタニア、タルク等の粉体またはこれらを球形化したビーズ等が挙げられるが、これらに限定されるものではない。これらは単独で用いてもよく、2種以上を用いてもよい。無機充填剤は、エポキシ樹脂組成物中で通常10〜95質量%を占める割合で使用する。
【0025】
本発明のエポキシ樹脂組成物は、上記各成分を均一に混合することにより得られる。本発明のエポキシ樹脂組成物は従来知られている方法と同様の方法で容易にその硬化物とすることが出来る。例えば、本発明のエポキシ樹脂と硬化剤、並びに必要により硬化促進剤、無機充填剤、配合剤及び各種熱硬化性樹脂とを必要に応じて押出機、ニーダ、ロール等を用いて均一になるまで充分に混合して得られた本発明のエポキシ樹脂組成物を、溶融注型法あるいはトランスファー成型法やインジェクション成型法、圧縮成型法などによって成型し、更に80〜200℃で2〜10時間加熱することにより本発明のエポキシ樹脂組成物の硬化物を得ることが出来る。
【0026】
また本発明のエポキシ樹脂組成物は場合により溶剤を含んでいてもよい。溶剤を含むエポキシ樹脂組成物(エポキシ樹脂ワニス)をガラス繊維、カーボン繊維、ポリエステル繊維、ポリアミド繊維、アルミナ繊維、紙などの基材に含浸させ加熱乾燥して得たプリプレグを熱プレス成形することにより、本発明のエポキシ樹脂組成物の硬化物とすることができる。溶剤を含む場合の溶剤の含有量は、本発明のエポキシ樹脂組成物と該溶剤の総量に対して通常10〜70質量%、好ましくは15〜70質量%程度である。また、該溶剤を含むエポキシ樹脂組成物は下記ワニスとしても使用できる。該溶剤としては例えばγ−ブチロラクトン類、N−メチルピロリドン(NMP)、N,N−ジメチルホルムアミド(DMF)、N,N−ジメチルアセトアミド、N,N−ジメチルイミダゾリジノン等のアミド系溶剤、テトラメチレンスルフォン等のスルフォン類、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルモノアセテート、プロピレングリコールモノブチルエーテル等のエーテル系溶剤、好ましくは低級アルキレングリコールモノ又はジ低級アルキルエーテル、メチルエチルケトン、メチルイソブチルケトン等のケトン系溶剤、好ましくは2つのアルキル基が同一でも異なってもよいジ低級アルキルケトン、トルエン、キシレンなどの芳香族系溶剤が挙げられる。これら溶剤は単独で用いても、また2種以上を混合して用いてもよい。また、剥離フィルム上に前記ワニスを塗布して加熱下で溶剤を除去し、Bステージ化を行うことによりシート状のエポキシ樹脂組成物を得ることが出来る。このシート状エポキシ樹脂組成物は多層基板などにおける層間絶縁層として使用することが出来る。
【0027】
本発明のエポキシ樹脂組成物の硬化物は、エポキシ樹脂等の熱硬化性樹脂が使用される各種用途に使用できる。具体的な用途としては、例えば、接着剤、塗料、コーティング剤、成形材料(シート、フィルム、RP等を含む)、絶縁材料(プリント基板、電線被覆等を含む)、封止剤の他、他樹脂等への添加剤等が挙げられる。
接着剤としては、土木用、建築用、自動車用、一般事務用、医療用の接着剤の他、電子材料用の接着剤が挙げられる。これらのうち電子材料用の接着剤としては、ビルドアップ基板等の多層基板の層間接着剤、ダイボンディング剤、アンダーフィル等の半導体用接着剤、BGA補強用アンダーフィル、異方性導電性フィルム(ACF)、異方性導電性ペースト(ACP)等の実装用接着剤等が挙げられる。
封止剤としては、コンデンサ、トランジスタ、ダイオード、発光ダイオード、IC、LSI等用のポッティング、ディッピング、トランスファーモールド封止、IC、LSI類のCOB、COF、TAB等用のポッティング封止、フリップチップ等用のアンダーフィル、QFP、BGA、CSP等のICパッケージ類実装時の封止(補強用アンダーフィルを含む)等を挙げることができる。
【実施例】
【0028】
以下実施例により本発明を更に詳細に説明する。なお、分析に用いた機器及び分析条件は以下のとおりである。
DSC(示差走査熱量)
測定機器 :DSC6200(セイコー電子工業株式会社製)
昇温速度 :10℃/minn
パン :Alパン
NMR(核磁気共鳴)
測定機器 :Gemini300(バリアン社製)
使用溶媒 :DMSO−d6
測定温度 :25℃
熱伝導率
測定機器 :UNITHERM MODEL2022(THERMAL CONDUCTIVITY INSTRUMENT社製)
測定温度 :30℃
ガラス転移点
測定機器 :DMA2980(TAinstruments社製)
昇温速度 :2℃/min
【0029】
合成例1(式(4)におけるR及びR1〜R4が全て水素原子である多価フェノール化合物の合成)
攪拌機、還流冷却管、撹拌装置を備えたフラスコに、p−ヒドロキシベンズアルデヒド122.12g、p−アミノフェノール113.6g、エタノール400g、塩化亜鉛0.2gを仕込み、攪拌しながら70℃まで昇温して溶解させた。70℃で4時間反応させた後、室温まで冷却した。反応終了後、反応液を3Lの水に投入して析出した結晶を濾過し、得られた結晶を真空乾燥することにより多価フェノール化合物(a)を205g得た。
【0030】
合成例2(式(1)におけるR及びR1〜R4が全て水素原子であるエポキシ樹脂の合成)
攪拌機、還流冷却管、撹拌装置を備えたフラスコに、合成例1で得られた多価フェノール化合物(a)111.8g、エピクロルヒドリン400g、ジメチルスルホキシド200g、水10.2gを仕込み、攪拌しながら60℃まで昇温して溶解させた。これにフレーク状水酸化ナトリウム(純度99%)22.6gを90分間かけて添加し、その後60℃で3時間反応させた後、室温まで冷却した。反応終了後、反応液を3Lの水に投入して析出した結晶を濾過し、水洗を繰り返して得られた結晶を真空乾燥することによりエポキシ樹脂(A)を98g得た。
エポキシ樹脂(A)のDSC測定の結果、194℃と228℃に吸熱ピークが観察された。また、得られたエポキシ樹脂(A)の1H−NMRスペクトルを図1に示す。
【0031】
実施例1(本発明のエポキシ樹脂組成物の硬化物の熱伝導率とガラス転移点の測定)
合成例2で得られたエポキシ樹脂(A)10gと硬化剤としてジアミノジフェニルメタン1.8gとを混合し、175℃で硬化して硬化物を得た。硬化物のガラス転移点は225℃、30℃における熱伝導率は0.33W/(m・K)であった。
【0032】
比較例1(比較用エポキシ樹脂組成物の硬化物の熱伝導率とガラス転移点の測定)
下記式(5)及び(6)で示されるエポキシ樹脂を等モルづつ含有するビフェニル型エポキシ樹脂(商品名:YL6121H、ジャパンエポキシレジン株式会社製、エポキシ当量175g/eq.)180gと、硬化剤としてジアミノジフェニルメタン51gとを混合し、175℃で硬化して硬化物を得た。この硬化物のガラス転移点は192℃、30℃における熱伝導率は0.31W/(m・K)であった。
【0033】
【化4】

【0034】
【化5】

【産業上の利用可能性】
【0035】
本発明のエポキシ樹脂組成物の硬化物はエポキシ樹脂が2官能であるにもかかわらず、高い耐熱性を示し、低融点を示す。また、従来のエポキシ樹脂硬化物よりも極めて高い熱伝導率を示す。従って、電気・電子部品製造用の材料やCFRPを始めとする各種複合材料、接着剤、塗料等に使用する場合に極めて有用である。

【特許請求の範囲】
【請求項1】
下記式(1)
【化1】

(式中、Rは水素原子又はメチル基を表し、R1〜R4はそれぞれ独立して水素原子、炭素数1〜8の炭化水素基、トリフルオロメチル基、アリール基又はメトキシ基を表す。)で表されるエポキシ樹脂及び硬化剤を含有してなるエポキシ樹脂組成物。
【請求項2】
無機充填剤を含有する請求項1記載のエポキシ樹脂組成物。
【請求項3】
硬化促進剤を含有する請求項1または2記載のエポキシ樹脂組成物。
【請求項4】
請求項1〜3のいずれか1項に記載のエポキシ樹脂組成物を硬化してなる硬化物。

【図1】
image rotate


【公開番号】特開2010−163540(P2010−163540A)
【公開日】平成22年7月29日(2010.7.29)
【国際特許分類】
【出願番号】特願2009−7230(P2009−7230)
【出願日】平成21年1月16日(2009.1.16)
【出願人】(000004086)日本化薬株式会社 (921)
【Fターム(参考)】