説明

スパッタ装置

【課題】 有機EL素子のバリア膜製膜時のダメージを低減しつつ、バリア膜を形成する際に、ターゲットにエロージョンの発生しにくいスパッタ装置を提供することにある。
【解決手段】 基板上に形成した有機エレクトロルミネッセンス素子上に保護膜を形成するスパッタ装置において、ターゲットの形状が円筒形であって、円筒形の内側でスパッタリングが行われることを特徴とするスパッタ装置。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、有機エレクトロルミネッセンス(EL)素子に保護膜を形成するマグネトロンスパッタ装置に関する。
【背景技術】
【0002】
近年、時発光素子として有機EL素子が注目されている。有機EL素子は、ガラス等の基板上に薄膜の有機化合物の発光層を電極で挟持した構成で、電極間に電流を供給すると発光する素子である。
【0003】
有機EL素子は、酸素や水分によって劣化しやすく、これらが製品寿命を縮める為、信頼性の観点から有機EL素子を形成した直後に、その上を安定なバリア膜で覆い、外気と完全に遮断することが望ましい。バリア膜としては金属の窒化膜や酸化膜が挙げられ、有機EL素子の発光をバリア膜から透過する方向に取り出す所謂トップエミッション構成の場合は透明度の高いバリア膜が要求される。
【0004】
一方、バリア膜は、電子ビーム法、スパッタリング法、プラズマCVD法、イオンプレーティング法等の薄膜形成方法によって形成される。ここで、スパッタリング法は、高融点材料や化合物でも比較的容易に膜形成が可能であり、カソードの形状によって大面積に付着させることも容易で、その上、低温のプロセスであるためバリア膜の形成に用いられている。例えば、特許文献1においては、対向ターゲット式のスパッタ装置の技術が開示されている。
【特許文献1】特開2002−332567号公報
【発明の開示】
【発明が解決しようとする課題】
【0005】
従来のスパッタ装置においては、ターゲットを箱形に対向させることにより、高いエネルギーをもつ電離した電子やイオン化されたスパッタ粒子等が箱形内部に留まり、箱形の外に配置した基板上の有機EL素子へ入射する割合が少ない。このため、有機EL素子を物理的に破壊することが低減されるというアドバンテージがある。しかしながら、ターゲットが箱形に配置されているため、発生するプラズマ分布のバラツキによりターゲットにエロージョン(浸食)が発生する。このため、ターゲットの不均一な消費による使用期間の短縮化が起き、特に生産工程ではこれがコストアップの要因となっていた。
【0006】
本発明は上記の点に鑑みてなされたもので、その目的は、有機EL素子のバリア膜製膜時のダメージを低減しつつ、バリア膜を形成する際に、ターゲットにエロージョンの発生しにくいスパッタ装置を提供することにある。
【課題を解決するための手段】
【0007】
本発明の上記課題は以下の手段により達成される。
【0008】
1.基板上に形成した有機エレクトロルミネッセンス素子上に保護膜を形成するスパッタ装置において、ターゲットの形状が円筒形であって、円筒形の内側でスパッタリングが行われることを特徴とするスパッタ装置。
【0009】
2.円筒形の前記ターゲットの断面形状は、基板側の開口が大きくなるように傾斜していることを特徴とする前記1に記載のスパッタ装置。
【0010】
3.円筒形の前記ターゲットの直径は、前記基板の対角線の長さ未満であることを特徴とする前記1または2に記載のスパッタ装置。
【0011】
4.スパッタ装置のマグネットは、前記ターゲットのスパッタリング面と反対側であって、かつ、磁極が磁束線が閉じている向きに配置されていることを特徴とする前記1〜3のいずれか1項に記載のスパッタ装置。
【0012】
5.前記有機エレクトロルミネッセンス素子は、基板から順に反射電極、有機層、透明電極が積層されてなり、前記保護膜形成前に、スパッタ装置により透明電極を形成することを特徴とする前記1〜4のいずれか1項に記載のスパッタ装置。
【発明の効果】
【0013】
本発明により、バリア膜を形成する際に有機EL素子に与えるダメージが低減され、ターゲットにエロージョンの発生しにくいスパッタ装置が提供された。
【発明を実施するための最良の形態】
【0014】
以下、本発明を実施するための最良の形態について説明する。
【0015】
スパッタ装置とは、以下の過程で、基板上に薄膜を形成する装置である。
【0016】
先ず、装置内にAr、He、N2、Xe、Kr等のスパッタガスを導入し、ターゲットに数百V〜数kVの電圧を印加してグロー放電をおこし、スパッタガスによるプラズマを発生させる。このプラズマ内の高エネルギーをもった電子、イオンや中性粒子がターゲット表面に衝突して運動量の交換により、ターゲット表面を形成している原子や分子が外部に放出される。この現象をスパッタリングと呼び、スパッタリングにより放出されたターゲット材料の表面原子や分子を、基板上に堆積させて、薄膜を形成させる。
【0017】
例えば、有機EL素子が形成された基板上に、ターゲット材料から放出された表面原子や分子を堆積させて、有機EL素子上に、これを外気と遮断する薄膜、バリア膜を形成させる。
【0018】
スパッタは、蒸着法のように、熱的過程ではないため、薄膜に形成する材料を溶解する必要がなく、ターゲット材料として、金属の窒化物や酸化物等のガスバリア性が高い高融点の材料でも容易にスパッタ可能となる。
【0019】
本発明のスパッタ装置とは、上述したスパッタ装置にマグネットを配置してスパッタリングを行う近傍に磁場を印加して、ターゲット表面のイオンや中性粒子の衝突を増加させ、製膜速度を大きくした装置である。
【0020】
本発明に係わるスパッタ装置の実施の形態について、以下、図面を用いて説明する。
【0021】
先ず、有機EL素子について説明する。
【0022】
図1は、有機EL素子の模式図である。
図において、有機EL素子10は、基板上11に、陽極12、有機層13、陰極14を積層した素子である。
【0023】
陽極12は、インジウムチンオキザイド(ITO)、インジウムジンクオキサイド(IZO)、金、酸化錫、酸化亜鉛等の仕事関数が4eV以上で透過率が40%以上の導電性材料による透明電極である。
【0024】
有機層13は、発光する発光層を含む数nm〜数μmの有機化合物又は錯体の単層、または複数層、例えば、陽極と接する正孔輸送層、発光材料を備える発光層、陰極と接する電子輸送層の3層等の構成からなる素子で、フッ化リチウム層や無機金属塩の層、またはそれらを含有する層などが任意の位置に配置されていてもよい。
【0025】
陰極14は、アルミニウム、ナトリウム、リチウム、マグネシウム、銀、カルシウム等の仕事関数が4eV未満で、反射率が60%以上の金属材料からなる反射電極である。
【0026】
基板11は、基材としては、ガラス、石英等のソリッド基板用の基材、或いはポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリエーテルスルホン(PES)、ポリエーテルイミド、ポリエーテルエーテルケトン、ポリフェニレンスルフィド、ポリアリレート、ポリイミド、ポリカーボネート(PC)、セルローストリアセテート(TAC)、セルロースアセテートプロピオネート(CAP)等のフレキシブル基板用の基材である。
【0027】
本発明における有機EL素子10は、陽極12、陰極14を介して、外部から供給された電流により、有機層13において電子および正孔が結合し、結合により生じた励起エネルギーを利用した発光を行う素子で、有機層13からの光は陽極12を通して取り出される。励起エネルギーを利用する発光としては、1重項エネルギーを発光に利用する蛍光、或いは3重項エネルギーを発光に利用する燐光が挙げられる。特に、燐光は、3重項励起子が発光に寄与するため、蛍光に比べて高い発光効率が得られ流ので、光源として望ましい発光である。
【0028】
有機EL素子10の発光層からの発光は、陽極12、基板11を透過して射出されるが(ボトムエミッション)、薄膜の陰極材料と透過率の高い陽極材料を積層した実質的に透明な陰極から光を射出するトップエミッションの構成にしてもよい。
【0029】
次に、上記有機EL素子上にバリア膜を形成する本発明のスパッタ装置についてその実施の形態を以下に説明する。
【0030】
図2は、本発明の第1の実施の形態を示すスパッタ装置の模式図である。
【0031】
スパッタ装置100は、真空槽20、排気口21、ターゲット30、カソード31、マグネット32、基板11、電源50、マッチングユニット51等からなる。
【0032】
マッチングユニットは通常、RFマグネトロンスパッタ装置において、プラズマ用高周波電源をもちいるときセットで使用されており、プラズマ用高周波電源から出力する高周波電力を、プラズマを発生させる場所であるチャンバーに効率よく送り込むための機器である。
【0033】
真空槽20は、外気と遮断された減圧空間を提供する槽で、排気口21に接続された図示しない真空ポンプにより槽内が減圧される。
【0034】
ターゲット30は、円筒状の形状をしたターゲット材料で、有機EL素子に形成させるバリア膜の構成材料と同一材料、或いは、スパッタガスとの反応により構成材料と同一となる材料である。
【0035】
バリア膜は、水、酸素等のガスに対しバリア性の高い、金属の酸化膜、窒化膜、金属薄膜、ダイヤモンドライクカーボン膜を少なくとも1種以上含んでいる膜で、厚みは50nm以上、50μm以下の薄膜である。
【0036】
ターゲット30は、カソード31と接続されており、電源50からカソード31を介して電圧が印加されてガス供給ポート33からスパッタガスが導入されると、所定のガス圧の環境下において、ターゲット30の円筒形の内側の空間にプラズマが発生してスパッタリングが行われる。
【0037】
本発明のスパッタ装置は、箱型にターゲットを対向させ配置する従来の対向ターゲット式のスパッタ装置と異なり、ターゲット30の形状が円筒形であるため、円筒形の内側空間40においては、プラズマの強度が面内で均一化されたプラズマが発生する。このため、ターゲットはスパッタリングされても、不均一に減少する所謂エロージョンの発生が少ない。
【0038】
また、円筒形の内側空間40で発生するプラズマは、スパッタリングによるイオンや中性粒子がターゲット30の間の空間を往復して高密度化されるため、スパッタガスの圧力を低下させることが可能となり、高い真空度を維持でき、酸素や水分による有機EL素子のダメージを減少させることが出来る。
【0039】
更に、スパッタガスのガス供給ポート33は、スパッタリングの行われる円筒状のターゲット30の直下に設けられており、導入されたスパッタガスを効率よくスパッタリングに利用できる。勿論、従来の対向ターゲット式のスパッタと同様に、電離した電子やイオン化されたスパッタ粒子等が、円筒形状のターゲット30の側面から基板11側に飛び出すことがないので、有機EL素子の物理的なダメージも減少する。
【0040】
ターゲット30の大きさは特に限定はしないが、基板上に形成されるバリア膜は、スパッタ材料の入射角に対する膜組成のずれが小さく、適用範囲が広いため、ターゲット30の内径寸法dを基板11の対角線の長さ未満にしてもよい。即ち、有機EL素子の発光面積が大きくなり基板が大型化しても、カソードやターゲット材料を基板サイズより小型にすることが可能で装置コストが低減する。
【0041】
マグネット32は、例えば、Fe−Nd−Bや、Sm−Co系の希土類焼結磁石、Ba系やSr系のフェライト焼結磁石、フェライト系等のボンド磁石、アルニコ系等の鋳造磁石等の永久磁石や、電磁石等、所定の磁界を発生する磁界発生手段である。
【0042】
マグネット32は、プラズマ発生空間で所定の磁界を発生する位置に配置すればよいが、図示したように、スパッタリングが行われるターゲット材料30の内側の面とは反対側に配置する構成が、磁界強度と真空槽20の中での収納効率の観点から好ましい構成である。マグネットの磁極の向きについては後述する。
【0043】
また、マグネット32に接するように図示しない冷却手段を設けてスパッタリングによりマグネット32が高温になり磁力が低下するのを低減させてもよい。
【0044】
基板11は、ターゲット30がスパッタリングされてバリア膜が製膜される基板であり、前述した有機EL素子10の基板である。バリア膜の膜厚分布の均一性向上のために回転支持部材42によりスパッタリング中は基板11を回転させることが好ましいが、基板回転に限定するものではなく、基板11を回転せずに固定で支持してもよい。
【0045】
電源50は、ターゲット30に電圧を印加する電源で、材料の導電性により直流、交流、或いは直流バイアスを印加させた交流を発生させる。交流の電圧を印加するときは、マッチングユニット51によりターゲット30とのインピーダンス整合をとっている。
【0046】
次にマグネット32について説明する。
【0047】
図3は、第1の実施の形態におけるマグネットの配置を示す(a)が断面図、(b)が上面配置図である。
【0048】
マグネット32は、ターゲット30のスパッタリングを行う面(内側)とは反対側の面、即ち、円筒形のターゲットの内側空間40の反対側に複数個配置されている。図において、マグネット32は、ターゲット30の背面に亘って均等に配置され、磁束を均一化しているが、これに限定されるものではない。マグネット32の磁極の向きは、互いに対向するマグネットが、例えば、ターゲット30側が、N極であり、他方がS極、また、この逆にターゲット30側をS極として他方をN極とした構成となっている。
【0049】
図4は、本発明の第2の実施の形態におけるマグネットの配置を示す上面図である。
第2の実施の形態において、第1の実施の形態のマグネット32以外、他の構成は同一であるため、他の構成についての説明は省略する。
【0050】
第1の実施形態におけるマグネット32のターゲット30側の磁極は、ターゲット30を挟んで互いに向き合う面のマグネットの磁極が反対であるので、この間で発生する磁束線は閉じている。しかしながら、ターゲット30の側と反対側となるマグネットの磁極の磁束線は閉じることが出来ずに磁束の漏れが生じてしまう。このため、漏れ磁束を低減して有効磁束を増加させる為には、所定の厚みを有する鉄ヨーク等を設置する必要があり、真空槽20が大型化してしまうため、排気ポンプの容量も増加させる必要が生じる。
【0051】
そこで、第2の実施の形態においては、ターゲット30の裏面側に設置したマグネット32は、隣り合うマグネットが互いに反対磁極をもつように配置している。したがって、マグネット32のターゲット30側と、反対側の磁極、いずれも磁束線が閉じている為、漏れ磁束が大幅に低減され、鉄ヨークを設置したとしても、第1の実施の形態と比べると小型化が可能となる。
【0052】
図5は、本発明の第3の実施の形態を示すターゲットの断面図である。
【0053】
第3の実施の形態においても、第1の実施の形態におけるものと、ターゲット30以外の構成は同一であるため、他の構成の説明は省略する。
【0054】
第3の実施の形態におけるターゲット30の断面は、基板側の開口41が他方の開口より大きくなるように傾斜している。このため、ターゲット30の内径dは、第1の実施例より大きくなり、より大きな基板サイズへのバリア膜の製膜が可能となる。
【0055】
前記請求項3における、円筒形のターゲットの内径とは、この開口部の直径をいう。
【0056】
傾斜の度合いも任意であるが、カソードの法線にたいし(図5のθ)、45°以下、好ましくは30°以下であることが、前記円筒状である故の効果をうる上で好ましい。傾斜は、断面でみたとき、必ずしも直線的に傾斜している必要はない。
【実施例】
【0057】
以下に、本発明をより具体的に説明するが、これにより限定されるものではない。
【0058】
有機EL素子の作製方法の一例として、陽極/正孔輸送層/発光層/陰極からなる有機EL素子の作製について説明する。
【0059】
(ボトムエミッションの有機EL素子の作製)
洗浄したガラス100mm角の基板を真空度10-5Paの圧力の真空環境下の蒸着真空槽に設置する。蒸着真空槽において、陽極用物質であるITOを1000Åの膜厚になるように電子ビームにより形成して陽極を作製した。
【0060】
次に、この上に有機EL素子材料であるα−NPDを正孔輸送層として2Å/秒の速度で蒸着して500Åの厚さで形成した。次にAlq3を発光層として2Å/秒の速度で蒸着して600Åの厚さで形成した。これらの層を形成後、その上に陰極用物質であるAlを2000Åの膜厚になるように、3Å/秒の速度で蒸着して陰極を形成した。
【0061】
【化1】

【0062】
(トップエミッションの有機EL素子の作製)
洗浄したガラス100mm角の基板を真空度10-5Paの圧力の真空環境下の蒸着真空槽に設置する。蒸着真空槽において、反射電極として金を1000Åの膜厚になるように電子ビーム法により形成して陽極を作製した。
【0063】
次に、この上に有機EL素子材料であるα−NPDを正孔輸送層として2Å/秒の速度で蒸着して500Åの厚さで形成した。次にAlq3を発光層として2Å/秒の速度で蒸着して600Åの厚さで形成した。これらの層を形成後、その上に陰極用物質であるALを50Åの範囲の膜厚になるように、3Å/秒の速度で蒸着した。
【0064】
(実施例1)
作製したボトムエミッションの有機EL素子の基板を真空環境を維持したまま、スパッタリングを行う本発明の第1の実施の形態で示されるスパッタ装置に移した。
【0065】
ターゲット材料として窒化珪素(Si34)を用いて、円筒形状のターゲット(開口径100mm、厚み20mm)の上端と、有機EL素子の基板との距離を7cmとした。スパッタガスに酸素2体積%を含むアルゴンを用いて、ガス圧力を1.33×10-2Paとした。電源は、周波数13.56MHzの交流電源で投入電力が100Wのときの製膜レートを水晶振動子によりモニターすると1Å/秒であった。
【0066】
この条件で有機EL素子上に5000Åの厚さのバリア膜を形成してサンプル1を作製した。
【0067】
(実施例2)
作製したボトムエミッションの有機EL素子の基板を、真空環境を維持したまま、スパッタリングを行う本発明の第2の実施の形態で示されるスパッタ装置に移した。
【0068】
マグネット以外の構成は第1の実施の形態と同一条件としたときの交流電源の投入電力が100Wのときの製膜レートを水晶振動子によりモニターすると1.5Å/秒であった。この条件で有機EL素子上に5000Åの厚さのバリア膜を形成してサンプル2を作製した。
【0069】
(実施例3)
作製したトップエミッションの有機EL素子の基板を真空環境を維持したまま、スパッタリングを行う本発明の第3の実施の形態で示されるスパッタ装置に移した。
【0070】
ターゲット材料としてインジウム錫酸化物(ITO)を用いて、円筒形状(ターゲット開口径100mm、傾斜角度(カソード法線に対しθ)30度、厚み20mm)のターゲットの上端と、有機EL素子の基板との距離を7cmとした。スパッタガスに酸素5体積%を含むアルゴンを用いて、ガス圧力を1×10-4Torrとした。電源は、交流電源で投入電力が100Wのときの製膜レートを水晶振動子によりモニターすると1Å/秒であった。この条件で有機EL素子上に1000Åの厚さのITO膜を形成し、実質的に透明な陰極を形成した。
【0071】
その後、ターゲット材料同じく円筒形状(ターゲット開口径100mm、傾斜角度(カソード法線に対しθ)30度、厚み20mm)に形成したSi34を用いて、実施例2と同様に有機EL素子上に5000Åの厚さのバリア膜を形成してサンプル3を作製した。
【0072】
(比較例)
作製したボトムエミッション有機EL素子の基板を乾燥窒素の雰囲気下において、有機EL材料が外気と遮断するように、図6に示したようにガラス材料の封止材15で覆い、UV硬化の接着剤16によって封止材を基板に接着してサンプル4を作製した。
接着剤は、紫外線硬化樹脂ナガセケムテック製5516XNRを用いた。
【0073】
(評価結果)
表1に、実施例で作製した作製直後の各有機EL素子各サンプルを、23℃、乾燥窒素ガス雰囲気下で、2.5mA/cm2の定電流で駆動し、発光させた。発光を分光放射輝度計CS−1000(コニカミノルタ製)を用い測定し、各サンプルそれぞれについて、外部取り出し効率(%)を算出し比較した。また、その際の各素子の駆動電圧を比較した。
【0074】
作製直後のサンプル1、サンプル2、サンプル3は、外部取りだし効率、駆動電圧共に同等であり、バリア膜の製膜時に有機EL素子へのダメージが少ないことを示している。更に、サンプル3においては、ITOの製膜によるダメージが少ないことを示している。
【0075】
実施例1から実施例3までのそれぞれの条件で、有機EL素子基板にそれぞれ連続100枚バリア膜を製膜したときのターゲットの初期との平均表面粗さの差をみたところ、全ての条件で増加量が0.9mm以下であった。この値はターゲットの初期厚み20mmに対して5%以下であるのでエロージョンは実用上問題ないレベルである。
【0076】
尚、上記平均表面粗さは、JIS−B−0601により定義される中心線平均粗さRaであり、ターゲット内部について、WYKO社製 RSTPLUS非接触三次元微小表面形状測定システムを用いて測定したものである。
【0077】
また、更に、サンプル1、サンプル2、サンプル3、サンプル4について、60℃、90%RHの高温高湿において500hrの保存し、保存後、2.5mA/cm2の一定電流で駆動させ、前記同様に外部取り出し効率、駆動電圧を、また、2mm×2mm四方の範囲での目視で確認できる非発光点(ダークスポット)の数を各サンプル間で比較したが、サンプル1、サンプル2、サンプル3は、サンプル4(ガラスにより封止した有機EL素子)と比較しても、外部取り出し効率、駆動電圧、ダークスポットともに同等の保存特性が確認された。
【図面の簡単な説明】
【0078】
【図1】有機EL素子の模式図である。
【図2】本発明の第1の実施の形態を示すスパッタ装置の模式図である。
【図3】第1の実施の形態におけるマグネットの配置を示す断面図および上面配置図である。
【図4】本発明の第2の実施の形態におけるマグネットの配置を示す上面図である。
【図5】本発明の第3の実施の形態を示すターゲットの断面図である。
【図6】ガラス材料の封止材で封止した有機EL素子の断面を示す概略図である。
【符号の説明】
【0079】
10 有機EL素子
11 基板
12 陽極
13 有機層
14 陰極
20 真空槽
21 排気口
30 ターゲット
31 カソード
32 マグネット
50 電源
51 マッチングユニット
100 スパッタ装置

【特許請求の範囲】
【請求項1】
基板上に形成した有機エレクトロルミネッセンス素子上に保護膜を形成するスパッタ装置において、ターゲットの形状が円筒形であって、円筒形の内側でスパッタリングが行われることを特徴とするスパッタ装置。
【請求項2】
円筒形の前記ターゲットの断面形状は、基板側の開口が大きくなるように傾斜していることを特徴とする請求項1に記載のスパッタ装置。
【請求項3】
円筒形の前記ターゲットの直径は、前記基板の対角線の長さ未満であることを特徴とする請求項1または2に記載のスパッタ装置。
【請求項4】
スパッタ装置のマグネットは、前記ターゲットのスパッタリング面と反対側であって、かつ、磁極が磁束線が閉じている向きに配置されていることを特徴とする請求項1〜3のいずれか1項に記載のスパッタ装置。
【請求項5】
前記有機エレクトロルミネッセンス素子は、基板から順に反射電極、有機層、透明電極が積層されてなり、前記保護膜形成前に、スパッタ装置により透明電極を形成することを特徴とする請求項1〜4のいずれか1項に記載のスパッタ装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate


【公開番号】特開2007−73404(P2007−73404A)
【公開日】平成19年3月22日(2007.3.22)
【国際特許分類】
【出願番号】特願2005−260429(P2005−260429)
【出願日】平成17年9月8日(2005.9.8)
【出願人】(000001270)コニカミノルタホールディングス株式会社 (4,463)
【Fターム(参考)】