説明

レーザー切断された管腔内医療装置

【課題】レーザー切断された生体吸収性管腔内装置またはステント、およびそのような管腔内装置またはステントを形成するための方法を提供する。
【解決手段】生体吸収性物質の前駆体シート100または管200が不活性ガスの存在下でレーザー切断されて、所望の外形もしくはパターンを有する管腔内医療装置またはステントを形成する。この装置またはステントは、レーザー切断された外形もしくはパターンが与えられた螺旋形状または他の形状を含むことができる。装置またはステントは、従来の装置またはステントよりも高い割合で、その装置またはステントの中もしくは上に組み込まれた薬剤または生物活性薬品をさらに含むことができる。放射線不透過性物質が管腔内装置またはステントの中に組み込まれるか、あるいはその上にコーティングされてよい。

【発明の詳細な説明】
【開示の内容】
【0001】
〔発明の背景〕
〔発明の分野〕
本発明は概して、生体吸収性管腔内医療装置であって、この装置に所望の外形もしくはパターン(geometry or pattern)を与えるように、不活性ガス雰囲気中で(in an inert gas atmosphere)レーザー切断された、生体吸収性管腔内医療装置に関する。
【0002】
〔関連技術〕
ステントなどの管腔内血管内医療装置は周知である。このようなステントは、例えば疾病により狭くなるか、もしくは閉塞された血管を修復するため、または身体の他の通路もしくは導管の中で使用するために使用されることが多い。典型的にはステントは、治療部位まで経皮的に送られ、ステントが置かれる血管、または他の通路もしくは導管の開存性を維持するか、あるいは回復させるために拡張される。ステントは、患者の体温に応じて挿入後に拡張する物質で構成された自己拡張型ステントであってよく、あるいは、ステントは、例えばバルーンからの、外側に向けられた半径方向力により独立して拡張可能であってよく、それによってバルーンからの力はステントの内面に働いて、ステントが置かれた血管、または他の通路もしくは導管の内面に向かってステントを拡張させる。理想的には、血管、または他の通路もしくは導管の中にいったん置かれると、ステントは、ステントが配備された血管または身体の他の通路の輪郭および機能に合致する。
【0003】
さらに、米国特許第5,464,450号に見られるように、ステントは、生物分解性物質で構成されていて、これによりステントの本体は予想通りに制御された様式で分解することが知られている。この種類のステントは、生物分解性物質の中に含有される薬剤または他の生物活性薬品をさらに含むことができる。ゆえに、薬剤または他の薬品は、ステントの生物分解性物質が分解すると、放出される。
【0004】
米国特許第5,464,450号に記載されるような薬剤含有生物分解性ステントは、ステントを構成する生物分解性ポリマーと、薬剤を混合するか、または溶解すること、ポリマーの押し出し加工中にポリマーの中に薬剤を分散させること、あるいは、既に形成された薄膜または繊維の上に薬剤をコーティングすることにより形成され得るが、このようなステントは典型的には比較的少量の薬剤を含む。例えば、米国特許第5,464,450号は、ステントから送達するために、わずか5%までのアスピリンまたはヘパリンをステントの中に含有することを企図している。
【0005】
さらに、このようなステントは、米国特許第4,464,450号に開示されるように、放射線不透過性マーカーなしで作られることが多い。放射線不透過性マーカーを省略することにより、医師によるステントの可視化および正しい設置が妨げられる。
【0006】
ポリマーは、生体吸収性薬剤送達装置に組み込まれるべき薬剤もしくは他の薬品の安定性の助けとなる温度よりも高くてよい温度で、溶融状態において加工されることが多い。ステントなどの生物分解性ポリマー薬剤送達装置を作製する典型的な方法は、繊維紡績(fiber spinning)、薄膜もしくは管の押し出し加工、または射出成形を含む。これらの方法はすべて、ポリマーの溶融温度より高い加工温度を利用する傾向がある。このような条件で加工することにより、ステントを構成する物質の物理的特性が損なわれる傾向がある。さらに、大部分の生体吸収性ポリマーは、130℃〜160℃より高い加工温度で溶融し、この加工温度は、ほとんどの薬剤が不安定であり分解する傾向がある温度を意味する。
【0007】
異なる外形のステントも知られている。例えば、米国特許第6,423,091号に開示されたようなステントは、向かい合う端部を備えた複数の長さ方向支柱を有する管状部材で構成された螺旋状のパターンを含むことが知られている。
【0008】
前述のさまざまな技術のいずれも、加工中に装置もしくはステントを構成する物質への損傷を最小限にすると同時に、向上した薬剤送達能力および放射線不透過性を有する、所望の外形もしくはパターンの管腔内装置もしくはステントを提供するために、マスク投射レーザー切断技術(mask projection laser cutting techniques)を用いて形成されるステントなどの生体吸収性管腔内医療装置を提供するための技法を組み合わせていない。
【0009】
前述したことを考慮すると、所望の外形もしくはパターンを備えた植え込み可能な生体吸収性ポリマー薬剤送達装置を形成するシステムならびに方法であって、この装置が、高められた、より効果的な薬剤送達能力および放射線不透過性を有する、システムならびに方法に対する必要性が存在している。前述したことをさらに考慮すると、そのようなレーザー切断された生体吸収性管腔内装置もしくはステントの機械加工および形成を簡素化するシステムならびに方法に対する必要性が存在している。
【0010】
〔発明の概要〕
本発明のシステムおよび方法は、患者の脈管構造もしくは他の通路の中に植え込むことができる生体吸収性管腔内装置またはステントを提供する。この管腔内装置またはステントは、不活性ガス雰囲気中で所望の外形もしくはパターンにレーザー切断される。この装置またはステントは、患者の血管もしくは他の解剖学上の通路内の据え付けの助けとなる、螺旋形状もしくは他の形状などの適切な形状に形成される。不活性ガスの存在下で前駆体物質をレーザー切断する技術により、管腔内装置またはステントの強度もしくは耐久性を損なうことなく、理想的にはより単純かつ容易に達成可能である、正確な外形もしくはパターンが与えられる。この装置またはステントは、従来の装置またはステントに一般に与えられている割合より高い割合で、装置またはステントの中に組み込まれるか、あるいは装置またはステント上に塗布された、薬剤もしくは他の生物活性薬品をさらに含むことが好ましい。放射線不透過性物質は、管腔内装置またはステントをさらに構成することができ、そのような放射線不透過性物質は、装置またはステントを構成する物質の中に組み込まれるか、あるいはその物質上に塗布される。薬剤、生物活性薬品、または放射線不透過性物質は、前駆体物質のレーザー切断および装置またはステントの形成が行われる前、あるいは後に与えられてよい。
【0011】
本発明のシステムおよび方法の一部の実施形態では、管腔内装置またはステントが作られる物質は生体吸収性物質の前駆体シート(precursor sheet)から提供され、所望の外形もしくはパターンがその前駆体シートにレーザー切断され、このシートは次に螺旋形状もしくは他の形状に巻かれる。前駆体シートは、例えば従来の圧縮成形技術または溶媒鋳造技術(solvent casting techniques)により製造される。
【0012】
本発明のシステムおよび方法の他の実施形態では、管腔内装置またはステントが作られる物質は、生体吸収性物質の前駆体管(precursor tube)から提供される。この前駆体管は、例えば従来の溶融押し出し、および溶媒をベースとする加工により製造される。こうして所望の外形もしくはパターンが、前駆体管にレーザー切断される。
【0013】
実際には、所望の外形もしくはパターンが与えられた植え込み可能な装置またはステントを形成するために、生体吸収性物質の前駆体シートまたは管は、レーザー加工ユニットに据え付けられ、レーザービームからのエネルギーを受ける。レーザー切断が行われる雰囲気(atmosphere)中に不活性ガスが与えられる。装置またはステントに最終的に与えられる所望の外形もしくはパターンを有するマスクが、生体吸収性物質およびレーザービームの上方に設けられて、意図された外形もしくはパターンを、レーザービームにより前駆体物質に与えるのを助ける。レーザー加工ユニットは、前駆体物質を切断するためレーザービームに前駆体物質を当てる際に、レーザービームを一方向に動かし、前駆体物質を別の方向に動かす、協調した多運動ユニットを含むのが好ましい。レーザービームは、マスクを通して投射され、生体吸収性物質を切除し、したがって、マスクに一致する外形もしくはパターンを装置またはステントに与える。レーザー切断環境中に供給された不活性ガスは、物質のレーザー切断中、水分および酸素に関係する影響を最小限にするか、または理想的には除去する。
【0014】
好ましくは、レーザービームは、前駆体物質に達する前に、さらにレンズを通過して注がれる。レンズは、ビームを強化し、所望のパターンもしくは外形をより正確に前駆体物質に与える。より均一なレーザービームエネルギーを生成するため、および、ビームが前駆体物質に当たるときのレーザービームエネルギーの一貫性(consistency)を維持するために、ビームホモジェナイザーが用いられてもよい。このように、レーザーで機械加工された特徴部は、所望の外形もしくはパターンで、より単純かつ容易に得られる。ビームエネルギーは、レーザー切断時間を削減するために制御されることができる。
【0015】
前駆体物質上に所望の外形もしくはパターンをレーザー切断した後、前駆体物質は、管の場合にはレーザー切断ユニットから除去され必要になるまで保管され、あるいは所望の形状、すなわち螺旋状またはその他の形状に形成され、その後必要になるまで保管される。こうして、様々な医学的必要性および生理学的必要性によりよく適うように、様々な軸方向および半径方向の強度および可撓性、もしくは他の特性を有する管腔内医療装置またはステントを提供するために、様々な寸法の前駆体物質が本明細書に記載された技術を用いてレーザー切断され得る。前駆体物質に与えられる外形もしくはパターンは、最終的に形成される装置またはステントの長さ全体、長さの一部、または別々の長さ間隔ごと(at discrete intervals)に延びる、螺旋状、非螺旋状、もしくはそれらの組み合わせを含むことができる。
【0016】
構造、および部品の組み合わせの様々な新しい項目を含む、本発明の前述した特徴および他の特徴は、添付の図面および特許請求の範囲に関連して、以下により詳細に説明されるであろう。本明細書に記載される本発明の様々な例示的実施形態は、例証の目的でのみ示され、本発明を限定するものとして示されるのではないことが理解されるであろう。本発明の原理および特徴は、本発明の範囲から逸脱することなく、様々な代替的実施形態に用いられてよい。
【0017】
本発明の器具ならびに方法の、前述した特徴、態様および利点、ならびに他の特徴、態様および利点は、以下の説明、付随する特許請求の範囲、および添付の図面についてよりよく理解されるであろう。
【0018】
〔発明の詳細な説明〕
図1は、本発明のシステムおよび方法による、管腔内医療装置またはステントを形成するための生体吸収性物質の前駆体シート100を示す。前駆体シート100は、例えば従来の圧縮成形技術または溶媒鋳造技術により製造され、このような前駆体シート100が従来技術を用いてどのように形成されるのかを熟練者は容易に認識するはずであるから、これら技術は、本明細書ではこれ以上詳述しない。前駆体シート100は、異なるサイズの医療装置またはステントの形成に適応するために、シートごとに様々であってよい、長さ(l)、幅(w)、および厚さ(t)寸法を備えている。例えば、より長い解剖学上の血管または通路が予定の治療部位である場合、より長い長さ(l)寸法が与えられてよく、あるいは、半径方向の強度が増大することが望ましい場合、より大きな厚さ(t)寸法が与えられてよい。前駆体シート100は、生体吸収性物質で構成され、その物質は、例えば、脂肪族ポリエステル(ポリ乳酸;ポリグリコール酸;ポリカプロラクトン;ポリジオキサノン;ポリ(トリメチレンカーボネート)、ポリ(オキサエステル)(poly (oxaesters))、ポリオキサアミド(poly (oxaamides))、ならびにそれらのコポリマーおよび混合物;ポリ(カルボキシフェノキシヘキサン‐セバシン酸)(poly(carboxyphenoxy hexane- sebacicacid))、ポリ(フマル酸‐セバシン酸)(poly (fumaric acid-sebacic acid))、ポリ(カルボキシフェノキシヘキサン‐セバシン酸)、ポリ(イミド‐セバシン酸)(50−50)(poly (imide-sebacic acid)(50-50))、およびポリ(イミド‐カルボキシフェノキシヘキサン)(33−67)(poly (imide-carboxyphenoxy hexane )(33-67))、ポリ(オルトエステル)(ジケトンアセタールベースのポリマー)を含む、ポリ(無水物));チロシン由来のポリアミノ酸[例:ポリ(DTHカーボネート)、ポリ(アリレート)、およびポリ(イミノ‐カーボネート)(poly (imino-carbonates))]、リン含有ポリマー[例:ポリ(リン酸エステル)およびポリ(ホスファゼン)]、ポリ(エチレングリコール)[PEG]ベースのブロックコポリマー[PEG−PLA、PEG−ポリ(プロピレングリコール)、PEG−ポリ(ブチレンテレフタラート)]、ポリ(α‐リンゴ酸)、ポリ(エステルアミド)、ならびにポリアルカノエート[例:ポリ(ヒドロキシブチレート)(HB)とポリ(ヒドロキシ吉草酸)(HV)とのコポリマー]である。
【0019】
もちろん、患者の脈管構造もしくは解剖学上の通路の中に植え込むことの助けとなる、他の既知の、または後に開発される生体吸収性物質も、本発明によるシステムおよび方法に従って形成される医療装置またはステントを構成するために企図されることを、熟練者は認識するであろう。前駆体シート100を構成する生体吸収性物質、および前駆体シート100の寸法は、装置またはステントの軸方向および半径方向の強度特性、ならびに可撓性特性に寄与する。
【0020】
図2は、本発明のシステムおよび方法による、生体吸収性物質の前駆体管200を示している。前駆体管200は、例えば従来の溶融押し出し技術、および溶媒をベースとした加工技術により製造され、このような前駆体管200が従来技術を用いてどのように形成されるのかを熟練者は容易に認識するはずであるから、これらの技術は、本明細書ではこれ以上詳述しない。前駆体管200は、異なるサイズの医療装置またはステントの形成に適応するために、管ごとに様々であってよい、長さ(l)、直径(d)、厚さ(t)寸法を備えている。前駆体管200は、前駆体シート100に関して前述された物質のような生体吸収性物質で構成されていることが好ましく、その物質、および前駆体管200の寸法は、装置またはステントの軸方向および半径方向の強度特性、ならびに可撓性特性に寄与する。
【0021】
図3は、本発明のシステムおよび方法による、前駆体物質をレーザー切断するためのレーザー加工ユニット1000を示している。前駆体物質は、図1の前駆体シート100、または図2の前駆体管200のいずれかである。本明細書で述べる様々な実施形態による、前駆体物質をレーザー切断するためのレーザー加工ユニットの非限定的な例である、レーザー加工ユニット1000は、Xステージ1001、Yステージ1002、およびZステージ1003を含み、各ステージは、互いに対して独立して動くことができる。図3に破線で示されるレーザービーム1010は、例えばハウジング1011の中に供給され、このハウジング1011は、Xステージ1001、Yステージ1002、およびZステージ1003のうちの少なくとも1つに固定されている。図3は、例えばYステージ1002に固定されたときのハウジング1011を示しており、レーザービーム1010がそのハウジングの中に入っている。こうして、実際には、前駆体シート100は、レーザービーム1010の移動範囲の下方でXステージ1001の上に配列される。前駆体管200が使用される場合、レーザー加工ユニット1000は、回転ステージ1004であって、回転ステージから延びるマンドレル1005を有する、回転ステージ1004をさらに含む。したがって、実際には、前駆体管200は、レーザービーム1010の移動範囲の下方でマンドレル1005の上に配列され、回転ステージ1004およびマンドレル1005は独立的に、その上に据えられた前駆体管200を回転させる。ゆえに、平らな前駆体シート100が使用される場合、図3の回転ステージ1004およびマンドレル1005は省略されてよく、前駆体シート100は、Xステージ1001に沿って位置させられる。いずれの場合も、レーザービームからのエネルギーを前駆体物質上に向けるために、レーザービーム1010は、前駆体物質に対して動き、好ましくは前駆体物質もレーザービーム1010に対して動く。
【0022】
図3に示されるように、レーザー加工ユニット1000は、不活性ガスボックス1015をさらに含み、この不活性ガスボックス1015は、レーザー切断処理の間、前駆体物質(図1のシート100、または図2の管200)を取り囲む。不活性ガスボックス1015は、入口1016および出口1019を含み、不活性ガスの流れが、入口1016を通って不活性ガスボックス1015に入り、かつ出口1019を通って不活性ガスボックス1015を出る。入口1016は、不活性ガスボックス1015に不活性ガスを供給するためのホース1017または他の手段により不活性ガス供給部1018にさらに接続されることができる。不活性ガスは、本明細書に記載されるレーザー切断技術を施される前駆体物質の、望ましくない傷もしくは他の欠陥を最小限にすること、または理想的には排除することを助ける。不活性ガスは、例えば窒素であってよい。熟練者は容易に認識するであろうが、レーザービームが前駆体物質に対して動き、好ましくは前駆体物質もレーザービームに対して動く、他のレーザー加工ユニットが、本明細書に記載される同じ特徴部を含みつつも、別様に構成されてよい。
【0023】
図3に示されるように、Yステージ1002は、ハウジング1011内でYステージ1002と共にレーザービーム1010を配列させるものとして示されているが、少なくとも1つのレーザービームが供給されている限り、その他のステージのうちのいずれか、またはすべてがレーザービームをそのステージに付属させるか、またはそのステージからレーザービームを省略させることもできることを、熟練者は容易に認識するはずである。さらに、図3に示されるレーザー加工ユニット1000は、3方向、すなわちx方向、y方向、およびz方向に動くユニットを示しているが、他方向の運動機能を有するレーザー加工ユニットもまた、本発明のシステムおよび方法による装置を作るために企図されることを、熟練者は認識するはずである。例えば6軸協調運動レーザー加工ユニットであって、意図された外形もしくはパターンを前駆体物質に与えるために、そのユニットによって、前駆体物質は一方向に動かされるのに対して、レーザービームは反対方向に動かされる、6軸協調運動レーザー加工ユニットが用いられてもよい。
【0024】
図4は、レーザー切断のために、平らな前駆体シート100が下に配列された、図3のレーザー加工ユニット1000のYステージ1002の部分図を示している。この場合のYステージ1002は、ハウジング1011を含み、このハウジング1011の中に、レーザービーム1010(破線)が配列されている。ハウジング1011は、内部に配列されたレンズ1030およびマスク1020をさらに含み、前駆体シート100または管200などの前駆体物質に外形もしくはパターンを与えるために、レンズ1030およびマスク1020を通してレーザービーム1010が投射される。特に、マスク1020は、レーザービーム1010がマスク1020を通って前駆体物質上に投射されたときに、下に位置する前駆体シート100または管200に与えられる外形もしくはパターン1021を含む。図4では概ね長さ方向に隣接する一連のセグメントの外形もしくはパターン1021を有するものとして示されているが、前駆体物質に与えられる外形もしくはパターン1021は、様々な医学的必要性および生理学的必要性に適うように変更可能であることを、熟練者は容易に認識するであろう。したがって、マスク1020を、異なる外形もしくはパターンを有するマスクに変更することにより、異なる外形もしくはパターンが前駆体物質に与えられ、そこでは、均一な外形もしくはパターンが前駆体物質に与えられ、または種々の外形もしくはパターンが前駆体物質に与えられてもよい。図5〜図8Cは、本明細書に記載される様々な実施形態による装置またはステントを構成するために前駆体物質に与えることができる、様々な非限定的な外形もしくはパターン1021を例示している。患者の脈管構造もしくは他の解剖学上の通路内での据え付けおよび適合性の助けとなる、既知の、または後に開発される他の外形もしくはパターンは、前駆体物質からレーザー切断されて、全く螺旋のみのデザイン700(図8A)、長さ方向に隣接する1つ以上のセグメントを有する非螺旋状デザイン(図8B)、またはそれらの組み合わせ900(図8C)を含む、本明細書に別様に記載されるような装置またはステントを形成することができる。これらのデザインは、装置またはステントのレーザー切断後に形成された場合は装置またはステントの全長に延びていてもよいし、あるいは、装置またはステントのレーザー切断後、装置またはステントの長さに沿って部分的にのみ延びていてもよいし、あるいは、装置またはステントのレーザー切断後、装置またはステントの長さに沿って別々の間隔を置いて延びていてもよい。
【0025】
好ましくは、図4にも示されるように、レーザー加工ユニット1000は、ビーム1010のエネルギーを強化するため、かつ、対象の前駆体物質上への外形もしくはパターンを縮小させるか、または凝縮させるために、レーザービームが通過するレンズ1030をさらに含む。図4は、マスク1020の上方に位置させられたレンズ1030を示しているが、その代わりに、レンズ1030は、ビーム1010が前駆体物質に当たるときにビーム1010のエネルギーを強化するために、マスク1020の下方に位置させられてもよいことを、熟練者は認識するであろう。正確に方向付けられた外形もしくはパターンを有する装置またはステントの3次元機械加工は、本明細書に記載されるレーザー加工技術を用いて装置またはステントに外形もしくはパターンを与えた結果、簡素化される。
【0026】
図示されていないが、対象となる前駆体物質に適用される、より均一なレーザービームエネルギー密度を生じるために、かつ理想的には、装置またはステントの、より一貫して機械加工された特徴部を得るために、ビームホモジェナイザーが用いられてもよい。したがって、この点において、レーザービーム1010は、マスク1020に達する前に整形(shape)され、このことは、設計された装置またはステントの処理量(throughput)を最適化するのを助けることができる。
【0027】
実際には、本発明のシステムおよび方法による装置またはステントを準備するのに使用される典型的な条件は、580〜600mJ/cmのエネルギー密度、193nmの波長で、レンズ1030、(設けられている場合はビームホモジェナイザー)およびマスク1020を通してレーザービーム1010を投射することを含み、このとき、レーザー反復率(laser repetition rate)は、80〜175Hzの範囲内で、レーザーパルス数は、390〜1000の範囲内である。193nmの波長は、下に位置する前駆体物質への熱損傷を減少させた状態で、よりきれいなエッジを提供するのに資する。193nmの波長は、標準の波長もしくはより長い波長の場合よりも、より複雑なデザイン、外形、もしくはパターンをステントまたは装置に与えることに、より容易に適応する、高い分解能を提供することにも資する。窒素などの不活性ガスは、レーザー切断中、水分および酸素に関連する影響を最小限にするか、もしくは理想的には排除するために、レーザー切断雰囲気中(laser-cutting atmosphere)で用いられる。
【0028】
したがって、本明細書に記載される様々な実施形態によれば、前駆体ポリマー物質は、前駆体物質の物理的特性への損傷を最小限にすると同時に、不活性ガスの存在下で、前駆体物質を、レーザー切断することによって、例えばエキシマーレーザー切断するか、またはミクロ機械加工することによって、装置またはステントに変えられる。不活性ガスの存在下で前駆体物質のレーザー切断を実行することは、射出成形、押し出し、または他の従来技術などの他の方法と比較して、加工中に前駆体物質に対する望ましくない損傷を最小限にするのに役立つ。さらに、本明細書に記載されるレーザー切断技術は、継続期間が比較的短く、例えば2〜3分であり、より従来型の技術と比べて実行するのが簡単である。平らな前駆体(図1)は、管状の前駆体(図2)と比べて、加工するのにさらに時間がかからない傾向があるが、本明細書に記載されるシステムおよび方法による、いずれかの前駆体、すなわち平らな前駆体または管状の前駆体のレーザー切断には、従来技術(典型的には約5〜15分)よりも少ない時間(2〜3分)が必要とされる傾向がある。
【0029】
さらに、レーザービームエネルギーは、レーザー切断時間を変えるために制御されてよい。例えば、レーザービームエネルギーは、レーザー切断時間を短縮するために高められてもよく、レーザービームエネルギーは、レーザー切断時間を増大するために弱められてもよく、レーザー切断時間を制御するために、レンズの強度もしくは向きが変えられてもよいし、または物質が変えられてもよい。
【0030】
その上、本明細書に記載される様々な実施形態に従って作られる装置またはステントは、従来の、薬剤でコーティングされた金属製ステントよりも高い重量パーセントで、薬剤または他の生物活性薬品を含む。例えば、本明細書に記載される様々な実施形態に従って作られる装置またはステントは、1〜50重量%の範囲、好ましくは10〜30重量%の範囲で、薬剤または生物活性薬品を含むことができる。この薬剤または他の生物活性薬品は、レーザー切断の前に、前駆体物質の中に組み込まれるか、またはその上に塗布されてよく、あるいは、装置またはステントのレーザー切断および形成が行われた後で、それら装置またはステントの中に組み込まれるか、またはその上に塗布されてもよい。理想的には、本明細書に記載される実施形態に従って作られた装置またはステントに供給される薬剤含有量は、そのままであり、装置またはステントのレーザー切断によって実質的には影響を受けない。
【0031】
このような薬剤または他の生物活性薬品は、例えば治療薬および調合薬であってよく、それには、ビンカアルカロイド(すなわち、ビンブラスチン、ビンクリスチン、およびビノレルビン)、パクリタキセル、エピジポドフィロトキシン(epidipodophyllotoxins)(すなわち、エトポシド、テニポシド)、抗生物質(ダクチノマイシン(アクチノマイシンD)、ダウノルビシン、ドキソルビシン、およびイダルビシン)、アントラサイクリン、ミトキサントロン、ブレオマイシン、プリカマイシン(ミトラマイシン)、およびマイトマイシン、酵素(Lアスパラギンを全身的に代謝し、独自のアスパラギンを合成する能力を有しない細胞を取り除く、Lアスパラギナーゼ)などの天然物を含む、増殖抑制/有糸分裂阻害薬;G(GP)llb/llla抑制因子およびビトロネクチン受容体拮抗薬などの抗血小板薬;ナイトロジェンマスタード(メクロレタミン、シクロホスファミドおよび類似体、メルファラン、クロラムブシル)、エチレンイミンおよびメチルメラミン(ヘキサメチルメラミンおよびチオテパ)、アルキルスルホン酸‐ブスルファン(alkyl sulfonates-busulfan)、ニトロソ尿素(カルムスチン(BCNU)および類似体、ストレプトゾシン)、トリアゼン(trazenes)‐ダカルバジン(dacarbazinine)(DTIC)などの増殖抑制/有糸分裂阻害アルキル化剤;葉酸類似体(メトトレキサート)、ピリミジン類似体(フルオロウラシル、フロクスウリジンおよびシタラビン)、プリン類似体、および関連する阻害物質(メルカプトプリン、チオグアニン、ペントスタチンおよび2‐クロロデオキシアデノシン{クラドリビン})などの増殖抑制/有糸分裂阻害代謝拮抗薬;白金配位錯体(シスプラチン、カルボプラチン)、プロカルバジン、ヒドロキシ尿素、ミトタン、アミノグルテチミド;ホルモン(すなわち、エストロゲン);抗凝血薬(ヘパリン、合成ヘパリン塩(synthetic heparin salts)および他のトロンビン阻害剤;線維素溶解薬(例えば、組織プラスミノーゲン活性化因子、ストレプトキナーゼおよびウロキナーゼ)、アスピリン、ジピリダモール、チクロピジン、クロピドグレル、アブシキシマブ;抗遊走薬(antimigratory);分泌抑制薬(ブレフェルジン(breveldin));副腎皮質ステロイド(コルチゾール、コルチゾン、フルドロコルチゾン、プレドニゾン、プレドニゾロン、6α‐メチルプレドニゾロン、トリアムシノロン、ベタメタゾン、およびデキサメタゾン)、非ステロイド薬(サリチル酸誘導体、すなわちアスピリン)などの抗炎症薬;パラアミノフェノール誘導体、すなわちアセトアミノフェン;インドールおよびインデン酢酸(インドメタシン、スリンダク、およびエトダレク(etodalec))、ヘテロアリール酢酸(トルメチン、ジクロフェナク、およびケトロラク)、アリールプロピオン酸(イブプロフェンおよび誘導体)、アントラニル酸(メフェナム酸、およびメクロフェナム酸)、エノール酸(enolic acids)(ピロキシカム、テノキシカム、フェニルブタゾン、およびオキシフェンタトラゾン(oxyphenthatrazone))、ナブメトン、金化合物(オーラノフィン、オーロチオグルコース、金チオリンゴ酸ナトリウム);免疫抑制薬:(シクロスポリン、タクロリムス(FK−506)、シロリムス(ラパマイシン)、アザチオプリン、ミコフェノール酸モフェチル);血管形成剤:血管内皮増殖因子(VEGF)、線維芽細胞増殖因子(FGF);アンジオテンシン受容体遮断薬;一酸化窒素ドナー、アンチセンスオリゴヌクレオチド、およびそれらの組み合わせ;細胞周期阻害剤、mTOR阻害剤、および増殖因子受容体シグナル伝達キナーゼ阻害剤;レチノイド(retenoids);サイクリン/CDK阻害剤;HMGコエンザイム還元酵素阻害剤(スタチン);ならびにプロテアーゼ阻害剤を含む。
【0032】
放射線不透過性マーカー材料もまた、レーザー切断前に前駆体物質の一部もしくは全体の中に組み込まれるか、またはその上に塗布されてよく、あるいは装置もしくはステントのレーザー切断および形成が行われた後でそれら装置もしくはステントの一部もしくは全体の中に組み込まれるか、またはその上に塗布されてよい。放射線不透過性物質は、装置が配備される組織と生体適合性がなくてはならない。このような生体適合性により、装置との望ましくない組織反応の可能性が最小化される。放射線不透過性添加剤は、タンタルもしくは金などの金属粉末、または金、白金、イリジウム、パラジウム、ロジウム、それらの組み合わせ、もしくは当技術分野で既知の他の物質を有する金属合金を含むことができる。他の放射線不透過性物質は、硫酸バリウム(BaSO4);次炭酸ビスマス((BiO)2CO3);酸化ビスマス、および/もしくはヨウ素化合物を含む。理想的には、好ましくは、放射線不透過性物質は、装置から放射線不透過性物質が剥がれること、もしくは薄片に裂けること(delamination)が最小限に抑えられるか、または理想的には生じないように、装置に十分に付着しなければならない。
【0033】
放射線不透過性物質が金属バンドとして装置に添加される場合、この金属バンドは、装置の指定された部分でクリンプされることができる。代替的に、装置の指定された部分は、放射線不透過性金属粉末でコーティングされてもよく、一方、装置の他の部分には、金属粉末がない。さらに代替的に、装置の指定された部分は、例えば図8Aのキャビティ701にレーザー切断されてよく、このキャビティ701は、その後、放射線不透過性物質で満たされる。当然、キャビティ701は、図示された以外の場所で作られるか、もしくは図示された以外の形状で作られてよく、また、本明細書で記載される様々な装置もしくはステントのデザインのいずれかの一部とされてよい。熟練者であれば認識されるように、バリウムは、これらの技術を用いて装置を可視化するための金属製要素として使用されることが多いが、タングステンおよび他の充填剤もまた、より一般的になってきている。放射線不透過性物質の粒子サイズは、nm単位からμm単位までの範囲にわたってよく、放射線不透過性物質の量は、1〜50%(重量%)の範囲にわたってよい。
【0034】
図5A〜図5Cは、本明細書に記載された様々な実施形態による、生体吸収性物質の前駆体シートからレーザー切断された外形もしくはパターンを有する、螺旋状に巻かれたステント300の一部を示している。図5A〜図5Cは、様々な半径方向強度特性を有する、異なる寸法または異なる物質のステントを示している。例えば、螺旋状に巻かれたステント300は、図3および図4のレーザー加工ユニット1000のようなレーザー加工ユニットを用いて不活性ガスの存在下でレーザー切断された。切断後、前駆体物質は、レーザー加工ユニットから除去され、マンドレルの周りに巻かれるか、または別様に扱われ、螺旋形状を形成する。図5A〜図5Cのステントの半径方向強度は、使用される前駆体物質の厚さ、およびステントに与えられる外形もしくはパターンのピッチに応じて、1.38×10Pa(2psi)〜2.07×10Pa(30psi)の範囲にわたった。
【0035】
図5A〜図5Cは、様々な長さ寸法で、かつ同じ直径の螺旋状ステント300の一部を示しており、それぞれのステントは、生体吸収性物質の異なる組み合わせから形成された。例えば、図5Aは、18mmの長さ、および3.5mmの内径を備えた、螺旋状に巻かれたステント300を示し、図5Bは、10mmの長さ、および3.5mmの内径を備えた、螺旋状ステント300を示し、図5Cは、18mmの長さ、および3.5mmの内径を備えた螺旋状ステント300を示している。PLLA、PLGA(95/5)、PLGA(85/15)およびPCL/PGA(35/65)を含む様々な生体吸収性物質が、ステントを構成するために用いられた。図5A〜図5Cに基づいて、PLLAおよびPLGAで構成されたステントは、ステントもしくは装置の長さ寸法に関わらず、他の試験物質よりも良好な半径方向強度を有する傾向があった。もちろん、前記で特定された寸法は、変化してよく、かつ、生理学的必要性に従って拡張してもよい。
【0036】
図6は、本発明のレーザー加工技術に従って作られた別のステント400を示しており、このレーザー加工技術によりステント400は生体吸収性物質の前駆体から製作される。図6は、例えば、18mmの長さ、および1〜4mmの内径範囲を備えたBx VELOCITY(登録商標)(ステント)デザインを有するステント400を示している。前駆体物質の厚さは、7.62×10−2mm(3ミル)〜2.54×10−1mm(10ミル)に及び、様々な生体吸収性物質、例えば、PLLA、PLLA/TMC混合物、PLLA/PCL混合物、PCL/PGA(35/65)およびPLDLが使用された。図6に基づいて、PLLAおよびPLDLで構成されたステントは、ステントまたは装置の前駆体物質の厚さ寸法に関わらず、他の試験物質よりも良好な半径方向強度を有する傾向があった。もちろん、前記で特定された寸法は、変化してよく、かつ、生理学的必要性に従って拡張してもよい。
【0037】
図7A〜図7Cは、本発明のシステム及び方法による、装置もしくはステントを形成するために、前駆体に与えることができる外形もしくはパターンの他の様々な非限定例を示している。図7Aは、Bx VELOCITY(登録商標)(ステント)デザインを有するステント400を示し、図7Bは、S.M.A.R.T.(登録商標)(ステント)デザインを有するステント500を示し、図7Cは、PALMAZ(登録商標)(ステント)デザインを有するステント600を示している。もちろん、寸法は、変化してよく、かつ、生理学的必要性に従って拡張してもよい。
【0038】
本明細書で前述したような、本発明の様々な例示的実施形態は、本発明のシステムおよび方法の種々の実施形態を限定するものではない。熟練者により認識されるように、本明細書に記載された物質は、例証目的のためだけに本明細書で言及された物質、デザインもしくは形状に限定されず、本明細書に記載されたシステムおよび方法に適する様々な他の物質、デザインもしくは形状を含むことができる。
【0039】
本発明の好適な実施形態と考えられるものが図示され説明されてきたが、本発明の趣旨もしくは範囲から逸脱することなく、形態もしくは細部における様々な修正および変更が容易になされ得ることは、当然理解されるであろう。ゆえに、本発明は本明細書に記載され図示された正確な形態に限定されないが、付随する特許請求の範囲に入り得るすべての修正を含むものと解釈されるべきであることが意図される。
【0040】
〔実施の態様〕
(1) 協調運動レーザー加工ユニットを用いて、レーザー切断された管腔内装置を形成するための方法において、
前駆体物質を準備することと、
前記レーザー加工ユニットに対して前記前駆体物質を配列することと、
不活性ガスの存在下で、レーザービームからのエネルギーに前記前駆体物質を当てることと、
前記前駆体物質に外形およびパターンを与えることと、
前記レーザー加工ユニットに対する前記配列から前記前駆体物質を除去することと、
を含む、方法。
(2) 実施態様1に記載の方法において、
前記協調運動レーザー加工ユニットにマスクを設けることであって、これにより前記レーザービームは前記マスクを通って投射して前記前駆体物質に前記外形および前記パターンを与える、マスクを設けること、
をさらに含む、方法。
(3) 実施態様2に記載の方法において、
前記前駆体物質を準備することは、生体吸収性物質を準備することを含む、方法。
(4) 実施態様1に記載の方法において、
前記レーザー加工ユニットにレンズを設けることであって、前記レーザービームは前記レンズを通過して、前記前駆体物質に向けられた前記レーザービームの前記エネルギーを強化する、レンズを設けること、
をさらに含む、方法。
(5) 実施態様4に記載の方法において、
ビームホモジェナイザーを設けることと、
前記レーザービームが前記マスクを通って前記前駆体物質に対して投射する前に、前記レーザービームを整形することと、
をさらに含む、方法。
【0041】
(6) 実施態様4に記載の方法において、
193nmの波長で、かつ580〜600mJ/cmのエネルギー密度で前記レーザービームを、前記マスクを通し、かつ前記前駆体物質に対して投射して、前記前駆体物質に前記外形および前記パターンを与えること、
をさらに含む、方法。
(7) 実施態様6に記載の方法において、
前記前駆体物質に前記外形および前記パターンを与えるための、約80〜175Hzのレーザー反復率、および約390〜1000のレーザーパルス数、
をさらに含む、方法。
(8) 実施態様1に記載の方法において、
前記不活性ガスの存在によって、前記前駆体物質のレーザー切断中に水分および酸素の影響を最小限にすること、
をさらに含む、方法。
(9) 実施態様1に記載の方法において、
前記不活性ガスは、窒素である、方法。
(10) 実施態様1に記載の方法において、
前記前駆体物質は、前記前駆体物質のレーザー切断後に、与えられる前記外形および前記パターンを有する形状に形成される、方法。
【0042】
(11) 実施態様1に記載の方法において、
前記前駆体物質は、前記前駆体物質のレーザー切断後に与えられる前記外形および前記パターンを有する管である、方法。
(12) 実施態様1に記載の方法において、
前記前駆体物質を準備することは、レーザー切断の前に、前記前駆体物質の一部または全体の中もしくは上に、薬剤または生物活性薬品を供給することをさらに含む、方法。
(13) 実施態様12に記載の方法において、
前記薬剤または前記生物活性薬品は、前記装置の1〜50重量%、好ましくは10〜30重量%を構成する、方法。
(14) 実施態様1に記載の方法において、
前記前駆体物質のレーザー切断が行われた後で、前記前駆体物質の一部の中もしくは上に、薬剤または生物活性薬品を供給すること、
をさらに含む、方法。
(15) 実施態様1に記載の方法において、
前記前駆体シートのレーザー切断の前に、前記前駆体シートの一部または全体の中もしくは上に、放射線不透過性物質を供給すること、
をさらに含む、方法。
【0043】
(16) 実施態様1に記載の方法において、
前記前駆体物質のレーザー切断後に、前記前駆体物質の一部または全体の中もしくは上に、放射線不透過性物質を供給すること、
をさらに含む、方法。
(17) 実施態様1に記載の方法において、
前記外形および前記パターンを与えることは、前記前駆体物質の前記レーザー切断により、前記前駆体物質に螺旋状のデザインを与えることを含む、方法。
(18) 実施態様1に記載の方法において、
前記外形および前記パターンを与えることは、前記前駆体物質の前記レーザー切断により、前記前駆体物質に非螺旋状のデザインを与えることを含む、方法。
(19) 実施態様1に記載の方法において、
前記外形および前記パターンを与えることは、前記前駆体物質の前記レーザー切断により、前記前駆体物質に螺旋状のデザインと非螺旋状のデザインとの組み合わせを与えることを含む、方法。
(20) 実施態様1に記載の方法において、
前記外形および前記パターンを与えることは、前記管腔内医療装置の全長、前記管腔内医療装置の前記全長の一部、または前記管腔内医療装置の前記全長に沿った間隔ごと、のうちのいずれか1つに、前記外形および前記パターンを与えることを含む、方法。
【0044】
(21) 実施態様1に記載の方法において、
前記装置は、ステントである、方法
(22) 実施態様13に記載の方法において、
前記薬剤または前記生物活性薬品の前記重量パーセントは、前記前駆体物質の前記レーザー切断によってほぼ影響を受けない、方法。
(23) 管腔内医療装置において、
生体吸収性前駆体物質であって、不活性ガスの存在下でレーザー切断により前記生体吸収性前駆体物質に与えられた外形もしくはパターンを有する、生体吸収性前駆体物質と、
前記装置の中もしくは上に組み込まれた、少なくとも1つの薬剤または生物活性薬品と、
前記装置の中もしくは上に組み込まれた、少なくとも1つの放射線不透過性物質と、
を含む、管腔内医療装置。
(24) 実施態様23に記載の管腔内医療装置において、
前記前駆体物質は、前記外形もしくは前記パターンが前記前駆体物質に与えられた後に、管腔内で受容されるための形状に形成されるシートである、管腔内医療装置。
(25) 実施態様23に記載の管腔内医療装置において、
前記前駆体物質は、管である、管腔内医療装置。
【0045】
(26) 実施態様23に記載の管腔内医療装置において、
前記外形もしくは前記パターンは、螺旋状デザインである、管腔内医療装置。
(27) 実施態様23に記載の管腔内医療装置において、
前記外形もしくは前記パターンは、非螺旋状デザインである、管腔内医療装置。
(28) 実施態様23に記載の管腔内医療装置において、
前記非螺旋状デザインは、長さ方向に隣接した一連のセグメントである、管腔内医療装置。
(29) 実施態様23に記載の管腔内医療装置において、
前記外形もしくは前記パターンは、螺旋状デザインと非螺旋状デザインとの組み合わせである、管腔内医療装置。
(30) 実施態様23に記載の管腔内医療装置において、
前記外形もしくは前記パターンは、前記装置の長さを全体的に、部分的に、もしくは前記装置の前記長さの別々のセグメントにおいて、延びている、管腔内医療装置。
【0046】
(31) 実施態様23に記載の管腔内医療装置において、
前記少なくとも1つの薬剤または生物活性薬品は、1〜50重量%で供給される、管腔内医療装置。
(32) 実施態様31に記載の管腔内医療装置において、
前記少なくとも1つの薬剤または生物活性薬品は、10〜30重量%で供給される、管腔内医療装置。
(33) 実施態様31に記載の管腔内医療装置において、
前記少なくとも1つの薬剤または生物活性薬品の前記重量パーセントは、前記装置の前記レーザー切断によってほぼ影響を受けない、管腔内医療装置。
(34) 実施態様22に記載の管腔内医療装置において、
前記装置は、ステントである、管腔内医療装置。
【図面の簡単な説明】
【0047】
【図1】本発明のシステムおよび方法による、生体吸収性物質の前駆体シートを示す図である。
【図2】本発明のシステムおよび方法による、生体吸収性物質の前駆体管を示す図である。
【図3】本発明のシステムおよび方法による、図1の前駆体シートまたは図2の前駆体管をレーザー切断するためのレーザー加工ユニットを示す図である。
【図4】本発明のシステムおよび方法による、前駆体シートまたは管の上に外形もしくはパターンを与えるためにレーザービームが貫通するマスクを含む、図3のレーザー加工ユニットの部分図を示している。
【図5A】本発明のシステムおよび方法による、前駆体シートからレーザー切断された外形もしくはパターンを有する、螺旋状に巻かれたステントの一部を示している。
【図5B】本発明のシステムおよび方法による、前駆体シートからレーザー切断された外形もしくはパターンを有する、螺旋状に巻かれたステントの一部を示している。
【図5C】本発明のシステムおよび方法による、前駆体シートからレーザー切断された外形もしくはパターンを有する、螺旋状に巻かれたステントの一部を示している。
【図6】本発明のシステムおよび方法による、前駆体管からレーザー切断された外形もしくはパターンを有するステントの一部を示している。
【図7A】本発明のシステムおよび方法による、前駆体管からレーザー切断された他の外形もしくはパターンを有するステントを示している。
【図7B】本発明のシステムおよび方法による、前駆体管からレーザー切断された他の外形もしくはパターンを有するステントを示している。
【図7C】本発明のシステムおよび方法による、前駆体管からレーザー切断された他の外形もしくはパターンを有するステントを示している。
【図8A】本発明のシステムおよび方法による、前駆体物質からレーザー切断された他の外形およびパターンを示している。
【図8B】本発明のシステムおよび方法による、前駆体物質からレーザー切断された、さらに他の外形およびパターンを示している。
【図8C】本発明のシステムおよび方法による、前駆体物質からレーザー切断された、さらに他の外形およびパターンを示している。

【特許請求の範囲】
【請求項1】
協調運動レーザー加工ユニットを用いて、レーザー切断された管腔内装置を形成するための方法において、
前駆体物質を準備することと、
前記レーザー加工ユニットに対して前記前駆体物質を配列することと、
不活性ガスの存在下で、レーザービームからのエネルギーに前記前駆体物質を当てることと、
前記前駆体物質に外形およびパターンを与えることと、
前記レーザー加工ユニットに対する前記配列から前記前駆体物質を除去することと、
を含む、方法。
【請求項2】
請求項1に記載の方法において、
前記協調運動レーザー加工ユニットにマスクを設けることであって、これにより前記レーザービームは前記マスクを通って投射して前記前駆体物質に前記外形および前記パターンを与える、マスクを設けること、
をさらに含む、方法。
【請求項3】
請求項2に記載の方法において、
前記前駆体物質を準備することは、生体吸収性物質を準備することを含む、方法。
【請求項4】
請求項1に記載の方法において、
前記レーザー加工ユニットにレンズを設けることであって、前記レーザービームは前記レンズを通過して、前記前駆体物質に向けられた前記レーザービームの前記エネルギーを強化する、レンズを設けること、
をさらに含む、方法。
【請求項5】
請求項4に記載の方法において、
ビームホモジェナイザーを設けることと、
前記レーザービームが前記マスクを通って前記前駆体物質に対して投射する前に、前記レーザービームを整形することと、
をさらに含む、方法。
【請求項6】
請求項4に記載の方法において、
193nmの波長で、かつ580〜600mJ/cmのエネルギー密度で前記レーザービームを、前記マスクを通し、かつ前記前駆体物質に対して投射して、前記前駆体物質に前記外形および前記パターンを与えること、
をさらに含む、方法。
【請求項7】
請求項6に記載の方法において、
前記前駆体物質に前記外形および前記パターンを与えるための、約80〜175Hzのレーザー反復率、および約390〜1000のレーザーパルス数、
をさらに含む、方法。
【請求項8】
請求項1に記載の方法において、
前記不活性ガスの存在によって、前記前駆体物質のレーザー切断中に水分および酸素の影響を最小限にすること、
をさらに含む、方法。
【請求項9】
請求項1に記載の方法において、
前記不活性ガスは、窒素である、方法。
【請求項10】
請求項1に記載の方法において、
前記前駆体物質は、前記前駆体物質のレーザー切断後に、与えられる前記外形および前記パターンを有する形状に形成される、方法。
【請求項11】
請求項1に記載の方法において、
前記前駆体物質は、前記前駆体物質のレーザー切断後に与えられる前記外形および前記パターンを有する管である、方法。
【請求項12】
請求項1に記載の方法において、
前記前駆体物質を準備することは、レーザー切断の前に、前記前駆体物質の一部または全体の中もしくは上に、薬剤または生物活性薬品を供給することをさらに含む、方法。
【請求項13】
請求項12に記載の方法において、
前記薬剤または前記生物活性薬品は、前記装置の1〜50重量%、好ましくは10〜30重量%を構成する、方法。
【請求項14】
請求項1に記載の方法において、
前記前駆体物質のレーザー切断が行われた後で、前記前駆体物質の一部の中もしくは上に、薬剤または生物活性薬品を供給すること、
をさらに含む、方法。
【請求項15】
請求項1に記載の方法において、
前記前駆体シートのレーザー切断の前に、前記前駆体シートの一部または全体の中もしくは上に、放射線不透過性物質を供給すること、
をさらに含む、方法。
【請求項16】
請求項1に記載の方法において、
前記前駆体物質のレーザー切断後に、前記前駆体物質の一部または全体の中もしくは上に、放射線不透過性物質を供給すること、
をさらに含む、方法。
【請求項17】
請求項1に記載の方法において、
前記外形および前記パターンを与えることは、前記前駆体物質の前記レーザー切断により、前記前駆体物質に螺旋状のデザインを与えることを含む、方法。
【請求項18】
請求項1に記載の方法において、
前記外形および前記パターンを与えることは、前記前駆体物質の前記レーザー切断により、前記前駆体物質に非螺旋状のデザインを与えることを含む、方法。
【請求項19】
請求項1に記載の方法において、
前記外形および前記パターンを与えることは、前記前駆体物質の前記レーザー切断により、前記前駆体物質に螺旋状のデザインと非螺旋状のデザインとの組み合わせを与えることを含む、方法。
【請求項20】
請求項1に記載の方法において、
前記外形および前記パターンを与えることは、前記管腔内医療装置の全長、前記管腔内医療装置の前記全長の一部、または前記管腔内医療装置の前記全長に沿った間隔ごと、のうちのいずれか1つに、前記外形および前記パターンを与えることを含む、方法。
【請求項21】
請求項1に記載の方法において、
前記装置は、ステントである、方法
【請求項22】
請求項13に記載の方法において、
前記薬剤または前記生物活性薬品の前記重量パーセントは、前記前駆体物質の前記レーザー切断によってほぼ影響を受けない、方法。
【請求項23】
管腔内医療装置において、
生体吸収性前駆体物質であって、不活性ガスの存在下でレーザー切断により前記生体吸収性前駆体物質に与えられた外形もしくはパターンを有する、生体吸収性前駆体物質と、
前記装置の中もしくは上に組み込まれた、少なくとも1つの薬剤または生物活性薬品と、
前記装置の中もしくは上に組み込まれた、少なくとも1つの放射線不透過性物質と、
を含む、管腔内医療装置。
【請求項24】
請求項23に記載の管腔内医療装置において、
前記前駆体物質は、前記外形もしくは前記パターンが前記前駆体物質に与えられた後に、管腔内で受容されるための形状に形成されるシートである、管腔内医療装置。
【請求項25】
請求項23に記載の管腔内医療装置において、
前記前駆体物質は、管である、管腔内医療装置。
【請求項26】
請求項23に記載の管腔内医療装置において、
前記外形もしくは前記パターンは、螺旋状デザインである、管腔内医療装置。
【請求項27】
請求項23に記載の管腔内医療装置において、
前記外形もしくは前記パターンは、非螺旋状デザインである、管腔内医療装置。
【請求項28】
請求項23に記載の管腔内医療装置において、
前記非螺旋状デザインは、長さ方向に隣接した一連のセグメントである、管腔内医療装置。
【請求項29】
請求項23に記載の管腔内医療装置において、
前記外形もしくは前記パターンは、螺旋状デザインと非螺旋状デザインとの組み合わせである、管腔内医療装置。
【請求項30】
請求項23に記載の管腔内医療装置において、
前記外形もしくは前記パターンは、前記装置の長さを全体的に、部分的に、もしくは前記装置の前記長さの別々のセグメントにおいて、延びている、管腔内医療装置。
【請求項31】
請求項23に記載の管腔内医療装置において、
前記少なくとも1つの薬剤または生物活性薬品は、1〜50重量%で供給される、管腔内医療装置。
【請求項32】
請求項31に記載の管腔内医療装置において、
前記少なくとも1つの薬剤または生物活性薬品は、10〜30重量%で供給される、管腔内医療装置。
【請求項33】
請求項31に記載の管腔内医療装置において、
前記少なくとも1つの薬剤または生物活性薬品の前記重量パーセントは、前記装置の前記レーザー切断によってほぼ影響を受けない、管腔内医療装置。
【請求項34】
請求項22に記載の管腔内医療装置において、
前記装置は、ステントである、管腔内医療装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5A】
image rotate

【図5B】
image rotate

【図5C】
image rotate

【図6】
image rotate

【図7A】
image rotate

【図7B】
image rotate

【図7C】
image rotate

【図8A】
image rotate

【図8B】
image rotate

【図8C】
image rotate


【公表番号】特表2009−519774(P2009−519774A)
【公表日】平成21年5月21日(2009.5.21)
【国際特許分類】
【出願番号】特願2008−545912(P2008−545912)
【出願日】平成18年12月6日(2006.12.6)
【国際出願番号】PCT/US2006/061668
【国際公開番号】WO2007/081621
【国際公開日】平成19年7月19日(2007.7.19)
【出願人】(597041828)コーディス・コーポレイション (206)
【氏名又は名称原語表記】Cordis Corporation
【Fターム(参考)】