説明

レーザー加工装置

【課題】ワーク表面の高さバラつきの測定に起因する生産性の低下を抑制できるレーザー加工装置を提供すること。
【解決手段】レーザー加工装置の高さ位置検出手段によって検出された高さバラつきの中央位置が、第1の集光点位置調整手段の加工範囲基準値に一致しない場合は、次に加工する分割予定ラインの高さバラつきを測定する前に、高さバラつきの中央位置が加工範囲基準値に一致するように第2の集光点位置調整手段によって第1の集光点位置調整手段の垂直方向における位置を調整する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、半導体ウェーハなどのワーク(被加工物)に対してレーザー加工を施すレーザー加工装置に関する。
【背景技術】
【0002】
半導体デバイス製造工程においては、略円板形状であるワークの表面に格子状に配列された分割予定ラインによって区画された複数の領域それぞれにIC,LSIなどのデバイスが形成され、分割予定ラインに沿ってワークを切断することによって個々のチップへと分割する。ワークの切断には、ダイサーと称される切削装置による加工方法の他、レーザー光線を照射して切断する加工方法も適用される(例えば、特許文献1参照)。
【0003】
ところが、ワーク表面に微小な凹凸形状(以下、うねりと記す)が存在する場合、ワークの厚さバラつきが原因となり、レーザー光線を照射する際に屈折率の関係で所定の深さに均一に改質層を形成できない。したがって、うねりを有するワークに対して内部の所定深さ位置に均一に改質層を形成するためには、あらかじめレーザー光線を照射する領域の凹凸を検出し、その凹凸にレーザー光線照射手段を追従させて加工することが必要となる。
【0004】
これに対して、保持テーブルに保持されたワークの表面に可視光レーザー光線を照射し、ワークの表面で反射した反射光の光量に基づいてワークの表面高さ位置を検出する高さ位置検出手段を備えたレーザー加工装置が提案されている(例えば、特許文献2参照)。
【0005】
このような高さ位置検出手段は、検出可能域に限りがあることが一般的である。このため、ワーク表面の高さバラつきの範囲が、高さ位置検出手段の検出可能域内にあるにもかかわらず、ワーク表面の高さバラつきを測定できない場合がある。このような場合、高さバラつきを測定できないためにレーザー加工を施すことができず、生産性が著しく低下してしまう。
【0006】
これに対して、ワーク表面の高さバラつきの測定ができない場合に、自動的に高さ位置検出手段とワークとの位置関係を調整して、測定および加工を続行するレーザー加工装置が提案されている(例えば、特許文献3参照)。
【先行技術文献】
【特許文献】
【0007】
【特許文献1】特開平10−305420号公報
【特許文献2】特開2007−152355号公報
【特許文献3】特開2010−142819号公報
【発明の概要】
【発明が解決しようとする課題】
【0008】
しかしながら、ワーク表面の高さバラつきが測定できない場合に、自動的に高さ位置検出手段とワークとの位置関係を調整して、測定および加工を続行するレーザー加工装置においては、ワーク表面の分割予定ライン上における高さバラつきが測定できなかった場合に、当該測定ができなかった分割予定ラインを再度測定しなおす必要がある。したがって、自動的な調整の回数が多いほど生産性が低下するという問題が生じていた。
【0009】
本発明は、かかる点に鑑みてなされたものであり、ワーク表面の高さバラつきの測定に起因する生産性の低下を抑制できるレーザー加工装置を提供することを目的とする。
【課題を解決するための手段】
【0010】
本発明のレーザー加工装置は、分割予定ラインが設定されたワークを保持する保持手段と、前記保持手段に保持された前記ワークにレーザー光線を発振する発振器と、前記発振器によって発振されたレーザー光線を集光する集光レンズと、を有する加工手段と、前記ワークの分割予定ライン上の高さバラつきよりも大きな範囲に前記集光レンズを前記保持手段の保持面に対して垂直方向に移動可能であり、前記分割予定ラインに対して前記レーザー光線を照射しながら、前記集光レンズを垂直方向に所定量移動させて前記レーザー光線の集光点位置を調整する第1の集光点位置調整手段と、前記垂直方向における移動範囲が前記第1の集光点位置調整手段よりも広く、前記分割予定ラインに対して前記レーザー光線を照射する前に、前記第1の集光点位置調整手段を垂直方向に移動させることによって前記集光レンズによって集光される前記レーザー光線の集光点位置を適正な位置に位置付けて、前記分割予定ラインに対して前記レーザー光線を照射している間は垂直方向における前記第1の集光点位置調整手段の位置を固定した状態に保つ第2の集光点位置調整手段と、検出用光線を前記集光レンズによって集光して前記保持手段に保持された前記ワークに照射し、前記ワークの上面で反射した反射光の光量が一定になるように前記第1の集光点位置調整手段によって前記集光レンズを垂直方向に移動させ、前記集光レンズのレンズ移動情報を取得することにより前記高さバラつきを測定する高さ位置検出手段と、前記高さ位置検出手段で得られた前記レンズ移動情報に基づいて、前記第1の集光点位置調整手段と前記第2の集光点位置調整手段と前記加工手段とを制御する制御手段と、を有するレーザー加工装置であって、前記制御手段は、前記高さ位置検出手段によって前記高さバラつきを測定した際に、前記高さ位置検出手段によって検出された前記高さバラつきの最上位置および最下位置から算出される中央位置が、前記第1の集光点位置調整手段が移動可能な所定量の中央値である加工範囲基準値に一致しない場合は、次に加工する前記分割予定ラインの高さバラつきを測定する前に、前記高さバラつきの中央位置が前記加工範囲基準値に一致するように前記第2の集光点位置調整手段によって前記第1の集光点位置調整手段の垂直方向における位置を調整することを特徴とする。
【0011】
このレーザー加工装置によれば、高さ位置検出手段によって検出された高さバラつきの最上位置および最下位置から算出される中央位置が、第1の集光点位置調整手段が移動可能な所定量の中央値である加工範囲基準値に一致しない場合は、次に加工する分割予定ラインの高さバラつきを測定する前に、高さバラつきの中央位置が加工範囲基準値に一致するように第2の集光点位置調整手段によって第1の集光点位置調整手段の垂直方向における位置を調整することにより、次に加工する分割予定ラインを含むワーク表面の高さバラつきが高さ位置検出手段の測定範囲から逸脱する確率を低減できる構成となっている。そのため、ワーク表面の高さバラつきを測定できずに検出対象となる分割予定ラインを再度測定する事態の発生頻度を低減できるので、ワーク表面の高さバラつきの測定に起因する生産性の低下を抑制できるレーザー加工装置を提供することが可能となる。
【発明の効果】
【0012】
本発明によれば、ワーク表面の高さバラつきの測定に起因する生産性の低下を抑制できるレーザー加工装置を提供できる。
【図面の簡単な説明】
【0013】
【図1】一実施の形態に係るレーザー加工装置の全体を示す斜視図である。
【図2】上記レーザー加工装置の光学系構成を含む全体構成を示す概略側面図である。
【図3】図2に示した光学系の一部を拡大して示す図である。
【図4】レーザー加工用プログラムに従って制御手段によって実行されるレーザー加工方法を示す概略フローチャートである。
【図5】レーザー加工用プログラムに従って制御手段によって実行されるレーザー加工方法を示す概略フローチャートである。
【図6】ワークの分割予定ライン上における高さバラつきの最上位置が、第1の集光点位置調整手段の移動可能範囲の上限値を超えた場合についての説明図である。
【図7】ワークの分割予定ライン上における高さバラつきの最下位置が、第1の集光点位置調整手段の移動可能範囲の下限値を超えた場合についての説明図である。
【図8】ワークの分割予定ライン上における高さバラつきの中央位置が、第1の集光点位置調整手段の加工範囲基準値に一致しない場合についての説明図である。
【発明を実施するための形態】
【0014】
以下、本発明の実施の形態について添付図面を参照して詳細に説明する。
図1は、本発明の実施の形態に係るレーザー加工装置1の全体を示す斜視図である。図1に示すように、レーザー加工装置1は、ワークWを保持するチャックテーブル4と、レーザー照射ユニット5とを相対移動させて、ワークWに対して検出用光線を照射してワークW表面の高さバラつきを測定するとともに、高さバラつき検出後のワークWに対してレーザー光線を照射して、ワークW上の分割予定ラインに沿ってレーザー加工を施すように構成される。
【0015】
ここで、レーザー加工装置1の被加工物であるワークWについて説明する。ワークWは、略円板状に形成されており、表面に分割予定ラインが格子状に配列され、この分割予定ラインによって区画された複数の領域それぞれに図示しないデバイスが形成されている。また、ワークWは、デバイスが形成された面を下向きにして、支持テープ2を介して環状フレーム3に支持される。
【0016】
なお、本実施の形態においては、ワークWとしてシリコンウェーハなどの半導体ウェーハを例に挙げて説明するが、ワークWは特に限定されるものではなく、例えば、シリコン(Si)、ガリウムヒ素(GaAs)、シリコンカーバイド(SiC)などの半導体ウェーハや、サファイア(Al)系の無機材料基板、さらにはミクロンオーダーの加工位置精度が要求される各種加工材料をワークWとしてもよい。
【0017】
レーザー加工装置1は、加工台6にX軸方向に形成された一対のX軸ガイドレール7a,7bが配設されている。X軸テーブル8は、X軸ガイドレール7a,7bに沿ってX軸方向に移動自在に載置されている。X軸テーブル8の背面側には、図示しないナット部が形成され、ナット部にボールねじ9が螺合されている。そして、ボールねじ9の端部には、駆動モータ10が連結され、駆動モータ10によりボールねじ9が回転駆動される。
【0018】
X軸テーブル8上には、Y軸方向に形成された一対のY軸ガイドレール11a,11bが配設されている。Y軸テーブル12は、Y軸ガイドレール11a,11bに沿ってY軸方向に移動自在に載置されている。Y軸テーブル12の背面側には図示しないナット部が形成され、ナット部にボールねじ13が螺合されている。そして、ボールねじ13の端部には、駆動モータ14が連結され、駆動モータ14によりボールねじ13が回転駆動される。
【0019】
Y軸テーブル12上に、保持手段としてのチャックテーブル4が設置されている。チャックテーブル4は、テーブル支持部4aと、テーブル支持部4aの上部に設けられた分割予定ラインが設定されたワークWを吸着保持するワーク保持部4bと、環状フレーム3を保持するフレーム保持部4cとを備える。テーブル支持部4aの内部には、ワーク保持部4bにワークWを吸着保持する吸引源が設けられている。
【0020】
また、加工台6上には支柱部15が立設されており、支柱部15にはZ軸方向(垂直方向)に形成された一対のZ軸ガイドレール16a,16bが配設されている。支柱部15の上端部からチャックテーブル4の上方に延びたアーム17は、Z軸ガイドレール16a,16bに沿ってZ軸方向に移動自在に取り付けられている。アーム17に、加工手段としてのレーザー照射ユニット5および撮像手段19が支持される。レーザー照射ユニット5は、チャックテーブル4のワーク保持部4b上に保持されたワークWにパルス状の加工用レーザー光線を照射してレーザー加工する。レーザー照射ユニット5には、後述する光学系が収納され、アーム17を介して第2の集光点位置調整手段18によってZ軸方向に移動可能に移動自在に設けられている。第2の集光点位置調整手段18は、ボールねじ18a、図示しないナット部、駆動モータ18bを含んで構成される。
【0021】
第2の集光点位置調整手段18は、ワークWの分割予定ラインに対してレーザー光線を照射する前には、アーム17内に配設された第1の集光点位置調整手段21をZ軸方向(垂直方向)に移動してレーザー照射ユニット5内に備わる集光レンズ5cによって集光されるレーザー光線の集光点位置を適切な位置に位置付け、さらに、ワークWの分割予定ラインに対してレーザー光線を照射する間には、Z軸方向における第1の集光点位置調整手段21の位置を固定した状態に保つ。
【0022】
撮像手段19は、ワーク保持部4b上に保持されたワークWの表面を撮像し、レーザー照射ユニット5から照射されるレーザー光線によって加工すべき領域を検出する。撮像手段19は、撮像素子(CCD)などで構成され、撮像した画像信号を制御手段20に送る。
【0023】
次に、図2を参照して、レーザー加工装置1における光学系の駆動機構について説明する。図2は、光学系構成を含む全体構成を示す概略側面図である。本実施の形態に係る光学系は、レーザー光線発振手段5aから出射されたレーザー光線をミラー5bで反射し、反射した光を集光レンズ5cでワークW上に集光するように構成される。
【0024】
レーザー光線発振手段5aは、チャックテーブル4のワーク保持部4bに保持されたワークWに対して透過性を有する波長のレーザー光線を発振する。レーザー光線発振手段5aは、例えば、YAGレーザー発振器またはYVO4レーザー発振器で構成され、波長1064nmのパルス状のレーザー光線を発振する。
【0025】
アーム17内には、第1の集光点位置調整手段21が配設されている。第1の集光点位置調整手段21は、例えばピエゾモータなどの駆動モータを駆動源として、ワークWの分割予定ラインに対してレーザー光線を照射しながら同時に、矢印Aで示すようにチャックテーブル4のワーク保持部4bに対してZ軸方向(垂直方向)に集光レンズ5cを移動して、集光レンズ5cによって集光されたレーザー光線の集光点位置を調節する。なお、第1の集光点位置調整手段21による集光レンズ5cのZ軸方向における移動可能範囲は、ワークW表面の高さバラつきよりも大きい。
【0026】
アーム17は、第2の集光点位置調整手段18の駆動モータ18bを駆動源として、矢印Bで示すようにチャックテーブル4のワーク保持部4bに対してZ軸方向(垂直方向)に移動する。なお、Z軸方向における移動可能範囲は、第2の集光点位置調整手段18の方が、第1の集光点位置調整手段21よりも広い(すなわち、B>A)。
【0027】
制御手段20は、CPU,ROM,RAMなどのハードウェア資源で構成されており、CPUがROMに記憶されている制御用ソフトウェアを読み出してプログラムに従って処理を実行する。制御手段20は、第1の集光点位置調整手段21、第2の集光点位置調整手段18およびレーザー照射ユニット5に対して、それぞれ制御信号を入力する。
【0028】
また、アーム17内には、チャックテーブル4に保持されたワークW表面の高さ位置を検出する高さ位置検出手段22が備えられている。続いて、この高さ位置検出手段22について、図3を参照して説明する。図3は、図2に示した光学系の一部を拡大して示す図である。図3に示す高さ位置検出手段22は、検出光学系として、検出光発光部22aと、フォトディテクター22b,22cと、シリンドリカルレンズ22dと、スリット22eと、ハーフミラー22f,22gと、ダイクロイックミラー22hと、集光レンズ5cと、を備える。
【0029】
検出光発光部22aは、レーザー光線発振手段5aから発振されるレーザー光線とは異なる周波数の検出用光線を発振する。検出光発光部22aは、例えば、CWレーザー発振器で構成され、波長635nmの検出用光線を発振する。検出光発光部22aから出射された検出用光線は、ハーフミラー22gを透過した後、ダイクロイックミラー22hおよびミラー5bによって反射し、反射した光は集光レンズ5cによってワークW上に集光する。なお、ハーフミラー22gは、検出光発光部22aから発振された検出用光線をダイクロイックミラー22h側に透過する一方、ダイクロイックミラー22h側で反射された光をハーフミラー22f側に反射する。また、ダイクロイックミラー22hは、ハーフミラー22gを透過した光をミラー5b側に反射する一方、レーザー光線発振手段5aから発振されたレーザー光線をミラー5b側に透過する。
【0030】
ハーフミラー22fは、ワークW表面で反射した検出用光線を光路Oa,Obに分光する。そして、フォトディテクター22bは、光路Oaに導かれた光すべてを受光し、受光量に応じた電圧信号を制御手段20に出力する。
【0031】
一方、フォトディテクター22cは、光路Obに導かれ、シリンドリカルレンズ22dおよびスリット22eにおいて規制された光を受光し、受光量に応じた電圧信号を制御手段20に出力する。光路Ob上に配置されたシリンドリカルレンズ22dは、ワークWで反射された検出用光線を線状に集光する。本実施の形態において、シリンドリカルレンズ22dは、Y軸方向に集光性を有する一方、Z軸方向には集光性を有さないように配置される。また、シリンドリカルレンズ22dとフォトディテクター22cとの間に位置するスリット22eは、所定幅の開口長手方向がシリンドリカルレンズ22dの集光方向と直交するように配置される。
【0032】
制御手段20における高さ位置検出手段22の検出系機能部には、フォトディテクター22b,22cにおける受光量の検出比と、ワークWの上面および集光レンズ5c間距離との関係があらかじめメモリ内に格納されている。したがって、ワークW表面で反射した検出用光線のフォトディテクター22b,22cにおける受光量の検出比に基づいて、ワークWの上面および集光レンズ5c間の距離情報が取得できる。すなわち、ワークW表面の高さ位置は、順次取得されるワークWの上面および集光レンズ5c間の距離情報が所定の一定値となるように第1の集光点位置調整手段21を駆動して集光レンズ5cをZ軸方向(垂直方向)に移動し、このときの第1の集光点位置調整手段21の駆動情報を記憶して集光レンズ5cの移動情報を取得することによって検出できる。
【0033】
続いて、レーザー加工装置1を使用したワークWのレーザー加工方法について説明する。図4および図5は、レーザー加工用プログラムに従って制御手段20によって実行されるレーザー加工方法を示す概略フローチャートである。加工に際して、まず、ワークWがチャックテーブル4に載置され、図示しない吸引源によりワーク保持部4bに吸着される。その後、ワークWを吸引保持したチャックテーブル4が撮像手段19の直下に位置付けられ、ワークWのレーザー加工すべき領域を検出するアライメント作業が実行される。すなわち、ワークWに形成された分割予定ラインが検出され、レーザー加工位置のアライメントが行われる。アライメント作業終了後、制御手段20は、ワークWの分割予定ラインに沿って高さバラつき検出処理およびレーザー加工処理を実行する。ここで、ワークWのX軸方向に配列された分割予定ラインの各ラインをLとし、加工対象となる最初のラインをL=1と規定する。
【0034】
まず、レーザー加工装置1の駆動モータ14を駆動してY軸テーブル12を移動することにより、チャックテーブル4をレーザー照射ユニット5の直下に移動する。このとき、分割予定ラインL=1を集光レンズ5cの直下に位置付け、加工対象ラインをL=1とする(ステップST1)。
【0035】
続いて、第2の集光点位置調整手段18の駆動モータ18bを駆動してアーム17を移動することにより、レーザー照射ユニット5の集光レンズ5cによって集光されるレーザー光線の集光点位置が分割予定ラインL=1上となるように調節する(ステップST2)。
【0036】
続いて、駆動モータ10を駆動してX軸テーブル8を移動することにより、チャックテーブル4をX軸方向に所定の速度で移動する。これにより、チャックテーブル4のワーク保持部4bに吸引保持されたワークWは、分割予定ラインL=1の先頭からX軸方向に所定の速度で加工送りされる(ステップST3)。
【0037】
ステップST3と同時に、高さ位置検出手段22の検出光発光部22aから検出用光線を発振し、集光レンズ5cによって集光して分割予定ラインL=1に沿って照射する。そして、ワークW表面で反射した検出用光線をフォトディテクター22b,22cによって検出し、受光量の検出比を取得する(ステップST4)。
【0038】
続いて、ステップST4で取得した受光量の検出比があらかじめ設定された所定の一定値であるか否か、より具体的には、フォトディテクター22cで検出される反射光の光量が一定値であるか否かを判定する(ステップST5)。すなわち、フォトディテクター22cで検出される反射光の光量が、ワークW表面のうねりの影響を受けて変動するのに対し、フォトディテクター22bで検出される反射光の光量は、その影響を受けることはない。ステップST4においては、フォトディテクター22cで検出される反射光の光量が一定値であるか否かを判定することにより、ワークW表面で反射した反射光の受光量の検出比が一定であるかを判定している。
【0039】
ワークW表面のうねりが原因となりフォトディテクター22cで検出される反射光の光量に変動が生じているため、取得される受光量の検出比が所定の一定値に一致しない場合には(ステップST5:No)、第1の集光点位置調整手段21を駆動して、反射光の光量の変動を打ち消すように集光レンズ5cをZ軸方向(垂直方向)に移動する(ステップST6)。そして、再びステップST4に戻り、フォトディテクター22b,22cによって検出される受光量の検出比が所定の一定値に一致するまでステップST4以降の処理を繰り返す。
【0040】
このように第1の集光点位置調整手段21を駆動しながら分割予定ラインL=1全体の検出処理が終わったならば、X軸方向の各座標位置における第1の集光点位置調整手段21の駆動情報を、第1の集光点位置調整手段21を駆動することによるフィードバック制御動作も含めて、制御手段20におけるメモリに記憶させ、記憶された第1の集光点位置調整手段21の駆動情報より集光レンズ5cの移動情報を取得する。そして、この集光レンズ5cの移動情報に基づいて、ワークWの分割予定ラインL=1上における各座標位置での表面高さ位置を測定する(ステップST7)。なお、必要であれば、X軸方向の各座標位置における第1の集光点位置調整手段21の駆動情報に加えて、フォトディテクター22b、22cによって検出された受光量の検出比情報もワークWの分割予定ラインL=1上における各座標位置での表面高さ位置を測定するのに用いてもよい。
【0041】
続いて、ステップST7の測定処理において、ワークWの分割予定ラインL=1において検出できない表面高さ位置が存在しないか否かを判定する(ステップST8)。
【0042】
表面高さ位置が検出できない座標位置が存在する場合としては、図6(a)に示すように、ワークWの分割予定ラインL=1上における各座標位置での表面高さ位置の分布を示す高さバラつきが発生した場合が挙げられる。図6は、ワークWの分割予定ラインL上における高さバラつきの最上位置が、第1の集光点位置調整手段21の移動可能範囲の上限値を超えた場合についての説明図である。図6(a)においては、ワークWの分割予定ラインL=1上における高さバラつきの最下位置から最上位置までの幅(Z2)が第1の集光点位置調整手段21の移動可能範囲(Z1)より小さいにもかかわらず(すなわち、Z1>Z2)、ワークWの分割予定ラインL=1上における高さバラつきの最上位置が、第1の集光点位置調整手段21の移動可能範囲の上限値を超えている場合について示している(ステップST8:No,ステップST9:Yes)。この場合には、ワークWの分割予定ラインL=1上における高さバラつきの最下位置を記憶し(ステップST10)、その後、図6(b)に示すように、第2の集光点位置調整手段18を駆動して、第1の集光点位置調整手段21の移動可能範囲の下限値が、ワークWの分割予定ラインL=1の高さバラつきの最下位置よりΔhだけ下側となるように位置付ける(ステップST11)。そして、再びステップST3に戻り、すべての座標位置で表面高さ位置が検出できるまでステップST3以降の処理を繰り返す。なお、図6においては、縦軸にワークWの表面高さ位置を示し、横軸に分割予定ラインL上における座標位置を示している。また、図6において、曲線Cは、分割予定ラインL上におけるうねりに対応する高さバラつきを示している。以下に示す図7および図8においても同様である。
【0043】
また、表面高さ位置が検出できない座標位置が存在する別の場合としては、図7(a)に示すように、ワークWの分割予定ラインL=1上における各座標位置での表面高さ位置の分布を示す高さバラつきが発生した場合が挙げられる。図7は、ワークWの分割予定ラインL上における高さバラつきの最下位置が、第1の集光点位置調整手段21の移動可能範囲の下限値を超えた場合についての説明図である。図7(a)においては、ワークWの分割予定ラインL=1上における高さバラつきの最下位置から最上位置までの幅(Z2)が第1の集光点位置調整手段21の移動可能範囲(Z1)より小さいにもかかわらず(すなわち、Z1>Z2)、ワークWの分割予定ラインL=1上における高さバラつきの最下位置が、第1の集光点位置調整手段21の移動可能範囲の下限値を超えている場合について示している(ステップST8:No,ステップST9:No)。この場合には、ワークWの分割予定ラインL=1上における高さバラつきの最上位置を記憶し(ステップST12)、その後、図7(b)に示すように、第2の集光点位置調整手段18を駆動して、第1の集光点位置調整手段21の移動可能範囲の上限値が、ワークWの分割予定ラインL=1の高さバラつきの最上位置よりΔhだけ上側となるように位置付ける(ステップST13)。そして、再びステップST3に戻り、すべての座標位置で表面高さ位置が検出できるまでステップST3以降の処理を繰り返す。
【0044】
そして、ワークWの分割予定ラインL=1上における高さバラつきの最下位置から最上位置までの幅(Z2)がすべて第1の集光点位置調整手段21の移動可能範囲(Z1)に存在することにより、すべての座標位置で表面高さ位置が検出できる状態となった場合は(ステップST8:Yes)、駆動モータ10を駆動してX軸テーブル8を移動することにより、チャックテーブル4をX軸方向に所定の速度で移動して、分割予定ラインL=1の先頭からX軸方向に所定の速度で加工送りしながら、レーザー照射ユニット5のレーザー光線発振手段5aからレーザー光線を発振し、集光レンズ5cによって集光して分割予定ラインL=1に沿って照射する。このとき、高さ位置検出手段22により取得された集光レンズ5cの移動情報に基づいて、第1の集光点位置調整手段21を駆動して集光レンズ5cの集光点位置を調整しながらレーザー光線を照射する(ステップST14)。すなわち、集光レンズ5cの集光点位置をワークWの分割予定ラインL=1上の高さバラつきに追従させることにより、レーザー光線は常にワークW表面から所定深さに集光され、これによりワークW表面から所定深さに分割予定ラインL=1に沿った改質層が形成される。なお、ステップST15実行中は、第2の集光点位置調整手段18は移動させず、その高さ位置は固定される。
【0045】
なお、高さ位置検出手段22によるワークWの分割予定ラインL=1の高さバラつきの検出動作において、集光レンズ5cの移動情報に変動が生じた場合の第1の集光点位置調整手段21および集光レンズ5cの追従動作にはタイムラグが生じる。そのため、レーザー加工時における集光レンズ5cの移動情報に基づく第1の集光点位置調整手段21の駆動に際しては、このタイムラグ分を考慮して補正してもよい。
【0046】
このようなレーザー加工を、ワークWの分割予定ラインL=1の加工が終了するまで繰り返す(ステップST15:No)。ワークWの分割予定ラインL=1のレーザー加工が終了した場合は(ステップST15:Yes)、加工対象ラインL=1が最終ラインか否かを判定する(ステップST16)。
【0047】
加工対象ラインL=1が最終ラインでない場合は(ステップST16:No)、次にワークWの分割予定ラインL=1上における高さバラつきの最上位置および最下位置から算出される高さバラつきの中央位置が、第1の集光点位置調整手段21の移動可能範囲の中央値である加工範囲基準値に一致するか否かを判定する(ステップST17)。分割予定ラインL=1上における高さバラつきの中央位置が、第1の集光点位置調整手段21の加工範囲基準値に一致する場合には(ステップST17:Yes)、加工対象ラインLを+1インクリメントして次の分割予定ラインL=L+1に加工対象を移し(ステップST19)、ステップST3以降の処理を繰り返す。
【0048】
図8(a)に示すように、ワークWの分割予定ラインL=N上における高さバラつきの中央位置が、第1の集光点位置調整手段21の加工範囲基準値に一致せず、高さバラつきの中央位置が加工範囲基準値より大きさZ3だけ上側に存在する場合、次の分割予定ラインL=N+1上における高さバラつきを測定した際に、高さバラつきの最上位置が第1の集光点位置調整手段21の移動可能範囲Z1の上限値を超える傾向がある。この場合、図4に示したフローチャートに従って、再度分割予定ラインL=N+1上における高さバラつきを測定する必要が生じる。
【0049】
そこで、分割予定ラインL=N上における高さバラつきの中央位置が、第1の集光点位置調整手段21の加工範囲基準値に一致しない場合には(ステップST17:No)、図8(b)に示すように、ワークWの分割予定ラインL=N上における高さバラつきの中央位置が、第1の集光点位置調整手段21の加工範囲基準値に一致するように、第2の集光点位置調整手段18を駆動して、第1の集光点位置調整手段21の移動可能範囲の下限値および上限値がそれぞれ大きさZ3だけ上側に移動するように調節する。これに伴い、集光レンズ5cの集光点位置も調節される(ステップST18)。このように調節することで、次の分割予定ラインL=N+1上における高さバラつきを測定した際に、ワークWの分割予定ラインL=N+1上における高さバラつきの最下位置から最上位置までの幅(Z2)が、第1の集光点位置調整手段21の移動可能範囲(Z1)から逸脱する確率を低減することが可能となる。
【0050】
ステップST18における調整後、加工対象ラインLを+1インクリメントして次の分割予定ラインL=L+1に加工対象を移し(ステップST19)、ステップST3以降の処理を繰り返す。
【0051】
加工対象ラインLが最終ラインである場合は(ステップST16:Yes)、ワークWのX軸方向に配列された分割予定ラインについてのレーザー加工処理を終了する。同様に、ワークWのY軸方向に配列された分割予定ラインに沿って高さバラつき検出処理およびレーザー加工処理を実行するため、チャックテーブル4を90°回転して処理を開始する。
【0052】
以上説明したように、本実施の形態に係るレーザー加工装置1によれば、高さ位置検出手段22によって検出された加工対象である分割予定ライン上における高さバラつきの最上位置および最下位置から算出される中央位置が、第1の集光点位置調整手段21が移動可能な所定量の中央値である加工範囲基準値に一致しない場合は、次に加工する分割予定ラインの高さバラつきを測定する前に、高さバラつきの中央位置が加工範囲基準値に一致するように第2の集光点位置調整手段18によって第1の集光点位置調整手段21の垂直方向における位置を調整することにより、次に加工する分割予定ラインを含むワークW表面の高さバラつきが高さ位置検出手段22の測定範囲から逸脱する確率を低減できる構成となっている。そのため、ワークW表面の高さバラつきを測定できずに検出対象となる分割予定ラインを再度測定する事態の発生頻度を低減できるので、ワークW表面の高さバラつきの測定に起因する生産性の低下を抑制できるレーザー加工装置を提供することが可能となる。
【0053】
なお、本発明は上記実施の形態に限定されず、さまざまに変更して実施可能である。上記実施の形態において、添付図面に図示されている大きさや形状などについては、これに限定されず、本発明の効果を発揮する範囲内で適宜変更が可能である。その他、本発明の目的の範囲を逸脱しない限りにおいて適宜変更して実施可能である。
【0054】
例えば、上記実施の形態においては、レーザー加工工程のステップST18においてワークWの加工対象分割予定ライン上における高さバラつきの中央位置が加工範囲基準値に一致するか否かを判定する構成としたが、ここでの一致とは、完全一致に限られず、ある程度の幅を許容する構成とすることも可能である。一致するか否かの判定において、ある程度の幅を許容することにより、高さバラつきの中央位置が加工範囲基準値に一致するように第2の集光点位置調整によって集光点位置を調整するステップST19を実行する頻度を低減できる。したがって、高さバラつきの測定に起因する生産性の低下をより抑制することが可能となる。
【産業上の利用可能性】
【0055】
本発明は、半導体ウェーハなどのワーク(被加工物)に対してレーザー加工を施すレーザー加工装置に適用可能である。
【符号の説明】
【0056】
1 レーザー加工装置
2 支持テープ
3 環状フレーム
4 チャックテーブル
4a テーブル支持部
4b ワーク保持部
4c フレーム保持部
5a レーザー光線発振手段(発振器)
5b ミラー
5c 集光レンズ
6 加工台
7a,7b X軸ガイドレール
8 X軸テーブル
9 ボールねじ
10 駆動モータ
11a,11b Y軸ガイドレール
12 Y軸テーブル
13 ボールねじ
14 駆動モータ
15 支柱部
17 アーム
18 第2の集光点位置調整手段
18a ボールねじ
18b 駆動モータ
19 撮像手段
20 制御手段
21 第1の集光点位置調整手段
22 高さ位置検出手段
22a 検出光発光部
22b,22c フォトディテクター
22d シリンドリカルレンズ
22e スリット
22f,22g ハーフミラー
22h ダイクロイックミラー

【特許請求の範囲】
【請求項1】
分割予定ラインが設定されたワークを保持する保持手段と、
前記保持手段に保持された前記ワークにレーザー光線を発振する発振器と、前記発振器によって発振されたレーザー光線を集光する集光レンズと、を有する加工手段と、
前記ワークの分割予定ライン上の高さバラつきよりも大きな範囲に前記集光レンズを前記保持手段の保持面に対して垂直方向に移動可能であり、前記分割予定ラインに対して前記レーザー光線を照射しながら、前記集光レンズを垂直方向に所定量移動させて前記レーザー光線の集光点位置を調整する第1の集光点位置調整手段と、
前記垂直方向における移動範囲が前記第1の集光点位置調整手段よりも広く、前記分割予定ラインに対して前記レーザー光線を照射する前に、前記第1の集光点位置調整手段を垂直方向に移動させることによって前記集光レンズによって集光される前記レーザー光線の集光点位置を適正な位置に位置付けて、前記分割予定ラインに対して前記レーザー光線を照射している間は垂直方向における前記第1の集光点位置調整手段の位置を固定した状態に保つ第2の集光点位置調整手段と、
検出用光線を前記集光レンズによって集光して前記保持手段に保持された前記ワークに照射し、前記ワークの上面で反射した反射光の光量が一定になるように前記第1の集光点位置調整手段によって前記集光レンズを垂直方向に移動させ、前記集光レンズのレンズ移動情報を取得することにより前記高さバラつきを測定する高さ位置検出手段と、
前記高さ位置検出手段で得られた前記レンズ移動情報に基づいて、前記第1の集光点位置調整手段と前記第2の集光点位置調整手段と前記加工手段とを制御する制御手段と、
を有するレーザー加工装置であって、
前記制御手段は、前記高さ位置検出手段によって前記高さバラつきを測定した際に、前記高さ位置検出手段によって検出された前記高さバラつきの最上位置および最下位置から算出される中央位置が、前記第1の集光点位置調整手段が移動可能な所定量の中央値である加工範囲基準値に一致しない場合は、次に加工する前記分割予定ラインの高さバラつきを測定する前に、前記高さバラつきの中央位置が前記加工範囲基準値に一致するように前記第2の集光点位置調整手段によって前記第1の集光点位置調整手段の垂直方向における位置を調整するレーザー加工装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate


【公開番号】特開2012−121031(P2012−121031A)
【公開日】平成24年6月28日(2012.6.28)
【国際特許分類】
【出願番号】特願2010−271674(P2010−271674)
【出願日】平成22年12月6日(2010.12.6)
【出願人】(000134051)株式会社ディスコ (2,397)
【Fターム(参考)】