説明

光スイッチ及び光スイッチを使用した論理ゲート

光スイッチは、可変断面積を有する光通路と、光通路に関連付けられた活性化光応答型圧電素子であって、入射する活性化光に応答して形状が変化するように動作する活性化光応答型圧電素子と、該圧電素子に動作的に結合された、活性化光応答型性を改善するための導電素子とを備えており、活性化光応答型圧電素子は光通路に結合され、活性化光応答型圧電素子は、圧電素子の形状が変化すると光通路の可変断面積が十分に変化し、それにより光通路に沿う光の通過が制御されるように動作する。また、光スイッチを使用した論理ゲート及び論理機能が記述される。

【発明の詳細な説明】
【技術分野】
【0001】
(関連出願の参照)
以下の関連出願が参照されており、それらの開示はすべて参照により本明細書に組み込まれている。
【0002】
2007年4月12日出願の「LIGHT ACTIVATED OPTICAL SWITCH THAT INCLUDES A PIEZOELECTRIC ELEMENT WITH LAYERS OF PIEZOELECTRIC MATERIAL HAVING DIFFERENT PIEZOELECTRIC CHARACTERISTICS(異なる圧電特性を有する圧電材料の層を備えた圧電素子を備えた光活性化光スイッチ)」という名称の米国特許出願第11/734747号、
2007年4月12日出願の「LIGHT ACTIVATED OPTICAL SWITCH THAT INCLUDES A PIEZOELECTRIC ELEMENT AND A CONDUCTIVE LAYER(圧電素子及び導電層を備えた光活性化光スイッチ)」という名称の米国特許出願第11/734750号、
2007年4月12日出願の「LOGIC GATES FOR OPTICAL SIGNALS(光信号のための論理ゲート)」という名称の米国仮特許出願第60/911469号、及び
米国特許第7283698号の継続出願である2007年10月15日出願の米国特許出願第11/974483号。
【0003】
以下の出願の優先権が、ここに、37CFR1.78(a)(1)、(a)(4)及び(5)(i)の下に主張されている。
2007年4月12日出願の「LIGHT ACTIVATED OPTICAL SWITCH THAT INCLUDES A PIEZOELECTRIC ELEMENT WITH LAYERS OF PIEZOELECTRIC MATERIAL HAVING DIFFERENT PIEZOELECTRIC CHARACTERISTICS(異なる圧電特性を有する圧電材料の層を備えた圧電素子を備えた光活性化光スイッチ)」という名称の米国特許出願第11/734747号、
2007年4月12日出願の「LIGHT ACTIVATED OPTICAL SWITCH THAT INCLUDES A PIEZOELECTRIC ELEMENT AND A CONDUCTIVE LAYER(圧電素子及び導電層を備えた光活性化光スイッチ)」という名称の米国特許出願第11/734750号、及び
2007年4月12日出願の「LOGIC GATES FOR OPTICAL SIGNALS(光信号のための論理ゲート)」という名称の米国仮特許出願第60/911469号。
【0004】
本発明は一般に光活性化スイッチ及び論理ゲートに関する。
【背景技術】
【0005】
本発明の発明者ギャリ・ニール・プーベイ(Gary Neal Poovey)博士の米国特許であって参照によりその開示が本明細書に組み込まれる米国特許第7072536号及び7283698号は、以下に列記されている、同じく参照によりその開示が本明細書に組み込まれる公報と共に、現時点における最新技術、即ち、
米国特許第6,594,411号、同第4,961,618号、同第5,414,789号、同第2,936,380号、同第3,680,080号、同第3,965,388号、同第3,995,311号、同第4,023,887号、同第4,128,300号、同第4,262,992号、同第4,689,793号、同第4,764,889号、同第4,978,842号、同第5,078,464号、同第5,109,156号、同第5,146,078号、同第5,168,382号、同第6,005,791号、同第6,609,840号、同第7,263,262号、同第3,987,310号、同第4,053,794号、同第6,757,459号、同第6,804,427号、同第6,320,994号、同第6,487,333号、同第6,178,033号、同第5,425,115号、同第6,075,512号、同第6,697,548号、同第6,594,411号、同第5,703,975号、同第6,320,994号、同第5,134,946号、同第7,283,695号、同第5,414,789号、同第4,961,618号、同第2,936,380号、同第3,680,080号、同第3,965,388号、同第3,995,311号、同第4,023,887号、同第4,128,300号、同第3,995,311号、同第4,023,887号、同第4,128,300号、同第4,262,992号、同第4,689,793号、同第4,764,889号、同第4,961,618号、同第4,978,842号、同第5,078,464号、同第5,109,156号、同第5,146,078号、同第5,168,382号、同第6,005,791号、同第6,609,840号、同第7,263,262号、同第6,151,428号、同第5,999,284号、同第5,315,422号、同第5,144,375号、同第5,101,456号、同第4,932,739号、同第4,701,030号、同第4,630,898号、同第3,987,310及び4,053,794号、及び
米国特許出願公告第2005/0129351号、同第2006/0045407号、同第2004/0091201号及び同第2004/0037708号、及び
Alexei Grigorievらの「Subnanosecond piezoelectric x−ray switch(サブナノ秒圧電x−線スイッチ)」(Applied Physics Letters89、021109、2006年)
を表しているものと思われる。
【発明の概要】
【発明が解決しようとする課題】
【0006】
本発明の目的は、改良型光スイッチ、論理ゲート及び論理機能を提供することである。
【課題を解決するための手段】
【0007】
したがって、本発明の好ましい実施形態によれば、
可変断面積を有する光通路と、
光通路に結合された活性化光応答型圧電素子であって、入射する活性化光に応答してその形状が変化するように動作する活性化光応答型圧電素子と、
圧電素子に動作結合された、圧電素子の活性化光応答性を改善するための導電素子と
を備えた光スイッチであって、活性化光応答型圧電素子が光通路に結合され、活性化光応答型圧電素子が、圧電素子の形状の変化により光通路の可変断面積を十分に変化させ、光通路に沿った光の通過を制御するように動作する光スイッチが提供される。
【0008】
光通路、圧電素子及び導電素子は、第1の範囲の閾値レベル内の活性化光が圧電素子に入射すると、第1の範囲の波長の光の光通路の通過が阻止され、第1の範囲の閾値レベルの範囲外である第2の範囲の閾値レベル内の活性化光が圧電素子に入射すると、第1の範囲の波長の光の光通路の通過が許容されるように構成されて動作することが好ましい。
【0009】
本発明の好ましい実施形態によれば、導電素子は、圧電素子の表面に沿って広がる導電材料の層を備えている。
圧電素子は、異なる圧電特性を有する圧電材料の少なくとも2つの層を備えていることが好ましい。
【0010】
本発明の好ましい実施形態によれば、圧電材料の少なくとも2つの層は、異なる結晶配向を有する。
導電素子は、圧電素子の2つの層の間に配置されることが好ましい。
【0011】
また、本発明の好ましい実施形態によれば、活性化光及び信号光を光通路に導くように動作する光結合器が提供され、活性化光の少なくとも1つの特性が、信号光に通路を通過させるかどうかを制御する。
【0012】
更に、本発明の好ましい実施形態によれば、
可変断面積を有する光通路と、
光通路に結合された活性化光応答型圧電素子であって、入射する活性化光に応答してその形状が変化するように動作する活性化光応答型圧電素子と
を備える光スイッチであって、活性化光応答型圧電素子が、異なる圧電特性を有する圧電材料の少なくとも2つの層を備え、圧電素子が光通路に関連付けられ、圧電素子の形状の変化によって光通路の可変断面積を十分に変化させ、光通路に沿った光の通過が制御されるように動作する光スイッチが提供される。
【0013】
光通路及び圧電素子は、第1の範囲の閾値レベル内の活性化光が圧電素子に入射すると、第1の範囲の波長の光の光通路の通過が阻止され、第1の範囲の閾値レベルの範囲外である第2の範囲の閾値レベル内の活性化光が圧電素子に入射すると、第1の範囲の波長の光の光通路の通過が許容されるように構成されて動作することが好ましい。
【0014】
また、本発明の好ましい実施形態によれば、光によって駆動される少なくとも1つの光スイッチを備えたノット機能、アンド機能、オア機能、ナンド機能及びノア機能のうちの少なくとも1つを有する、少なくとも1つのゲートを備えた論理ゲートが提供され、少なくとも1つの光スイッチは、
可変断面積を有する信号光通路と、
光通路に結合された活性化光応答型圧電素子であって、入射する活性化光に応答してその形状が変化するように動作する活性化光応答型圧電素子と
を備えており、活性化光応答型圧電素子は光通路に関連付けられ、活性化光応答型圧電素子は、圧電素子の形状の変化によって光の可変断面積を十分に変化させ、光通路に沿った信号光の通過が制御されるように動作する。
【0015】
また、論理ゲートは、少なくとも1つの光スイッチに活性化光を供給する光通路であって、少なくとも1つの光スイッチにディジタル情報を伝達し、少なくとも1つの光スイッチからディジタル情報を伝達する信号光を運ぶ光通路を備えることが好ましい。
【0016】
本発明の好ましい実施形態によれば、信号光は、活性化光の波長よりも長い波長を有している。
信号光は、活性化光の波長の約2倍の波長を有することが好ましい。
【0017】
本発明の好ましい実施形態によれば、信号光は1500nmの波長を有し、活性化光は約750nmの波長を有する。
本発明の好ましい実施形態によれば、更に、ノット機能を提供する論理ゲートが提供され、少なくとも1つの光スイッチは単一の光スイッチを備えており、信号光は活性化光の波長の約2倍の波長を有している。
【0018】
本発明の好ましい実施形態によれば、更に、アンド機能を提供する論理ゲートが提供され、少なくとも1つの光スイッチは単一の光スイッチを備えており、信号光は活性化光の波長よりも長い波長を有しており、論理ゲートは、更に、
信号光を受け取る第1及び第2の論理入力と、
第1の論理入力で受け取った信号光の第1の部分を受け取る第1の光通路と、
第1の論理入力で受け取った信号光の第2の部分を受け取る第2の光通路と、
第2の論理入力で受け取った信号光の第1の部分を受け取る第3の光通路と、
第2の論理入力で受け取った信号光の第2の部分を受け取る第4の光通路と、
第2の光通路に沿った光の波長を活性化光の波長まで短くするように動作する第1の波長修正器と、
第4の光通路に沿った光の波長を活性化光の波長まで短くするように動作する第2の波長修正器と、
第2の光通路に沿った光の位相を活性化光の位相に整合させるように動作する第1の位相整合器と、
第4の光通路に沿った光の位相を活性化光に整合させる第2の位相整合器と、
第2の光通路に沿って波長が短くされ位相整合された光と第4の光通路に沿って波長が短くされ位相整合された光とを互いに180度だけ位相外れにするように動作する光移相器と、
を備え、第1及び第3の光通路に沿った光が、光スイッチへの信号光入力として供給され、
第2及び第4の光通路に沿って波長が短くされ位相整合された光が、追加の活性化光と共に活性化光として光スイッチに供給される。
【0019】
本発明の好ましい実施形態によれば、更に、ナンド機能を提供する論理ゲートが提供され、第1の光スイッチは、第1の光スイッチ及び第2の光スイッチを備えており、信号光は活性化光の波長よりも長い波長を有しており、論理ゲートは、更に、
信号光入力を受け取る第1及び第2の論理入力と、
第1の入力の信号光の波長を活性化光の波長まで短くするように動作する第1の波長修正器と、
第2の入力の信号光の波長を活性化光の波長まで短くするように動作する第2の波長修正器と、
第1の光スイッチからの信号光の波長を短くするように動作する第3の波長修正器と、
第1の波長修正器からの光の一部を第1の光吸収器に供給する第1の光通路と、
第1の波長修正器からの光の一部を第1の光スイッチに供給する第2の光通路と、
第2の波長修正器からの光の一部を第2の光吸収器に供給する第3の光通路と、
第2の波長修正器からの光の一部を第1の光スイッチに供給する第4の光通路と、
第1の光スイッチからの信号光を第3の波長修正器に供給する第5の光通路と、
第3の波長修正器からの光波長修正光を活性化光として第2の光スイッチに供給する第6の光通路と
を備えている。
【0020】
本発明の好ましい実施形態によれば、更に、オア機能を提供する論理ゲートが提供され、少なくとも1つの光スイッチは単一の光スイッチを備えており、信号光は活性化光の波長よりも長い波長を有しており、論理ゲートは、更に、
信号光入力を受け取る第1及び第2の論理入力と、
第1の光入力に沿った光の波長を活性化光の波長まで短くするように動作する第1の波長修正器と、
第2の光入力に沿った光の波長を活性化光の波長まで短くするように動作する第2の波長修正器と、
第1の波長修正器からの波長修正光の位相を駆動光の位相に整合させるように動作する第1の位相整合器と、
第2の波長修正器からの光の位相を駆動光の位相に整合させるように動作する第2の位相整合器と、
第1の位相整合器からの光の一部を第1の光吸収器に供給する第1の光通路と、
第2の位相整合器からの光の一部を第2の光吸収器に供給する第2の光通路と、
第1の光移相器と、
第2の光移相器と、
第1の位相整合器からの光の一部を第1の光移相器に供給し、それにより第1の位相整合器からの光を活性化光に対して位相外れにする第3の光通路と、
第2の位相整合器からの光の一部を第2の光移相器に供給し、それにより第1の位相整合器からの光を供給活性化光に対して位相外れにする第4の光通路と、
第1の光移相器からの光を光スイッチに供給する第5の光通路と、
第2の光移相器からの光を光スイッチに供給する第6の光通路と
を備え、光スイッチは、第5及び第6の光通路から活性化光及び信号光を受け取る。
【0021】
本発明の好ましい実施形態によれば、更に、オア機能を提供する論理ゲートが提供され、少なくとも1つの光スイッチは第1及び第2の光スイッチを備えており、信号光は活性化光の波長よりも長い波長を有しており、論理ゲートは、更に、
信号光入力を受け取る第1及び第2の論理入力と、
第1の光入力に沿った光の波長を活性化光の波長まで短くするように動作する第1の波長修正器と、
第2の光入力に沿った光の波長を活性化光の波長まで短くするように動作する第2の波長修正器と、
第1及び第2の波長修正器からの波長修正光を供給する第1及び第2の光通路と、
第1の波長修正器及び第2の波長修正器からそれぞれ第1及び第2の光通路を介して光を受け取る光出力制限器であって、第1の波長修正器及び第2の波長修正器からの光出力を所定の光出力レベルに維持するように動作する光出力制限器と、
光出力制限器からの光出力制限光を第1の光スイッチに供給する第3の光通路と、
第1の光スイッチから信号光を受け取る第3の波長修正器であって、光の波長を活性化光の波長まで短くするように動作する第3の波長修正器と、
第3の波長修正器からの光を第2の光スイッチに供給する第4の光通路と
を備える。
【0022】
本発明の好ましい実施形態によれば、更に、オア機能を提供する論理ゲートが提供され、少なくとも1つの光スイッチは単一の光スイッチを備えており、信号光は活性化光の波長よりも長い波長を有しており、論理ゲートは、更に、
信号光を受け取る第1及び第2の論理入力と、
第1の論理入力で受け取った信号光の第1の部分を受け取る第1の光通路と、
第1の論理入力で受け取った信号光の第2の部分を受け取る第2の光通路と、
第2の論理入力で受け取った信号光の第1の部分を受け取る第3の光通路と、
第2の論理入力で受け取った信号光の第2の部分を受け取る第4の光通路と、
第2の光通路に沿った光の波長を活性化光の波長まで短くするように動作する第1の波長修正器と、
第4の光通路に沿った光の波長を活性化光の波長まで短くするように動作する第2の波長修正器と、
第1の波長修正器からの波長修正光を第2の波長修正器からの光に対して180度だけ位相外れにするように動作する光移相器と
を備えており、光スイッチは、第1及び第3の光通路、第2の波長修正器及び光移相器から光を受け取る。
【0023】
更に、少なくとも1つの光スイッチが上で説明したように構成され、論理機能が上で説明した1つ又は複数の論理ゲートを使用する論理ゲートが提供される。
また、本発明の好ましい実施形態によれば、
信号光を誘導するように構成された信号チャネルと、
信号チャネルに隣接する圧電素子と、
圧電素子に隣接する導電層と
を備え、圧電素子に活性化光を印加することによって信号チャネルを通る信号光の通過が制御され、圧電素子に印加される電界が活性化光に応答して導電層によって強められる光スイッチが提供される。
【0024】
導電層は、圧電素子の表面に付着されることが好ましい。
本発明の好ましい実施形態によれば、圧電素子に活性化光を印加し、信号光が信号チャネルを通過することができないように圧電素子の形状を変化させる。
【0025】
信号チャネルは、圧縮性材料が充填されたチャンバを備えていることが好ましい。
圧電素子はチャンバの一部を形成していることが好ましい。
本発明の好ましい実施形態によれば、圧電素子は、異なる圧電特性を有する少なくとも2つの層を備えている。
【0026】
導電層は、圧電素子の2つの層の間に付着されることが好ましい。
本発明の好ましい実施形態によれば、更に、光スイッチを動作させるための方法であって、
圧電素子及び圧電素子に隣接する少なくとも1つの導電層を備えた光スイッチに信号光を印加するステップと、
光スイッチの状態を変化させるために圧電素子に活性化光を印加するステップと
を含み、圧電素子に印加される電界が、印加される活性化光に応答して導電層によって強められる方法が提供される。
【0027】
圧電素子に活性化光を印加するステップによって、信号光が光スイッチを通過することができないように圧電素子の形状を変化させることが好ましい。
活性化光を印加するステップには、互いに位相が外れた2つの光信号を圧電素子に印加するステップと、これらの光信号のうちの一方を除去し、他方の光信号を活性化光として残すステップが含まれていることが好ましい。
【0028】
更に、光スイッチを動作させるための方法であって、
少なくとも1つの導電層に隣接する圧電素子に隣接する信号チャネルに信号光を印加するステップと、
圧電素子に活性化光を印加して、信号光の信号チャネルの通過を阻止するように圧電素子の形状を変化させるステップと
を含み、圧電素子に印加される電界が、印加される活性化光に応答して導電層によって強められる方法が提供される。
【0029】
更に、
信号光を誘導するように構成された信号チャネルと、
信号チャネルに隣接する圧電素子と、
圧電素子に隣接する導電層と、
圧電素子に活性化光を印加し、信号光の信号チャネルの通過が阻止されるように圧電素子の形状を変化させる手段と
を備え、圧電素子に印加される電界が、印加される活性化光に応答して導電層によって強められる光スイッチが提供される。
【0030】
更に、光スイッチを動作させるための方法であって、
圧電素子を備えた光スイッチに信号光を印加するステップであって、圧電素子が、異なる圧電特性を有する圧電材料の少なくとも2つの層を備えるステップと、
光スイッチの状態を変化させるように圧電素子に活性化光を印加するステップと
を含む方法が提供される。
【0031】
圧電素子に活性化光を印加するステップによって、信号光が光スイッチを通過することができないように圧電素子の形状を変化させることが好ましい。
圧電素子の形状を変化させることによって光スイッチの信号チャネルの寸法を変化させることが好ましい。
【0032】
本発明の好ましい実施形態によれば、活性化光を印加するステップには、互いに位相が外れた2つの光信号を圧電素子に印加するステップと、これらの光信号のうちの一方を除去し、他方の光信号を活性化光として残すステップが含まれている。
【0033】
本発明の好ましい実施形態によれば、圧電素子に印加される電界が、印加される活性化光に応答して、圧電素子に隣接している導電層によって強められる。
また、
信号光を誘導するように構成された信号チャネルと、
信号チャネルに隣接する圧電素子であって、異なる圧電特性を有する圧電材料の少なくとも2つの層を備えた圧電素子と
を備え、圧電素子に活性化光を印加することによって信号チャネルを通る信号光の通過が制御される光スイッチが提供される。
【0034】
圧電素子に活性化光を印加することによって、信号光が信号チャネルを通過することができないように圧電素子の形状を変化させることが好ましい。
また、光スイッチを動作させるための方法であって、
信号チャネルに信号光を印加するステップであって、信号チャネルが、異なる圧電特性を有する圧電材料の少なくとも2つの層を有する圧電素子に隣接するステップと、
圧電素子に活性化光を印加して、信号光の信号チャネルの通過が阻止されるように圧電素子の形状を変化させるステップと
を含む方法が提供される。
【0035】
更に、
信号光を誘導するように構成された信号チャネルと、
信号チャネルに隣接する圧電素子であって、異なる圧電特性を有する少なくとも2つの異なる層を備えた圧電素子と、
圧電素子に活性化光を印加して、信号光の信号チャネルの通過が阻止されるように圧電素子の形状を変化させる手段と
を備えた光スイッチが提供される。
【0036】
本発明については、図面を参照して行う以下の詳細な説明からより完全に理解され、且つ、認識されよう。
【図面の簡単な説明】
【0037】
【図1A】信号チャネル及び圧電素子を備えた、活性化光によって制御される光スイッチを示す図である。
【図1B】図1Aの圧電素子であって、圧電素子に活性化光を印加することによって得られる活性状態の圧電素子を示す図である。
【図2A】図1Aの線IIA−IIAに沿って取った、圧電素子が非活性状態にある場合の図1Aの信号チャネル及び圧電素子の横断面図である。
【図2B】図1Bの線IIB−IIBに沿って取った、圧電素子が活性状態にある場合の図1Bの信号チャネル及び圧電素子の横断面図である。
【図3】信号減衰対信号チャネルの寸法を示すグラフである。
【図4A】信号光の波長より短い波長を有する活性化光を印加するステップを含む、光スイッチの状態を変化させるための技法を示す図である。
【図4B】信号光の波長より短い波長を有する活性化光を印加するステップを含む、光スイッチの状態を変化させるための技法を示す図である。
【図5A】圧電素子に活性化光を印加することが、互いに位相が外れた2つの光信号を提供し、次いでこれらの光信号のうちの一方を除去し、他方の光信号を活性化光として残すことを含む、光スイッチの状態を変化させるための技法を示す図である。
【図5B】圧電素子に活性化光を印加することが、互いに位相が外れた2つの光信号を提供し、次いでこれらの光信号のうちの一方を除去し、他方の光信号を活性化光として残すことを含む、光スイッチの状態を変化させるための技法を示す図である。
【図6A】信号チャネル、圧電素子及び圧電素子に隣接する導電層を備えた光活性型光スイッチの一つの実施形態を示す図である。
【図6B】図6Aの圧電素子であって、圧電素子に活性化光を印加することによって得られる活性状態にある圧電素子を示す図である。
【図7】導電層の電子に対する光の電界の作用を示す図である。
【図8】図1A〜図7を参照して上で説明した光活性型光スイッチを備えた光スイッチシステムを示す図である。
【図9】光スイッチ並びに信号光及び活性化光を同じ信号チャネルに結合するために使用される光結合器の一つの実施形態を示す図である。
【図10A】異なる圧電特性を備えた圧電材料の3つ以上の層を有する圧電素子の一つの実施形態を示す図である。
【図10B】圧電素子の2つの層の間に挟まれた導電層を備えた光活性型光スイッチの一つの実施形態を示す図である。
【図10C】多層圧電素子の間に挟まれた複数の導電層を備えた光活性型光スイッチの一つの実施形態を示す図である。
【図10D】信号チャネルの2つの異なる面に多層圧電素子及び導電層を備えた光活性型光スイッチの一つの実施形態を示す図である。
【図10E】信号チャネルの2つの面の各々に多層圧電素子及び導電層を備えた光活性型光スイッチの一つの実施形態を示す図である。
【図11A】信号チャネル及び圧電素子を備え、信号チャネルの一部が圧縮性材料が充填されたチャンバを備えた光活性型光スイッチの一つの実施形態を示す図である。
【図11B】圧電素子に活性化光を印加することによって得られる活性状態にある、図11Aの圧電素子を示す図である。
【図12A】信号チャネル、圧電素子及び圧電素子に隣接する導電層を備え、信号チャネルが光ファイバであり、圧電素子及び導電層が該光ファイバの円周の周り全体に帯状に形成された光活性型光スイッチの一つの実施形態を示す図である。
【図12B】圧電素子に活性化光を印加することによって得られる活性状態にある、図12Aの圧電素子を示す図である。
【図13A】信号チャネル、透明な圧電素子及び圧電素子に隣接する導電層を備え、信号チャネルが透明な圧電素子を備えた光活性型光スイッチの一つの実施形態を示す図である。
【図13B】圧電素子に活性化光を印加することによって得られる活性状態にある、図13Aの圧電素子を示す図である。
【図14A】本発明の他の好ましい実施形態による光スイッチの簡易図である。
【図14B】本発明の他の好ましい実施形態による光スイッチの簡易図である。
【図15A】図14Aの線XVA−XVAに沿って取った図14Aの信号チャネル及び圧電素子の横断面図である。
【図15B】図14Bの線XVB−XVBに沿って取った図14Bの信号チャネル及び圧電素子の横断面図である。
【図16A】本発明の更に他の好ましい実施形態による光スイッチの簡易図である。
【図16B】本発明の更に他の好ましい実施形態による光スイッチの簡易図である。
【図17A】図16Aの線XVIIA−XVIIAに沿って取った図16Aの信号チャネル及び圧電素子の横断面図である。
【図17B】図16Bの線XVIIB−XVIIBに沿って取った図16Bの信号チャネル及び圧電素子の横断面図である。
【図18A】本発明の更に他の好ましい実施形態による光スイッチの簡易図である。
【図18B】本発明の更に他の好ましい実施形態による光スイッチの簡易図である。
【図19A】図18Aの線XIXA−XIXAに沿って取った図18Aの信号チャネル及び圧電素子の横断面図である。
【図19B】図18Bの線XIXB−XIXBに沿って取った図18Bの信号チャネル及び圧電素子の横断面図である。
【図20】論理ノットゲートの略図である。
【図21】光スイッチを使用した論理アンドゲートの概略図である。
【図22】光スイッチを使用した論理アンドゲートの第2の概略図である。
【図23】光スイッチ及び位相整合デバイスを使用した論理オアゲートの概略図である。
【図24】光スイッチ及び光出力制限器を使用した論理オアゲートの概略図である。
【図25】光スイッチを使用した論理オアゲートの概略図である。
【発明を実施するための形態】
【0038】
光駆動型光スイッチは、アンド論理ゲート、オア論理ゲート及びノア論理ゲートを構築するために使用される。これらの論理ゲートに入力される光信号は、これらの論理ゲートの出力が個々の種類のゲートに必要な仕様に合致するように処理される。光信号は、すべて、これらの論理ゲートを動作させるために使用され、光駆動型光スイッチを使用するので外部電池は不要であり、したがって、これらの論理ゲートは半導体論理設計寸法に合致する寸法を有することができる。
【0039】
コンピュータを、電気信号に代わって光信号で機能するように作ることができる。トランジスタをベースとする論理ゲートのトランジスタは、10E−9秒でスイッチし、これは、トランジスタをベースとする論理ゲートの速度を制限している。光は、10E−14秒で3ミクロン移動することができる。光駆動スイッチに基づく論理ゲートは、トランジスタをベースとする論理ゲートよりはるかに速い。
【0040】
光スイッチは、信号チャネル及び信号チャネルに隣接する圧電素子を備えている。圧電素子は、活性化光に応答してその形状が変化し、したがって圧電素子は、その形状が変化することによって信号チャネルの寸法が変化するように信号チャネルに対して構成される。例えば、圧電素子の形状が変化すると、信号チャネルの寸法が十分に短くなり、したがって信号光はもはや信号チャネルを通過することができなくなる。この現象を使用して、圧電素子に印加される活性化光を制御することによって光スイッチの状態が制御される。一つの実施形態では、光スイッチは、活性化光が圧電素子に印加されていない場合に信号光の信号チャネルの通過を許容し、活性化光が圧電素子に印加されると、信号光の信号チャネルの通過が阻止される。圧電素子の形状によって光が信号チャネルを通過するかどうかが決まるため、光スイッチの機能は、圧電素子がその形状を変える能力に依存する。
【0041】
本発明の一つの実施形態によれば、圧電素子は、圧電材料の少なくとも2つの層を有しており、個々の層は、それぞれ異なる圧電特性を有する。これらの層の圧電特性は、圧電素子の性能が改善されるように、また、最終的には光スイッチの性能が改善されるように選択される。一つの実施形態では、これらの層の圧電特性は、活性化光に応答してその形状が十分に変化し、それにより信号光の信号チャネルの通過を阻止する圧電素子が生成されるように選択される。
【0042】
図1Aは、信号チャネル102及び圧電素子104を備えた、活性化光によって制御される光スイッチ100を示している。信号チャネルは、規定された経路に沿う制限された領域内における光の伝達を誘導する。信号チャネルは、光誘導構造によって、或いは、規定された経路に沿う制限された領域内で光を誘導することができる複数の光誘導構造の組合せによって形成されている。信号チャネルを形成することができる構造は、例えば、光ファイバ、ニオブ酸リチウムなどの基板、或いは、信号チャネル、光導波路及び圧縮性材料を保持するためのチャンバを備えた他の透明な圧電材料を含む。図1Aの実施形態では、信号チャネルは、モノリシック光誘導エレメントによって形成される。
【0043】
圧電素子104は圧電材料で形成される。圧電素子を形成するために使用することができる圧電材料の例には、石英(SiO)、ニオブ酸リチウム(LiNbO)、ジルコン酸鉛(PbZrO)、チタン酸鉛(PbTiO)及びジルコン酸チタン酸鉛などの結晶性圧電材料がある。磁界中で配向されることができる圧電材料の例は、ジルコン酸鉛及びチタン酸鉛又はジルコン酸チタン酸鉛である。石英及びニオブ酸リチウムは透明な圧電材料の例である。
【0044】
圧電素子104は、異なる圧電特性を有する圧電材料の少なくとも2つの層106及び108を有する。異なる層の異なる圧電特性は、例えば、1)同じ電界に応答する異なる度合の膨張及び/又は収縮、2)同じ電界に対する異なる応答(例えば、複数の層のうちの1つが第1の配向を有する電界に応答して膨張し、他の層が第1の配向に対して直角の第2の配向を有する電界に応答して膨張する)、3)異なる極性、4)異なる歪み、5)異なるヒステリシス、6)異なるキャパシタンス、7)異なるインピーダンス、8)異なる抵抗率、9)異なる熱履歴及び10)異なる電磁履歴を含むことができる。
【0045】
圧電材料の圧電特性は、例えば、1)圧電材料の型式、2)圧電材料の結晶配向、3)圧電材料中のドーピングレベル、4)圧電材料の密度、5)圧電材料のボイド(void)密度、6)圧電材料の化学組成、7)圧電材料の熱履歴及び8)圧電材料の電磁履歴の関数である。圧電材料の個々の層の所望の圧電特性は、例えば、上に挙げたパラメータのうちの1つ又は複数を操作することによって達成されることができる。
【0046】
一つの実施形態では、活性化光に応答して圧電素子の形状を変化させ、或いは湾曲させるよう、同じ電界に応答して膨張及び/又は収縮する度合が異なる圧電材料の層を圧電素子に一体化する。例えば、互いに付着されて1つのモノリシック素子を形成する圧電素子の2つの隣接する層が、同じ活性化光に応答して異なる量だけ膨張すると、その圧電素子は湾曲する。一つの実施形態では、圧電素子は、モノリシック素子として形成された、異なる圧電特性を有する圧電材料の少なくとも2つの層を備えている。例えば、圧電素子は、半導体処理技法、例えば結晶成長、蒸着、スパッタリング、イオン注入等々を使用して圧電材料の層を互いに積み重ねることによって形成される。一つの実施形態では、圧電素子の層は異なる結晶配向を有しており、したがって2つの層は、同じ電界に対して別様に応答する。例えば、2つの層は互いに直角の結晶配向を有している。他の実施形態では、圧電素子の複数の層のうちの少なくとも1つは有機材料でできている。
【0047】
異なる圧電特性を有する圧電材料の層を備えた圧電素子を使用することにより、オン/オフのスイッチングを最適化するように圧電素子の応答を選択することができる。例えば、層の圧電特性は、1)活性化光に応答した圧電素子の形状変化を最大化する、2)ヒステリシスを最小化する、3)圧電素子の形状を変化させるために必要な電力量を低減する、及び4)スイッチング技法によって生成される熱の量を低減するように選択されることができる。
【0048】
次に、図1Aに示されている光スイッチ100の動作について、図1A及び図1Bを参照して説明する。図1Aは非活性状態の圧電素子104を示している。非活性状態では、圧電素子の形状はその通常の状態から変化しない。圧電素子の通常の状態とは、活性化光が存在していない場合の圧電素子の状態のことである。図1Aの実施形態の場合、圧電素子は、非活性状態では基本的に平らである。圧電素子のこの平らな形状は、信号チャネルに入射する信号光及び信号チャネルから出射する信号光によって示されるように、信号光110の信号チャネル104の通過を許容する。
【0049】
図1Bには、圧電素子に活性化光112を印加することによって得られる活性状態の圧電素子104が示されている。図1Bの実施形態の場合、活性化光を信号光110と平行に信号チャネル102に導くことによって、活性化光は圧電素子に印加される。この活性化光によって、圧電材料に影響を及ぼす電界が供給される。活性状態では、圧電素子の形状が十分に変化し、信号光の信号チャネルの通過が阻止される。信号光の遮断は、信号チャネルから出射する信号光が無いことによって示されている。活性化光が信号チャネルから除去されると、圧電素子はその通常の形状に復帰し、信号光は再び信号チャネルを通過することができる。
【0050】
上で説明したように、活性化光112に応答して圧電素子104が活性化することによって圧電素子の形状が変化し、それにより信号チャネル102の少なくとも1つの寸法が変化する。図2Aは、圧電素子が非活性状態にある場合の図1Aの信号チャネル及び圧電素子の横断面図である。図2Bは、圧電素子が活性状態にある場合の図1Bの信号チャネル及び圧電素子の横断面図である。活性状態では、圧電素子は信号チャネル内へ入り込み、信号チャネルの少なくとも1つの寸法を低減させる。図2A及び図2Bに示すように、信号チャネルの断面積は、非活性状態にある場合(図2A)よりも活性状態にある場合(図2B)の方が小さい。
【0051】
図1A〜図2Bの実施形態から分かるように、圧電素子104がたとえ活性状態にあっても、信号チャネル102には依然として開口が存在している。圧電素子がたとえ活性状態にあっても信号チャネルには依然として開口が存在しているが、信号チャネル内の開口は十分に小さく、したがって信号光110は信号チャネルの通過が阻止される。信号光が信号チャネルを通過する能力は、信号チャネルの寸法及び信号光の波長の関数である。通常、短い波長を有する光は、長い波長を有する光よりも、短い寸法を有する信号チャネルを通過することができる。
【0052】
図3は、光信号の減衰と信号チャネルの寸法との関係のグラフを示している。図3に示すように、光信号の減衰は、信号チャネルの寸法が本明細書においては遮断寸法として参照されている特定の寸法に到達すると、急激に変化する。例えば、遮断寸法(例えば約5オングストローム)より短い寸法では、減衰は急激に大きくなり、また、遮断寸法より長い寸法では減衰は急激に小さくなる。図3に示すように、遮断寸法の近辺における信号チャネルの寸法の変化に対するこの急峻な応答のため、信号チャネルの寸法が遮断寸法より長い寸法と遮断寸法より短い寸法との間で切り換わるように活性化光を切り替えることによって、高速なオン/オフ切り替えが可能となる。
【0053】
上で説明したように、光スイッチ100の状態は、圧電素子104に活性化光112を印加することによって活性化される。活性化光は、様々な技法を使用して圧電素子に印加されることができる。圧電素子に活性化光を印加するための幾つかの例示的技法について、図4A〜図5Bを参照して説明する。
【0054】
図4A及び図4Bは、光スイッチ100の状態を変化させるための技法を示しており、信号光110の波長よりも短い波長を有する活性化光112を印加することを含んでいる。図4Aを参照すると、光スイッチ100は、圧電素子104に活性化光が印加されていないオン状態にあり、したがって信号光110は信号チャネル102を通過する。図4Bに示すように、圧電素子104に活性化光112が印加され、光スイッチ100の状態はオンからオフに変化している。オフ状態では、活性化光112によって圧電素子104の形状が変化し、信号光110の信号チャネル102の通過が阻止される。この実施形態の場合、活性化光112は、信号光110の波長よりも短い波長を有する。詳細には、活性化光112の波長は十分に短く、したがって光スイッチ100がオフ状態であっても、活性化光112は依然として信号チャネルを通過することができる。図4Bは、光スイッチ100がオフ状態にあっても、信号光110の波長よりも短い波長を有する活性化光112が信号チャネル102を通過することができる場合を示している。
【0055】
図5A及び図5Bは、光スイッチ100の状態を変化させるための技法を示しており、活性化光を印加することは、互いに位相が外れた2つの光信号112A及び112Bを圧電素子104に提供すること、次いで、これらの光信号のうちの一方の光信号、つまり図に示されている実施形態では光信号112Aを除去し、他方の光信号、つまり図に示されている実施形態では光信号112Bを活性化光として残すことを含んでいる。この実施形態の場合、これらの2つの信号112A及び112Bは、それらの電界が事実上互いに相殺しあうように互いに位相が外れている(例えば、180度位相が外れている)。位相が外れたこれらの2つの信号は、同時に圧電素子104に印加されながら、互いに相殺しあうので、圧電素子104は活性化されない。これらの光信号のうちの一方が除去されると、他方の光信号の電界は相殺されないので、その光信号によって圧電素子が活性化される。図5Aは、信号光110と、信号チャネル102を通過する位相が外れた光信号112A及び112Bの成分とを示している。上で説明したように、この場合、位相が外れたこれらの2つの光信号は互いに相殺しあうため、圧電素子104は活性化されない。図5Bでは、位相が外れたこれらの光信号のうちの一方である112Aが除去され、他方の光信号112Bが活性化光として残される。この活性化光によって圧電素子104が活性化され、信号光110(と、この場合には活性化光と)の信号チャネルの通過が阻止される。他の実施形態では、これらの2つの光信号のうちの一方の光出力を他方の光信号の光出力より大きくすることができ、それにより相殺効果を克服して活性化光を提供することができる。
【0056】
光活性型光スイッチの性能を最適化するための他の技法は、活性化光に応答して圧電素子に印加される電界を強めることである。本発明の一つの実施形態によれば、活性化光に応答して圧電素子に印加される電界を強めるために、光活性型光スイッチの圧電素子に隣接して、少なくとも1つの導電層が配置される。この導電層は、圧電素子に活性化光が印加されると、圧電素子に隣接する表面へ引き寄せられて集められる自由電子又は正孔を有している。圧電素子の近傍に自由電子を集めることにより、活性化光に応答して、圧電素子に印加される電界が強められる。強められた電界を使用することによって圧電素子の性能を改善することができ、光スイッチの性能を改善することができる。例えば、隣接する導電層が寄与して強められた電界によって、より小さい光出力で圧電素子を活性化させることができ、及び/又は、圧電素子に隣接する導電層が存在しない場合よりも速く圧電素子を活性化させることができる。
【0057】
導電層がないと、活性化光の電界のみが圧電素子を活性化する。導電層を使用する場合、この導電層によって、活性化光の電界によって収集される又は分散される電荷が供給される。収集された電荷の電界によって、活性化光の電界が強められる。この場合、活性化光の電界及び収集された電荷の電界が圧電素子に作用する。分散された電荷の場合、正電荷と負電荷からなるので、一方が分散されると他方が現れる。この場合、出現した電荷の電界によって活性化光の電界が強められ、圧電素子に対する効果が改善される。電子は金属導体の中を移動するが、正孔は半導体の中を移動することができる。
【0058】
図6Aは、信号チャネル122と圧電素子124と圧電素子124に隣接する導電層126とを備えた光活性型光スイッチ120の一つの実施形態を示している。信号チャネル122及び圧電素子124は、上で説明した信号チャネル及び圧電素子に類似しているが、圧電素子124は、異なる圧電特性を有する圧電材料の異なる層を備える必要は必ずしもない。導電層126は、鉛、タングステン、他の金属、ホウ素がドープされたケイ素、ヒ素がドープされたケイ素、ドープされたヒ化ガリウム、及び/又は他の半導体材料などの、高度に導電性の材料である。一つの実施形態では、導電層126は圧電素子124の表面に付着される。例えば、導電層126は、金属蒸着技法を使用して圧電素子124の主表面に蒸着される。代替の実施形態では、導電層126は、負電荷だけではなくて正電荷又は負電荷が移動する半導体材料で形成される。
【0059】
次に、図6Aに示されている光スイッチ120の動作について、図6A及び図6Bを参照して説明する。図6Aは非活性状態の圧電素子124を示している。非活性状態では、圧電素子124の形状はその通常の状態から変化しない。圧電素子124の通常の状態とは、活性化光が存在していない場合の圧電素子の状態のことである。図6Aの実施形態の場合、圧電素子124は、非活性状態では基本的に平らである。圧電素子のこの平らな形状は、信号チャネル122に入射して信号チャネル122から出射する信号光128によって示されているように、信号光128の信号チャネル122の通過を許容する。
【0060】
図6Bは、圧電素子124に活性化光129を印加することによって得られる活性状態の圧電素子124を示している。図6Bの実施形態の場合、活性化光129は、活性化光129を信号光128と平行に信号チャネル122に導くことによって、圧電素子124に最も近い導電層126の表面に引き寄せられる。活性状態では、圧電素子124の形状が十分に変化し、信号光128の信号チャネル122の通過が阻止される。信号光128の遮断は、信号チャネル122から出射する信号光128が無いことによって示されている。導電層126に結合されている圧電材料の近傍の追加の電子によって、圧電素子124の圧電材料に印加される電界が強められる。導電層126と関連する電界の増加により、例えば、圧電素子124の形状が変化する大きさが大きくなること、圧電素子124の形状の変化速度が速くなること、所望の形状変化を達成するために必要な活性化光の量が減少することを含む利点が提供される。
【0061】
図7は、図6A及び図6Bの導電層126の電子に対する活性化光129の電界130の作用を示している。図7では、表面132は、活性化光129に最も近い導電層126の表面であり、また、表面134は、活性化光129から最も遠い導電層126の表面である。図7の櫛歯構造は、導電層126の影響下における電界を表している。櫛歯構造の個々の歯136は電界の一部を表しており、これらの歯の幾つかは、それらの末端部分に広い拡張部分138を有している。これらの広い拡張部分138は、圧電素子124に隣接している導電層126の中を移動する電荷によってもたらされる強い電界を表している。ダッシュ線140は、活性化光129の電界に応答して移動する電荷を表す。電界が負である場合、導電層126中の電荷は、導電層の表面132の近くから遠ざかる方向に駆動され、したがって負電界が強められる。電界が正である場合、導電層中の電荷は導電層の表面132の近くへ移動し、したがって電界が強められる。圧電材料は導体ではなく、誘電材料であるため、導電層126が存在しない場合、電荷は移動しない。図7を参照すると、導電層126が除去され、圧電素子(図示せず)のみが残された場合、櫛歯構造の歯136はそれらの上に拡張部分138を有しない。
【0062】
図8は、図1A〜図7を参照して上で説明した光活性型光スイッチ152を備えた光スイッチシステム150を示している。図8の光スイッチシステム150は、更に、活性化光源156及び活性化光コントローラ158を備えた活性化光システム154を備えている。光スイッチシステム150は、信号光161を受け取るように信号光源160に光接続される。図8の実施形態では、信号光161は、信号光経路162を介して光スイッチ152に提供され、活性化光163は、活性化光経路164及び信号光経路162を介して光スイッチ152に提供される。信号光161及び活性化光163は結合器166で結合される。光スイッチ152の出力は出力経路168を介して出射される。
【0063】
活性化光システム154は、光スイッチ152の圧電素子(図示せず)への活性化光163の印加を制御する。図8の実施形態では、活性化光源156は、所望の特性、例えば所望の波長、強度、信号チャネルにおける他の光との関係での活性化光の位相及び偏光を有する活性化光を生成する、発光ダイオード(LED)又はレーザなどの光源であり、活性化光コントローラ158は活性化光システムからの活性化光163の伝送を制御する。一つの実施形態では、光スイッチ152の圧電素子の形状を十分に変化させるためには、活性化光163の強度を十分に大きくしなければならず、また、一つの実施形態では、活性化光163の強度は信号光161の強度より大きい。活性化光163の波長は、信号光161の波長よりも短くしても、長くしてもよい。上で説明したように、活性化光163の波長が十分に短い場合、圧電素子が活性化されても、活性化光163は信号チャネルを通過することができ、信号光163は阻止される。
【0064】
活性化光システム154は、多くの異なる方法で光スイッチ152に活性化光163を提供するように構成することができる。例えば、一つの実施形態では、第2の光活性型光スイッチによって活性化光163がスイッチオン及びスイッチオフされ、他の実施形態では、鏡の角度を変化させることによって活性化光163が提供され、他の実施形態では、LED又はレーザがターンオン/オフされ、また、他の実施形態では、他のスイッチを使用して活性化光163を制御することができる。信号光源160は、光スイッチ152によってスイッチオン及びスイッチオフされる(つまり、光スイッチ152の通過が許容され、また、光スイッチ152の通過が阻止される)信号光161を生成する。一つの実施形態では、信号光源160は、光信号を変調することによって(例えば周波数変調又は振幅変調によって)ディジタルデータを送信する光送信器である。一つの実施形態では、信号光源160によって出力される信号光161は、幾つかの方法(例えば振幅変調又は周波数変調、論理、等々)でディジタルデータを通信する光信号であり、一方、活性化光源156によって出力される活性化光163はディジタルデータを通信しない。例えば、信号光161は変調光フォーマットでディジタルデータを運び、活性化光163は変調されてディジタルデータを運ぶことはない。
【0065】
動作において、信号光源160を介して光スイッチ152に信号光161が提供され、活性化光システム154によって光スイッチ152の圧電素子への活性化光163の印加が制御される。一つの実施形態では、活性化光システム154が光スイッチ152に活性化光163を提供していない場合に信号光161は光スイッチ152を通過し、活性化光システム154が光スイッチ152に活性化光163を提供している場合には、光スイッチ152の通過が阻止される。
【0066】
図1A〜図6Bを参照して説明した光スイッチの場合、信号光及び活性化光は、同じ信号チャネルで伝送される。様々な技法を使用して、信号光及び活性化光を同じ信号チャネルに結合することができる。図9は、光スイッチ152並びに信号光161及び活性化光163を同じ信号チャネル122の中に結合するために使用される光結合器166の一つの実施形態を示している。図9の実施形態では、信号光161は信号ファイバなどの信号光経路162の中を移動し、活性化光163は活性化ファイバなどの活性化光経路164の中を移動する。信号光161及び活性化光163は、光結合器166によって信号チャネル122に結合される。図9に示す実施形態の場合、光結合器が図示されているが、信号光161及び活性化光163を同じ信号チャネル122に結合するための他の適切な技法を使用することも可能であることが理解されよう。
【0067】
図10A〜図10Eは、図1A〜図9を参照して上で説明した光活性型光スイッチの異なる実施形態を示している。図10Aは、光活性型光スイッチ170の一つの実施形態を示しており、圧電素子172は、異なる圧電特性を備えた圧電材料の3つ以上の層174を有している。図10に示されている実施形態では、圧電素子172は圧電材料の4つの層174を有している。一つの実施形態では、圧電材料の異なる層174は、それぞれ異なる圧電特性を有しており、他の実施形態では、圧電材料の異なる層は、交番する圧電特性を有している。圧電層174の数及び配列は多くの異なる変形形態を含むことができることを理解されたい。
【0068】
図10Bは、光活性型光スイッチ176の一つの実施形態を示しており、圧電素子182の2つの層180の間に導電層178が挟まれている。この実施形態は、導電層178の上に電荷を配置することによって圧電素子182を配向することができ、圧電層180が導電層178に近接しているので圧電素子182の個々の層180の形状に変化を生じさせる。
【0069】
図10Cは、光活性型光スイッチ184の一つの実施形態を示しており、圧電素子187の複数の異なる層186の間に複数の導電層185が挟まれている。この実施例では、導電層185は、圧電素子187の異なる層186の間に交互に付着されている。圧電層186の間の導電材料の複数の層185は、導電層185に電荷を印加することによって、圧電材料の個々の層186を異なる配向へ個々に分極させることができる。これにより、互いに作用し合う圧電層186の作用は、圧電素子187の形状の変化を一層大きくすることができる。
【0070】
一般に、これらの複数の導電層は、圧電素子のヒステリシスの管理を可能にする。これらの複数の導電層は、圧電材料の配向を変化させるためには圧電素子において上昇されるはずである温度を低下させることができる。これらの複数の導電層は、圧電素子の形状の変化を大きくすることができる。これらの複数の導電層は、光スイッチをより容易に構成し、維持し、使用することができるように管理される光スイッチの多くの機械的、電気的、熱的及び他の物理的な特性の管理を可能にする。一つの実施形態では、圧電材料の異なる層及び導電層は、モノリシックスタック構造で形成される。モノリシックスタック構造は、例えば、公知の半導体処理技法を使用して形成されることができ、例えば結晶成長、金属蒸着、スパッタリング、イオン注入等々を使用して形成されることができる。
【0071】
場合によっては、圧電素子のヒステリシスは、圧電素子を使用して構成される光活性型光スイッチの状態を或る状態から他の状態へ変化させることができる速度を制限することができる。一つの実施形態では、厚さ3000オングストロームのジルコン酸チタン酸鉛(PZT)の層が基板の上に蒸着される。PZTの層は、所与の割合の鉛及び所与の割合のジルコニウム及びチタンを有している。次いで、第1の層の上に、3000オングストロームのPZTの層が蒸着される。この層は、より多くの鉛及びジルコニウムを有しているが、この層の頂部のチタンの割合が減少している。これらの層を使用することにより、同様の層を備えていない圧電素子と比較すると、結果として得られる圧電素子が示すヒステリシスが小さくなる。より多くの交互の層を蒸着して圧電素子を構成することにより、応答の速い圧電素子を製造することができる。これらの全ての層を導電層の上に蒸着させるならば、活性化光の電界が強められ、更に応答が速い光活性型光スイッチが構成されることになる。
【0072】
図10Dは、信号チャネル190の一方の面に多層圧電素子189を備え、信号チャネル190の両面に導電層191を備えた光活性型光スイッチ188の一つの実施形態を示している。多数の導電層191によってスイッチの応答が改善される。
【0073】
図10Eは、信号チャネル198の両面に多層圧電素子194及び導電層196を備えた光活性型光スイッチ192の一つの実施形態を示している。一つの実施形態では、図10Eは、光ファイバの横断面図を示しており、圧電素子及び導電層が光ファイバの周り全体に帯状に形成されている。この実施形態ではファイバは圧縮性材料である。
【0074】
図11Aは、信号チャネル202、圧電素子204及び導電層206を備えた光活性型光スイッチ200の一つの実施形態を示しており、信号チャネルの一部は、圧縮性材料が充填されたチャンバ208を備えている。圧縮性材料は、例えば、アルゴン又は窒素などのガスであっても、或いは石油留出物又はシリコンゴムなどの材料であってもよい。圧縮性材料が充填されたチャンバ208は、活性化光によって活性化された場合に圧電素子204がチャンバ208の中に膨張することができるように、圧電素子204に隣接している。一つの実施形態では、圧電素子204はチャンバ208の一部を形成する。一つの実施形態では、チャンバ204の少なくとも一部は透明な材料で形成される。
【0075】
次に、図11Aに示されている光スイッチ200の動作について、図11A及び図11Bを参照して説明する。図11Aは非活性状態の圧電素子204を示している。非活性状態では、圧電素子204の形状はその通常の状態から変化しない。圧電素子204の通常の状態とは、活性化光が存在していない場合の圧電素子の状態のことである。図11Aの実施形態の場合、圧電素子204は、非活性状態では基本的に平らであり、チャンバ208の中へ突出していない。圧電素子204のこの平らな形状は、信号チャネル202に入射して信号チャネル202から出射する信号光210によって示すように、信号光210の信号チャネル202(チャンバ208を含む)の通過を許容する。
【0076】
図11Bは、圧電素子204に活性化光212を印加することによって得られる活性状態の圧電素子204を示している。図11Bの実施形態の場合、活性化光212は、活性化光212を信号光210と平行に信号チャネル202に導くことによって圧電素子204に印加される。活性化光212が圧電素子204に印加されると、圧電素子204がチャンバ208の中に突出し、それによりチャンバ内の圧縮性材料が圧縮される。活性状態では、圧電素子204の形状が十分に変化し、信号光210の信号チャネル202の通過が阻止される。信号光210の遮断は、信号チャネル202から出射する信号光210が無いことによって示されている。活性化光212が信号チャネル202から除去されると、圧電素子204はその通常の形状に復帰し、信号光210の通過を許容する。活性化光212が存在しない場合、チャンバ208内の圧縮された材料の圧力によって、通常の状態への圧電素子204の復帰が促進される。
【0077】
図12Aは、信号チャネル222、圧電素子224及び圧電素子に隣接する導電層226を備えた光活性型光スイッチ220の一つの実施形態を示したもので、信号チャネル222は光ファイバであり、圧電素子224及び導電層226は、該光ファイバの円周の周り全体に帯状に形成されている。図12Aは、非活性状態の圧電素子224を示している。非活性状態では、圧電素子224の形状は、その通常の状態から変化していない。圧電素子224の通常の状態とは、活性化光が存在していない場合の圧電素子の状態のことである。図12Aの実施形態の場合、圧電素子224は、非活性状態では基本的に平らである。圧電素子224のこの平らな形状は、信号チャネル222に入射して信号チャネル222から出射する信号光230によって示すように、信号光230の信号チャネル222の通過を許容する。図12Bには、圧電素子224に活性化光232を印加することによって得られる活性状態の圧電素子224が示されている。図12Bの実施形態では、活性化光232は、活性化光232を信号光230と平行に信号チャネル222に導くことによって圧電素子224に印加される。活性状態では、圧電素子224の形状が十分に変化し、信号光230の信号チャネル222の通過が阻止される。例えば、圧電素子224の形状の変化は、光ファイバをベルトのように絞って信号光230の通過を阻止する効果を有する。信号光230の遮断は、信号チャネル222から出射する信号光230が無いことよって示されている。活性化光232が信号チャネル222から除去されると、圧電素子224はその通常の形状に復帰し、信号光230は再び信号チャネル222を通過することができる。
【0078】
図13Aは、信号チャネル242、圧電素子244及び圧電素子244に隣接する導電層246を備えた光活性型光スイッチ240の一つの実施形態を示しており、圧電素子244は透明な材料でできていて信号チャネル242の少なくとも一部を形成する。図13Aは、非活性状態の圧電素子244を示している。非活性状態では、圧電素子244の形状は、その通常の状態から変化していない。圧電素子244の通常の状態とは、活性化光が存在していない場合の圧電素子の状態のことである。図13Aの実施形態の場合、圧電素子244は、非活性状態では基本的に平らである。圧電素子244のこの平らな形状は、信号チャネル242に入射して信号チャネル242から出射する信号光250によって示すように、信号光250の信号チャネル242の通過を許容する。図13Bには、圧電素子に活性化光252を印加することによって得られる活性状態の圧電素子244が示されている。図13Bの実施形態では、活性化光252は、活性化光252を信号光250と平行に信号チャネル242に導くことによって圧電素子244に印加される。活性状態では、圧電素子244の形状が十分に変化し、信号光250の信号チャネル242の通過が阻止される。例えば、圧電素子244の形状の変化は、信号チャネル242をベルトのように絞って信号光250の通過を阻止する効果を有する。信号光250の遮断は、信号チャネル242から出射する信号光250が無いことによって示されている。活性化光252が信号チャネル242から除去されると、圧電素子244はその通常の形状に復帰し、信号光250は再び信号チャネル242を通過することができる。
【0079】
一つの実施形態では、圧電素子及び信号チャネルは、活性化光を印加することによって光スイッチの状態がオン(光が信号チャネルを通過する)からオフ(光が阻止される)への変化ではなく、オフからオンへ変化するように、互いに対して構成される。
【0080】
幾つかの圧電材料は、その形状変化をもたらす電界と整列しなければならない結晶配向を有する。他の圧電材料は、印加される電界に対して所望の方向に応答するように、磁界中で加熱されて配向されることができる。光活性型光スイッチを構成する場合、信号チャネル内の信号光の方向に対して90度(つまり直角)の方向に最大形状変化を有するように、結晶の配向又は圧電材料の磁気配向を向けなければならない。一つの実施形態では、スイッチングをトリガする電界は、光チャネル内の光の経路に対して90度(つまり直角)である。
【0081】
以下、所望の相互作用について説明する。チャネル内の光の出力(単位はワット)を使用して、光活性型光スイッチを活性化させるために必要な電界(単位はボルト)が計算される。この計算は、E=(2μcP)1/2で表されるポインティングベクトル式を使用して実施される。μは4πx10E−7ウェーバ/アンペア−メートル、cは3x10E+8メートル/秒、Eはボルトを単位とする電界、Pはワットを単位とする出力である。この関係を使用すると、150ミリワットの信号によって1/4ミクロンのチャネルに展開される電圧は10ボルトであることが分かる。一つの実施形態では、この電圧を使用して光トリガ光スイッチが活性化され、それによりスイッチがターンオン又はターンオフされる(例えば信号光の信号チャネルの通過が許容され、或いは信号光の信号チャネルの通過が阻止される)。この10ボルトがもたらすことができるサイズ変化の一例は以下の通りである。高さが2065オングストロームのチャネルの場合、ジルコン酸チタン酸鉛が使用されると、10ボルトによって、そのサイズは40オングストロームだけ変化する。ジルコン酸チタン酸鉛は、10E−10メートル/ボルトの3.90倍の圧電歪み係数を有している。光ファイバのために広く使用されている818nm(8180オングストローム)の光は、2045オングストロームよりほんの少し長いチャネルを移動することができ、それより短いチャネルを移動することはできない。2065オングストロームのチャネルが2014オングストロームまで変化すると、信号光は阻止される。波長が8056オングストローム以下の光は、依然として信号チャネルを通過することができる。光活性型光スイッチは、10E−11秒以下の速度でオン又はオフさせることができる。それには、光の電界及び磁界が光が移動する媒体に対して有する効果が利用される。導波路内の信号の減衰(A)のための、信号が1,609.3m(1マイル)を移動する毎の減衰をデシベルの単位で与える式は、
【0082】
【数1】

【0083】
である。
Kは、チャネルの壁を構成している材料に対する定数であり、Kの値は、鉛の場合、821.3である。一つの実施形態では、光スイッチの1つの壁だけがほぼ鉛でできているので、光スイッチは正確に図3のグラフに従うことはできないが、このグラフは説明を目的として示されているにすぎない。それより小さい場合、式の中の「a」は導波路の辺の長さである。考察中の信号の周波数(f)は、チャネル内の遮断周波数(f)に対する比率で表される。この式は、TE0、1モードの波の伝搬に対するものである。一つの実施形態では、導波路のサイズは、このTE0、1モードが唯一の可能モードであるように選択される。この関係は、所与の信号に対して導波路寸法を収縮させるように研究されているため、減衰は信号チャネルのサイズが収縮するにつれて大きくなり、遮断周波数に近づくにつれて無限に向かって進行する。この式は、1943年にMcGraw−Hill Book Company社が出版した、フレデリック・ターマン著「無線技術者ハンドブック」の263頁に記載されている。
【0084】
次に図14Aを参照すると、信号チャネル302及び複数の圧電素子を備えた光スイッチ300が示されている。複数の圧電素子は、信号チャネル302の長さに沿って一様でない間隔を隔てていることが好ましい。図示されている実施形態では、3つの概ね長方形の圧電素子304、305、306が、信号チャネル302の長さに沿って、一様でない間隔で分散配置されている。圧電素子304、305、306の形状は活性化光によって制御される。信号チャネル302は、規定された経路に沿う制限された領域内における光の伝達を誘導する。信号チャネル302は、光誘導構造によって、又は規定された経路に沿う制限された領域内で光を誘導することができる複数の構造の組合せによって形成される。信号チャネルを形成することができる構造には、例えば、光ファイバ、ニオブ酸リチウムなどの基板があり、或いは信号チャネル、光導波路、及び圧縮性材料を保持するためのチャンバを備えた他の透明な圧電材料がある。図14Aの実施形態の場合、信号チャネル302は、モノリシック光誘導素子によって形成されることが好ましい。
【0085】
圧電素子304、305、306は圧電材料で形成されることが好ましい。圧電素子を形成するために使用することができる圧電材料の例には、石英(SiO)、ニオブ酸リチウム(LiNbO)、ジルコン酸鉛(PbZrO)、チタン酸鉛(PbTiO)及びジルコン酸チタン酸鉛などの結晶性圧電材料がある。磁界中で配向されることができる圧電材料の例は、ジルコン酸鉛及びチタン酸鉛又はジルコン酸チタン酸鉛である。石英及びニオブ酸リチウムは透明な圧電材料の例である。
【0086】
圧電素子304、305、306は、それぞれ、異なる圧電特性を有する圧電材料の少なくとも2つの層307、308を備えていることが好ましい。異なる層307、308の異なる圧電特性には、例えば、1)同じ電界に応答する異なる度合の膨張及び/又は収縮、2)同じ電界に対する異なる応答(例えば、複数の層のうちの1つが第1の配向を有する電界に応答して膨張し、他の層が第1の配向に対して直角の第2の配向を有する電界に応答して膨張する)、3)異なる極性、4)異なる歪み、5)異なるヒステリシス、6)異なるキャパシタンス、7)異なるインピーダンス、8)異なる抵抗率、9)異なる熱履歴、及び10)異なる電磁履歴を含むことができる。
【0087】
次に、図14Aに示す光スイッチ300の動作について、更に図14Bを参照して説明する。図14Aには非活性状態の圧電素子304、305、306が示されている。非活性状態では、圧電素子304、305、306の形状はその通常の状態から変化していない。圧電素子304、305、306の通常の状態とは、活性化光が存在していない場合の圧電素子の状態のことである。図14Aの実施形態の場合、圧電素子304、305、306は非活性状態では基本的に平らである。圧電素子304、305、306のこの平らな形状は、信号チャネル302に入射する信号光310及び信号チャネル302から出射する信号光310によって示すように、信号光310の信号チャネル302の通過を許容する。
【0088】
図14Bには、圧電素子304、305、306に活性化光312を印加することによって得られる活性状態の圧電素子304、305、306が示されている。図14Bの実施形態の場合、活性化光312は、活性化光312を信号光310と平行に信号チャネル302に導くことによって圧電素子304、305、306に印加される。活性化光312によって圧電材料に影響を及ぼす電界が供給される。活性状態では、圧電素子304、305、306の形状が十分に変化し、信号光310の信号チャネル302の通過が阻止される。信号光310の遮断は、信号チャネル302から出射する信号光310が無いことによって示されている。活性化光312が信号チャネル302から除去されると、圧電素子304、305、306は通常の形状に復帰し、信号光310は再び信号チャネル302を通過することができる。
【0089】
上で説明したように、活性化光312に応答して圧電素子304、305、306が活性化されることによって圧電素子304、305、306の形状が変化し、それにより信号チャネル302の少なくとも1つの寸法が変化する。図15Aは、圧電素子305が非活性状態にある場合の図14Aの信号チャネル302及び圧電素子305の横断面図である。図15Bは、圧電素子305が活性状態にある場合の図14Bの信号チャネル302及び圧電素子305の横断面図である。活性状態では、圧電素子305は信号チャネル302の中へ伸長し、信号チャネル302の少なくとも1つの寸法が短くなる。図15A及び図15Bに示すように、信号チャネル302の断面積は、非活性状態にある場合(図15A)よりも活性状態にある場合(図15B)の方が小さい。
【0090】
図14A〜図15Bの実施形態から分かるように、圧電素子304、305、306が活性状態にあっても、信号チャネル302には依然として開口が存在する。圧電素子304、305、306が活性状態にあっても信号チャネル302には依然として開口が存在しているが、信号チャネル302内の開口は十分に小さく、したがって信号光310は信号チャネル302の通過が阻止される。信号光310が信号チャネル302を通過する能力は、信号チャネル302の寸法及び信号光310の波長の関数である。通常、長い波長を有する光よりも短い波長を有する光の方が、短い寸法を有する信号チャネル302を通過することができる。
【0091】
次に図16Aを参照すると、信号チャネル402及び複数の圧電素子を備えた光スイッチ400が示されている。複数の圧電素子は、信号チャネル402の長さに沿って一様でない間隔を隔てていることが好ましい。図示されている実施形態では、4つの概ね円柱状の圧電素子404、405、406、407が、信号チャネル402の長さに沿って、一様でない間隔で分散配置される。圧電素子404、405、406、407の形状は活性化光によって制御される。信号チャネル402は、規定された経路に沿う制限された領域内における光の伝達を誘導する。信号チャネルは、光誘導構造によって、又は規定された経路に沿う制限された領域内で光を誘導することができる複数の構造の組合せによって形成される。信号チャネルを形成することができる構造には、例えば、光ファイバ、ニオブ酸リチウムなどの基板があり、或いは信号チャネル、光導波路、及び圧縮性材料を保持するためのチャンバを備えた他の透明な圧電材料がある。図16Aの実施形態の場合、信号チャネル402は、モノリシック光誘導素子によって形成されることが好ましい。
【0092】
圧電素子404、405、406、407は圧電材料で形成されることが好ましい。圧電素子を形成するために使用することができる圧電材料の例には、石英(SiO)、ニオブ酸リチウム(LiNbO)、ジルコン酸鉛(PbZrO)、チタン酸鉛(PbTiO)及びジルコン酸チタン酸鉛などの結晶性圧電材料がある。磁界中で配向されることができる圧電材料の例は、ジルコン酸鉛及びチタン酸鉛又はジルコン酸チタン酸鉛である。石英及びニオブ酸リチウムは透明な圧電材料の例である。
【0093】
圧電素子404、405、406、407は、それぞれ、異なる圧電特性を有する圧電材料の少なくとも2つの層408、409を備えていることが好ましい。異なる層の異なる圧電特性には、例えば、1)同じ電界に応答する異なる度合の膨張及び/又は収縮、2)同じ電界に対する異なる応答(例えば、複数の層のうちの1つが第1の配向を有する電界に応答して膨張し、他の層が第1の配向に対して直角の第2の配向を有する電界に応答して膨張する)、3)異なる極性、4)異なる歪み、5)異なるヒステリシス、6)異なるキャパシタンス、7)異なるインピーダンス、8)異なる抵抗率、9)異なる熱履歴及び10)異なる電磁履歴を含むことができる。
【0094】
次に、図16Aに示されている光スイッチ400の動作について、更に図16Bを参照して説明する。図16Aには非活性状態の圧電素子404、405、406、407が示されている。非活性状態では、圧電素子404、405、406、407の形状はその通常の状態から変化していない。圧電素子404、405、406、407の通常の状態とは、活性化光が存在していない場合の圧電素子の状態のことである。図16Aの実施形態の場合、圧電素子404、405、406、407は、非活性状態では基本的に平らである。圧電素子404、405、406、407のこの平らな形状は、信号チャネル402に入射する信号光410及び信号チャネル402から出射する信号光410によって示すように、信号光410の信号チャネル402の通過を許容する。
【0095】
図16Bは、圧電素子404、405、406、407に活性化光412を印加することによって得られる活性状態の圧電素子404、405、406、407を示している。図16Bの実施形態の場合、活性化光412は、活性化光412を信号光410と平行に信号チャネル402に導くことによって圧電素子404、405、406、407に印加される。活性化光412によって、圧電材料に影響を及ぼす電界が供給される。活性状態では、圧電素子404、405、406、407の形状が十分に変化し、信号光410の信号チャネル402の通過が阻止される。信号光410の遮断は、信号チャネル402から出射する信号光410が無いことによって示されている。活性化光412が信号チャネル402から除去されると、圧電素子404、405、406、407は通常の形状に復帰し、信号光410は再び信号チャネル402を通過することができる。
【0096】
上で説明したように、活性化光412に応答して圧電素子404、405、406、407が活性化することによって圧電素子404、405、406、407の形状が変化し、それにより信号チャネル402の少なくとも1つの寸法が変化する。図17Aは、圧電素子406が非活性状態にある場合の図16Aの信号チャネル402及び圧電素子406の横断面図である。図17Bは、圧電素子406が活性状態にある場合の図16Bの信号チャネル402及び圧電素子406の横断面図である。活性状態では、圧電素子406は信号チャネル402の中へ伸長し、信号チャネル402の少なくとも1つの寸法が短くなる。図17A及び17Bに示すように、信号チャネル402の断面積は、非活性状態にある場合(図17A)よりも活性状態にある場合(図17B)の方が小さい。
【0097】
図16A〜図17Bの実施形態から分かるように、圧電素子404、405、406、407が活性状態にあっても、信号チャネル402には依然として開口が存在する。圧電素子404、405、406、407が活性状態にあっても信号チャネル402には依然として開口が存在しているが、信号チャネル402内の隙間は十分に小さいので、信号光410は信号チャネル402の通過が阻止される。信号光410が信号チャネル402を通過する能力は、信号チャネル402の寸法及び信号光410の波長の関数である。通常、長い波長を有する光よりも短い波長を有する光の方が、短い寸法を有する信号チャネルを通過することができる。
【0098】
次に図18Aを参照すると、信号チャネル502及び複数の圧電素子を備えた光スイッチ500が示されている。複数の圧電素子は、信号チャネル502の長さに沿って一様でない間隔を隔てていることが好ましい。図示されている実施形態では、3つの概ね楕円柱状の圧電素子504、505、506が、信号チャネル502の長さに沿って、一様でない間隔で分散配置されている。圧電素子504、505、506の形状は活性化光によって制御される。信号チャネル502は、規定された経路に沿う制限された領域内における光の伝達を誘導する。信号チャネル502は、光誘導構造によって、又は規定された経路に沿う制限された領域内で光を誘導することができる複数の構造の組合せによって形成される。信号チャネルを形成することができる構造には、例えば、光ファイバ、ニオブ酸リチウムなどの基板があり、或いは信号チャネル、光導波路、及び圧縮性材料を保持するためのチャンバを備えた他の透明な圧電材料がある。図18Aの実施形態の場合、信号チャネル502は、モノリシック光誘導素子によって形成されることが好ましい。
【0099】
圧電素子504、505、506は圧電材料で形成されることが好ましい。圧電素子を形成するために使用することができる圧電材料の例には、石英(SiO)、ニオブ酸リチウム(LiNbO)、ジルコン酸鉛(PbZrO)、チタン酸鉛(PbTiO)及びジルコン酸チタン酸鉛などの結晶性圧電材料がある。磁界中で配向されることができる圧電材料の例は、ジルコン酸鉛及びチタン酸鉛又はジルコン酸チタン酸鉛である。石英及びニオブ酸リチウムは透明な圧電材料の例である。
【0100】
圧電素子504、505、506は、それぞれ、異なる圧電特性を有する圧電材料の少なくとも2つの層507、508を備えることが好ましい。異なる層507、508の異なる圧電特性には、例えば、1)同じ電界に応答する異なる度合の膨張及び/又は収縮、2)同じ電界に対する異なる応答(例えば、複数の層のうちの1つが第1の配向を有する電界に応答して膨張し、他の層が第1の配向に対して直角の第2の配向を有する電界に応答して膨張する)、3)異なる極性、4)異なる歪み、5)異なるヒステリシス、6)異なるキャパシタンス、7)異なるインピーダンス、8)異なる抵抗率、9)異なる熱履歴及び10)異なる電磁履歴を含むことができる。
【0101】
圧電材料の圧電特性は、例えば、1)圧電材料の型式、2)圧電材料の結晶配向、3)圧電材料中のドーピングレベル、4)圧電材料の密度、5)圧電材料のボイド密度、6)圧電材料の化学組成、7)圧電材料の熱履歴及び8)圧電材料の電磁履歴の関数である。圧電材料の個々の層の所望の圧電特性は、例えば、上に挙げたパラメータのうちの1つ又は複数を操作することによって達成することができる。
【0102】
同じ電界に応答して膨張及び/又は収縮する度合が異なる圧電材料の層が圧電素子に一体化され、それにより活性化光に応答して圧電素子の形状を変化させ又は湾曲させることが好ましい。例えば、互いに付着されて1つのモノリシック素子を形成している圧電素子の2つの隣接する層が、同じ活性化光に応答して異なる量だけ膨張すると、その圧電素子は湾曲することになる。一つの実施形態では、圧電素子は、モノリシック素子として形成された、異なる圧電特性を有する圧電材料の少なくとも2つの層を備えている。例えば、圧電素子は、半導体処理技法、例えば結晶成長、蒸着、スパッタリング、イオン注入等々を使用して圧電材料の層を互いに積み重ねることによって形成される。一つの実施形態では、圧電素子の層は異なる結晶配向を有しており、したがって2つの層は、同じ電界に対して別様に応答する。例えば2つの層は互いに直角の結晶配向を有する。他の実施形態では、圧電素子の複数の層のうちの少なくとも1つは有機材料でできている。
【0103】
異なる圧電特性を有する圧電材料の層を備えた圧電素子を使用することにより、オン/オフのスイッチングを最適化するように圧電素子の応答を選択することができる。例えば、層の圧電特性は、1)活性化光に応答した圧電素子の形状変化が最大化されるように、2)ヒステリシスが最小化されるように、3)圧電素子の形状を変化させるために必要な電力量が低減されるように、及び4)スイッチング技法によって生成される熱量が低減されるように選択されることができる。
【0104】
次に、図18Aに示す光スイッチ500の動作について、更に図18Bを参照して説明する。図18Aには非活性状態の圧電素子504、505、506が示されている。非活性状態では、圧電素子504、505、506の形状はその通常の状態から変化していない。圧電素子504、505、506の通常の状態とは、活性化光が存在していない場合の圧電素子の状態のことである。図18Aの実施形態の場合、圧電素子504、505、506は、非活性状態では基本的に平らである。圧電素子504、505、506のこの平らな形状は、信号チャネル502に入射する信号光510及び信号チャネル502から出射する信号光510によって示すように、信号光510の信号チャネル502の通過を許容する。
【0105】
図18Bには、圧電素子504、505、506に活性化光512を印加することによって得られる活性状態の圧電素子504、505、506が示されている。図18Bの実施形態の場合、活性化光512は、活性化光512を信号光510と平行に信号チャネル502に導くことによって圧電素子504、505、506に印加される。この活性化光512によって、圧電材料に影響を及ぼす電界が供給される。活性状態では、圧電素子504、505、506の形状が十分に変化し、信号光510の信号チャネル502の通過が阻止される。信号光510の遮断は、信号チャネル502から出射する信号光510を欠くことによって示されている。活性化光512が信号チャネル502から除去されると、圧電素子504、505、506は通常の形状に復帰し、信号光510は再び信号チャネル502を通過することができる。
【0106】
上で説明したように、活性化光512に応答して圧電素子504、505、506が活性化することによって、圧電素子504、505、506の形状が変化し、それにより信号チャネル502の少なくとも1つの寸法が変化する。図19Aは、圧電素子505が非活性状態にある場合の図18Aの信号チャネル502及び圧電素子505の横断面図である。図19Bは、圧電素子505が活性状態にある場合の図18Bの信号チャネル502及び圧電素子505の横断面図である。活性状態では、圧電素子505は信号チャネル502の中へ伸長し、信号チャネル502の少なくとも1つの寸法が短くなる。図19A及び19Bに示すように、信号チャネル502の断面積は、非活性状態にある場合(図19A)よりも活性状態にある場合(図19B)の方が小さい。
【0107】
図18A〜図19Bの実施形態から分かるように、圧電素子504、505、506が活性状態にあっても、信号チャネル502には依然として開口が存在する。圧電素子504、505、506が活性状態にあっても信号チャネル502には依然として開口が存在するが、信号チャネル502内の開口は十分に小さいので、信号光510は信号チャネル502の通過が阻止される。信号光510が信号チャネル502を通過する能力は、信号チャネル502の寸法及び信号光510の波長の関数である。通常、長い波長を有する光よりも短い波長を有する光の方が、短い寸法を有する信号チャネルを通過することができる。
【0108】
理解されるように、3つの論理ゲートを使用して全てのコンピュータ論理を実行することができる。これらの論理ゲートは、アンド論理ゲート、オア論理ゲート及びノア論理ゲートである。これらの論理ゲートは、真理値表を使用して説明されている特定の方法でディジタル信号を処理する。真理値表は、特定の信号がゲートに入力された場合にゲートから出力される信号を与える。
【0109】
【表1】

【0110】
表1は、論理アンドゲートのための真理値表である。A入力列及びB入力列の1は、ディジタル信号パルスがゲートに入力されることを表している。これらの入力は、A入力又はB入力に入力することができる。A入力及びB入力の両方に入力信号が出現した場合にのみ、アンドゲートの結果としてパルスが出力される。
【0111】
【表2】

【0112】
表2は、論理オアゲートのための真理値表である。A入力及びB入力のいずれか一方又は両方に入力信号が出現した場合に、オアゲートの結果としてパルスが出力される。
【0113】
【表3】

【0114】
表3は、論理ノアゲートのための真理値表である。A入力及びB入力のいずれの入力にも入力信号が出現しない場合にのみ、ノアゲートの結果としてパルスが出力される。ノアゲートはノットゲートをその出力部に備えたオアゲートとして説明されることが多い。論理ノットゲートは、信号を受け取って、受け取った信号を反転信号に変換する。入力信号が存在している場合は信号は出力されず、入力信号が存在していない場合に信号が出力される。
【0115】
現在のコンピュータ回路では、3つのトランジスタを使用して電気ディジタル信号のための論理アンドゲート又は論理オアゲートを構成することができる。また、現在のコンピュータ回路では、4つのトランジスタを使用して論理ノアゲートを構築することも可能である。トランジスタは、10E−9秒でスイッチングする。これは、コンピュータを機能させることができる速度を決定する。現在のコンピュータは、光信号の流れではなく、電子ディジタル信号の流れの上で機能する。光信号は、光信号又はフォトニック信号とも呼ばれる。
【0116】
本発明は、電気信号即ちトランジスタ回路によって駆動されるのではなく、光によって駆動される、ファイバ光スイッチに基づくアンド論理ゲート、オア論理ゲート及びノア論理ゲートを備える。これらのゲートは電池を必要とせず、適切なスイッチを選択することにより、ゲートのサイズを半導体サイズの制約に見合うだけの十分に小さいサイズにすることができる。参照により本明細書に組み込まれる米国特許第7072536号に、光活性型光スイッチの一例が開示されている。光活性型光スイッチの一例が挙げられているが、論理ゲートは、他のタイプの光駆動型光スイッチを使用して形成することができる。
【0117】
本発明の一つの実施形態では、論理のためのディジタル情報を運んでいる光は、現在の光ファイバチャネルに広く使用されている1500nm波長信号である。この信号は、入力信号の周波数を2倍にすることができる周期分極型ニオブ酸リチウム(PPLN)結晶を使用して750nmの信号に変化させることができる。周波数を2倍にすることによって信号の波長が元の波長の半分になる。このPPLNの場合のような半分の波長への変化は単なる一例にすぎない。他の波長及び手段を使用することも可能である。
【0118】
また、異なる構成のPPLN結晶を使用して、750nmの光から1500nm波長の光を生成することも可能である。通常、PPLN素子は、特定の波長に対してのみ機能し、他の周波数と同時には機能しない。これらの変換の間に光出力が失われるが、光増幅器を使用して信号をブーストし、必要なレベルまで戻すことができる。本開示の場合、必要な光出力ブーストは、周波数2倍化機能の中に含まれている。
【0119】
光は、180度位相が外れた光と共に光ファイバチャネル内に存在することができ、したがって、光の電界は出現しない。光に対して180度位相が外れた光は、その光の光出力を相殺する。
【0120】
次に、光ファイバシステムのための論理ノットゲート600の概略図である図20を参照する。図20では、光ファイバなどの光チャネル601は、論理ゲート600に必要な1500nmの信号を提供する。光ファイバなどの光チャネル603は、論理ノットゲート600によって変化させることができる1500nmの信号を提供する。波長低減器605は、入射する信号の周波数を2倍にし、したがって入射する信号を750nmの信号に変換することができる。波長低減器605には、周波数変換が達成された後の信号を有用なものにするための準備に必要なあらゆる光増幅機能が組み込まれている。光チャネル601は、波長低減器605の出力に結合され、光スイッチ607に入射する。光スイッチ607は、上で説明した光活性型光スイッチである。光スイッチ607は、750nmの信号が波長低減器605から出力されるまでの間、1500nmの信号を出力することができる。750nmの信号が波長低減器605から出力されると、光スイッチ607から信号は出力されない。光チャネル609は、論理ノットゲート600からの出力信号を提供する。出力信号が提供されるのは、光チャネル603上に信号が入力されていない場合のみであり、したがって論理ノットゲートが提供される。
【0121】
次に、論理アンドゲート610の概略図である図21を参照する。光ファイバなどの光チャネル611は、スイッチ612を駆動するために、周波数が高い波長信号を光スイッチ612に供給する。光チャネル611は他の光ファイバチャネルに結合され、光チャネル611内の光の位相が、位相整合器616によって、光チャネル614に沿って論理アンドゲート610に提供される第1の論理入力に入射する光に整合された後、光スイッチ612に入射する。光チャネル614は分割され、光の半分が、光スイッチ612への入力を提供するよう波長低減器618に入射し、次に位相整合器616に入射した後、他の光チャネルに結合される。光チャネル614内の光の残りの半分は、光スイッチ612に直接入力される。
【0122】
第2の論理入力は、光チャネル620に沿って論理アンドゲート610に提供される。光チャネル620は分割され、光の半分が、光スイッチ612への入力を提供するよう波長低減器622に入射し、次に位相整合器624に入射した後、他の光チャネルに結合される。光チャネル614内の光の残りの半分は、光スイッチ612に直接入力される。
【0123】
光チャネル626は他の光ファイバチャネルに結合され、光チャネル626内の光の位相が位相整合器624によって光チャネル620上の第2の論理入力の光に整合された後、光スイッチ612に入力を提供する。論理アンドゲート610の出力は光チャネル628に沿って提供され、表1に示すアンド機能が提供される。
【0124】
光移相器629は、光チャネル614、620からの入力を互いに180度だけ位相外れにするように設けられる。したがって光が光チャネル614、620に沿って入力されている場合、光スイッチ612は開であり、出力信号が提供される。また、チャネル614、620のうちの一方にのみ光が入力されている場合、光スイッチ612は閉であり、出力信号は提供されない。チャネル614、620のいずれにも光入力が存在していない場合、出力信号は提供されないことは理解されるとおりである。
【0125】
こうして、本発明は、第1及び第2のデータ入力に入射するディジタル信号光が2つのチャネルに分割され、そのうちの一方のチャネルでは波長が短縮され、位相がスイッチ活性化信号に整合される論理アンドゲートを提供する。更に、短縮された波長信号に位相整合された活性化光が光スイッチに入射し、両方の入力にデータ信号を受け取った場合にのみ開いてゲートからデータ信号を出力し、それによって論理アンドゲートの要件を満足する論理アンドゲートが提供される。
【0126】
次に、ディジタル光信号データを処理するために2つの光活性型光スイッチ632、634を使用した論理アンドゲート630の概略図である図22を参照する。1500nmの光である第1の論理入力信号が光チャネル636に沿って論理アンドゲート630に提供され、1500nmの光である第2の論理入力信号が光チャネル638に沿って論理アンドゲート630に提供される。光ファイバなどの第1の光チャネル640は、1500nmの光の駆動信号を光スイッチ632に供給し、また、第2の光チャネル642は、1500nmの光の駆動信号を光スイッチ634に供給する。
【0127】
第1及び第2の波長低減器642、646は、1500nmの光が750nmの光になるよう、1500nmの光の周波数を2倍にする。周波数が2倍にされた後、光活性型光スイッチを活性化させるために必要なレベルまで光出力がブーストされる。光スイッチは、150ミリワットの活性化光出力で活性化されるように設計される。波長低減器642、646によって光チャネル647に沿って出力されるディジタル光信号の半分は、光吸収器648に提供される。波長低減器642、646から出力される光信号の残りの半分は、論理アンドゲート630を動作させるために必要な光チャネル640上の光信号入力に結合される。光スイッチ632は、光スイッチ632を閉じるだけの十分な強さの750nmの信号が光チャネル650に入力されるまでの間、光チャネル640上の1500nmの信号を通過させることができる。これは、1500nmの信号が光チャネル636、638上のゲートに入射すると生じる。光チャネル652は、スイッチ632の出力信号を波長低減器654に提供する。波長低減器654は、光スイッチ632によって出力される光チャネル652に沿った1500nmの信号の周波数を2倍にする。
【0128】
光チャネル642は、1500nmの信号を論理アンドゲート630に提供し、その1500nmの信号を波長低減器654の出力に結合する。光スイッチ634は、光スイッチ632から波長低減器654を介して信号が出力されていない限り、光チャネル642からの1500nmの信号をスイッチから出射させることができる。
【0129】
光チャネル636、638のうちのいずれか一方に入射する信号しか存在しない場合、光スイッチ632に入力される750nmの信号は、スイッチ632を閉じて光チャネル640からの1500nmの光の流れを遮断するには十分ではない。光チャネル636、638に信号が提供されると、信号は、光チャネル640からの1500nmの信号をオターンフするには十分である。光チャネル640からの信号がスイッチ632から出力されている限り、光スイッチ634から提供される信号は存在しない。
【0130】
光チャネル636、638に1500nmの信号が提供されている場合にのみ、光チャネル640からのソース光が光スイッチ632によってターンオフされ、また、その場合にのみ、光チャネル642によって提供される入力がスイッチ634から出力されるので、論理アンドゲートが提供され、1500nmの信号が光チャネル636、638に提供されている場合にのみ、1500nmの光が出力される。この論理アンドゲートは、表1に示すように動作する。
【0131】
半分の波長への変化は、単に一例として示したものにすぎないことは理解されよう。他の波長及び手段を使用することも可能である。
したがって、本発明は、光スイッチを活性化させるための光を提供するために、2つの入力信号の波長が直ちに短縮されて分割される論理アンドゲートを提供する。また、第2の光スイッチに供給されるデータ波長信号を送信するゲートの両方の入力にデータ信号が入力されると、波長が短縮された光によってスイッチが駆動される論理アンドゲートが提供される。出力信号の波長は、2つの入力がゲートの2つのデータポートに入射した場合にのみ論理アンドゲートからデータ信号が出力されることを保証し、それによって論理アンドゲートの要件を満足する、第2の光スイッチのための駆動信号になるように増大される。
【0132】
次に、論理オアゲート700の概略図である図23を参照する。1500nmの光である第1の論理入力信号が光チャネル702に沿って論理オアゲート700に提供され、1500nmの光である第2の論理入力信号が光チャネル704に沿って論理アンドゲート700に提供される。光チャネル706は、光スイッチ708に供給される750nmの光を提供する。光スイッチ708は閉じた状態を維持することができ、光チャネル706からの750nmの信号が相殺されない限りは、1500nmの出力信号は提供されない。
【0133】
第1及び第2の波長低減器710、712は、光チャネル702、704に沿って提供される1500nmの信号が750nmの信号になるよう、それらの信号の周波数を2倍にする。周波数の変化によって失われる光出力は、デバイスの中に統合されている光増幅器によってブーストされ、再び有用なレベルになる。
【0134】
光チャネル714は、波長低減器710から出力される750nmの信号を位相整合器716へ運ぶ。位相整合器716は、光チャネル714に沿う750nmの信号の位相を光チャネル706に沿う750nmの光のソース信号の位相と同相にする。
【0135】
光チャネル718は、波長低減器712からの出力を位相整合器720に提供する。位相整合器720は、光チャネル718に沿う信号の位相を光チャネル706に沿う750nmの光のソース信号の位相と同相にする。
【0136】
光チャネル722、724は、位相整合器部16、720からの光のうちの半分をそれぞれ光吸収器726、728に提供する。光移相器730は、光チャネル702、704からの信号を特別に位相整合された光チャネル706に沿う光に対して180度位相外れにする1/2波長経路である。これらの光が光チャネル706に沿う光と混合されると、その半分が相殺されることになる。
【0137】
光チャネル732は、位相整合器720からの750nmのソース光を運び、それを光移相器730及び光チャネル740からの信号に結合する。光チャネル740は、光チャネル706から入射する十分な光出力の信号がスイッチ708を遮断するまでの間、スイッチ708から流出する1500nmの光のソースである。信号は、スイッチ708から光チャネル742に沿って出力され、したがって論理オアゲートが提供される。
【0138】
光チャネル706からの750nmの光のソースがスイッチ708に供給されている限り、光チャネル740からの1500nmの光のソースからの信号が論理オアゲートから出射することはないが、光チャネル702、704のうちのいずれかに信号が入射すると、光チャネル706からの光はその光出力が半分に相殺され、1500nmの信号が論理オアゲートから現れる。
【0139】
更に、光チャネル702、704に信号が提供されると、一体となって十分な光出力になり、光チャネル706からの750nmの光のソースを全面的に相殺し、その結果、論理オアゲート700によって出力信号が提供される。
【0140】
最後のパラグラフは、本明細書において開示されている論理オアゲートがいかにして表2に示されている論理オアゲート真理値表の要件を満足しているかを説明している。信号が光チャネル702、704の一方又は両方に沿って提供されると、論理オアゲート700から1500nmの信号が出現する。
【0141】
図23で説明した論理オアゲートの出力部に図20で説明した論理ノットゲートを提供することにより、表3に示す真理値表として機能する論理ノアゲートが構成される。
次に、代替の論理オアゲート800の概略図である図24を参照する。伝送路802、804は、ゲートに入射する光ディジタル信号A及びBを提供する光チャネル即ちファイバである。これらの信号は1500nmの光信号である。伝送路806、807は、論理オアゲートの機能のための1500nmの光のソースである。
【0142】
波長低減器808、810は周波数2倍器であるが、周波数を2倍にしているだけでなく、その後に、光活性型光スイッチを活性化させることができるレベルまで光の光出力をブーストする。伝送路812は、波長低減器808、810から信号A、Bを運び、伝送路806からの信号と結合し、これらのすべてを光出力制限器814に運ぶ光チャネルすなわちファイバのネットワークである。
【0143】
光出力制限器814は、特定の最大レベル未満の光出力レベルの通過を許容する。818の番号が振られた伝送路は、光出力制限器814からスイッチ816へ、また、スイッチ816から波長低減器820へ信号を運ぶ光チャネル即ちファイバである。スイッチ816は光活性型光スイッチである。波長低減器820は、スイッチ816から出現する信号の周波数を2倍にする。
【0144】
スイッチ830は光活性型光スイッチである。伝送路807は、波長低減器820の出力と結合するための1500nmの信号を提供してスイッチ830に運ぶ光チャネル即ちファイバである。波長低減器820からの信号が存在している限り、スイッチ830から信号は出現しない。
【0145】
伝送路802から1500nmの信号(A信号)が入射すると、その信号は低減器808の中で750nmの光に変換され、そのままの状態で光出力制限器814を通過し、スイッチ816内で伝送路806からの1500nmの信号をターンオフする。したがって伝送路807からの信号をターンオフする信号が存在しないため、オアゲートは信号を出力する。伝送路804から信号(B信号)が入力され、低減器810(周波数を2倍にする)及び光出力制限器814を通過してスイッチ816に到達すると、スイッチ830をターンオフするための806からの信号は存在しない。したがって伝送路807からの信号は、スイッチ830を通ってゲートから出ることができる。
【0146】
伝送路802、804から信号が入力されると、伝送路806からの信号をスイッチ816において遮断するための適切な信号にするために、低減器808、810の二つの出力が制限器814によって制限される。したがって伝送路807からの信号は、論理オアゲートから出ることができる。信号がAとBのいずれか又は両方に入力されると、論理オアゲートから1500nmの信号が出現する。これは、論理オアゲートの機能を記述する表2に示す真理値表として機能する。
【0147】
オア機能を提供する論理ゲートであって、少なくとも1つの光スイッチが第1及び第2の光スイッチを備え、信号光が活性化光の波長より長い波長を有する論理ゲートは、信号光入力を受け取る第1及び第2の論理入力と、第1の光入力に沿う光の波長を活性化光の波長まで短くするように動作する第1の波長修正器と、第2の光入力に沿う光の波長を活性化光の波長まで短くするように動作する第2の波長修正器と、第1及び第2の波長修正器からの波長修正された光を供給する第1及び第2の光通路と、第1の波長修正器及び第2の波長修正器から対応する第1及び第2の光通路を介して光を受け取って第1及び第2の光通路からの光出力を所定の光出力レベルに維持するように動作する光出力制限器と、光出力制限器からの光出力制限された光を第1の光スイッチに供給する第3の光通路と、第1の光スイッチから信号光を受け取り、受け取った光の波長を活性化光の波長まで短くするように動作する第3の波長修正器と、第3の波長修正器からの光を第2の光スイッチに供給する第4の光通路とを備える。
【0148】
次にと、論理オアゲート900の概略図である図25を参照する。光チャネル902は、論理ゲート900に第1の入力を提供する。光チャネルは、論理ゲートに光信号を運ぶ光ファイバチャネルであり、論理ゲートで半分に分割される。光のうちの半分は、905の番号が振られた周波数増大デバイスに入力される。この光は、周波数増大デバイス905から、906の番号が振られた1/2波長経路へ引き渡され、905からの光は周波数増大デバイス908からの光に対して位相外れにされ、周波数増大デバイス908からの光と出会う。1/2波長経路906からの光は、次に、論理ゲートの光と結合されて光スイッチ910に入る。論理入力Aである伝送路902からの光の残りの半分は、論理ゲートの他の光に結合されて光スイッチ910に入る。伝送路904は論理ゲートへの入力Bである。伝送路904は、論理ゲートに光信号を運ぶ光ファイバチャネルであり、論理ゲートで半分に分割される。光のうちの半分は、908の番号が振られた周波数増大デバイスに入力される。908の番号が振られた周波数増大デバイスからの光は、次に、論理ゲート内の他の光と結合され、910の番号が振られた光スイッチに入る。伝送路904からの光の残りの半分は、論理デバイスの他の光に結合されて光スイッチ910に入る。伝送路912は論理オアデバイスの出力である。
【0149】
オア機能を提供する論理ゲートであって、少なくとも1つの光スイッチが単一の光スイッチを備え、信号光が活性化光の波長より長い波長を有する論理ゲートは、信号光を受け取る第1及び第2の論理入力と、第1の論理入力で受け取った信号光の第1の部分を受け取る第1の光通路と、第1の論理入力で受け取った信号光の第2の部分を受け取る第2の光通路と、第2の論理入力で受け取った信号光の第1の部分を受け取る第3の光通路と、第2の論理入力で受け取った信号光の第2の部分を受け取る第4の光通路と、第2の光通路に沿った光の波長を活性化光の波長まで短くするように動作する第1の波長修正器と、第4の光通路に沿う光の波長を活性化光の波長まで短くするように動作する第2の波長修正器と、第1の波長修正器からの波長修正光を第2の波長修正器からの光に対して180度だけ位相外れにするように動作する光移相器とを備えており、光スイッチは、第1及び第3の光通路、第2の波長修正器及び光移相器から光を受け取る。
【0150】
表3に示す真理値表として機能する論理ノアゲートは、図24又は図25の論理オアゲートの出力に図20の論理ノットゲートを配置することによって構築される。光活性型光スイッチを利用した論理ゲートの幾つかの実施例を説明しているが、光活性型光スイッチを使用して、アンド論理ゲート、オア論理ゲート、ノア論理ゲート及びノット論理ゲートの他の実施形態を作ることも可能である。
【0151】
当業者には理解されるところであるが、本発明は、図に示し上で説明した内容に限定されない。本発明は、上で説明した様々な特徴や、以上の説明を読むことによって当業者に可能な、従来技術には存在しない変更態様のコンビネーション及びサブコンビネーションを包含する。

【特許請求の範囲】
【請求項1】
可変断面積を有する光通路と、
前記光通路に関連付けられた活性化光応答型圧電素子であって、入射する活性化光に応答してその形状が変化するように動作する活性化光応答型圧電素子と、
前記圧電素子に動作的に関連付けられ、前記活性化光応答型圧電素子の活性化光応答性を改善するための導電素子と
を備え、前記活性化光応答型圧電素子が前記光通路関連付けられ、前記活性化光応答型圧電素子が、該圧電素子の形状の変化により前記光通路の前記可変断面積を十分に変化させ、前記光通路に沿った光の通過を制御するように動作する光スイッチ。
【請求項2】
前記光通路、前記圧電素子及び前記導電素子が、第1の範囲の閾値レベル内の活性化光が前記圧電素子に入射すると、第1の範囲の波長の光の前記光通路の通過が阻止され、前記第1の範囲の閾値レベルの範囲外である第2の範囲の閾値レベル内の活性化光が前記圧電素子に入射すると、第1の範囲の波長の光の前記光通路の通過が許容されるように構成されて動作する、請求項1に記載の光スイッチ。
【請求項3】
前記導電素子が、前記圧電素子の表面に沿って広がる導電材料の層を備える、請求項1又は請求項2に記載の光スイッチ。
【請求項4】
前記圧電素子が、異なる圧電特性を有する圧電材料の少なくとも2つの層を備える、請求項1〜3のうちのいずれか1つに記載の光スイッチ。
【請求項5】
圧電材料の前記少なくとも2つの層が、異なる結晶配向を有する、請求項4に記載の光スイッチ。
【請求項6】
前記導電素子が前記圧電素子の2つの層の間に配置される、請求項4又は5に記載の光スイッチ。
【請求項7】
前記活性化光及び信号光を前記光通路に導くように動作する光結合器を更に備え、前記活性化光の少なくとも1つの特性が、前記信号光に前記通路を通過させるかどうかを制御する、請求項1〜6のうちのいずれか1つに記載の光スイッチ。
【請求項8】
可変断面積を有する光通路と、
前記光通路に関連付けられた活性化光応答型圧電素子であって、入射する活性化光に応答してその形状が変化するように動作する活性化光応答型圧電素子と
を備え、前記活性化光応答型圧電素子が、異なる圧電特性を有する圧電材料の少なくとも2つの層を備え、前記圧電素子が前記光通路に関連付けられ、前記圧電素子が、該圧電素子の形状の変化により前記光通路の前記可変断面積を十分に変化させ、前記光通路に沿った光の通過を制御するように動作する光スイッチ。
【請求項9】
前記光通路及び前記圧電素子が、第1の範囲の閾値レベル内の活性化光が前記圧電素子に入射すると、第1の範囲の波長の光の前記光通路の通過が阻止され、前記第1の範囲の閾値レベルの範囲外である第2の範囲の閾値レベル内の活性化光が前記圧電素子に入射すると、第1の範囲の波長の光の前記光通路の通過が許容されるように構成されて動作する、請求項8に記載の光スイッチ。
【請求項10】
圧電材料の前記少なくとも2つの層が、異なる結晶配向を有する、請求項8又は9に記載の光スイッチ。
【請求項11】
前記圧電素子の前記少なくとも2つの層のうちの少なくとも2つが、互いに直角の結晶配向を有する、請求項8〜10のうちのいずれか1つに記載の光スイッチ。
【請求項12】
前記活性化光及び信号光を前記光通路に導くように動作する光結合器を更に備え、前記活性化光の少なくとも1つの特性が、前記信号光に前記通路を通過させるかどうかを制御する、請求項8〜11のうちのいずれか1つに記載の光スイッチ。
【請求項13】
光によって駆動される少なくとも1つの光スイッチを備え、ノット機能、アンド機能、オア機能、ナンド機能及びノア機能のうちの少なくとも1つを有する、少なくとも1つのゲートを備えた論理ゲートであって、
前記少なくとも1つの光スイッチが、
可変断面積を有する信号光通路と、
前記光通路に関連付けられた活性化光応答型圧電素子であって、入射する活性化光に応答してその形状が変化するように動作する活性化光応答型圧電素子と
を備え、前記活性化光応答型圧電素子が前記光通路に関連付けられ、前記活性化光応答型圧電素子が、前記圧電素子の形状の変化により、前記光の前記可変断面積を十分に変化させて前記光通路に沿った信号光の通過を制御するように動作する論理ゲート。
【請求項14】
前記少なくとも1つの光スイッチに前記活性化光を供給する光通路を更に備え、前記光通路が、前記少なくとも1つの光スイッチにディジタル情報を伝達し、前記少なくとも1つの光スイッチからディジタル情報を伝達する信号光を運ぶ、請求項13に記載の論理ゲート。
【請求項15】
前記信号光が前記活性化光の波長よりも長い波長を有する、請求項14に記載の論理ゲート。
【請求項16】
前記信号光が前記活性化光の波長の約2倍の波長を有する、請求項14に記載の論理ゲート。
【請求項17】
前記信号光が1500nmの波長を有し、前記活性化光が約750nmの波長を有する、請求項15に記載の論理ゲート。
【請求項18】
ノット機能を提供し、前記少なくとも1つの光スイッチが単一の光スイッチを備え、前記信号光が前記活性化光の波長の約2倍の波長を有する、請求項14〜17のうちのいずれか1つに記載の論理ゲート。
【請求項19】
アンド機能を提供し、前記少なくとも1つの光スイッチが単一の光スイッチを備え、前記信号光が前記活性化光の波長よりも長い波長を有する、請求項14〜17のうちのいずれか1つに記載の論理ゲートであって、更に、
信号光を受け取る第1及び第2の論理入力と、
前記第1の論理入力で受け取った前記信号光の第1の部分を受け取る第1の光通路と、
前記第1の論理入力で受け取った前記信号光の第2の部分を受け取る第2の光通路と、
前記第2の論理入力で受け取った前記信号光の第1の部分を受け取る第3の光通路と、
前記第2の論理入力で受け取った前記信号光の第2の部分を受け取る第4の光通路と、
前記第2の光通路に沿った光の波長を前記活性化光の波長まで短くするように動作する第1の波長修正器と、
前記第4の光通路に沿った光の波長を前記活性化光の波長まで短くするように動作する第2の波長修正器と、
前記第2の光通路に沿った前記光の位相を前記活性化光の位相に整合させるように動作する第1の位相整合器と、
前記第4の光通路に沿った前記光の位相を前記活性化光に整合させる第2の位相整合器と、
前記第2の光通路に沿って波長が短くされ位相整合された光と前記第4の光通路に沿って波長が短くされ位相整合された光とを互いに180度だけ位相外れにするよう動作する光移相器と、
を備え、前記第1の光通路及び前記第3の光通路に沿った光が、前記光スイッチへの信号光入力として印加され、前記第2の光通路及び前記第4の光通路に沿って波長が短くされ位相整合された光が、追加の活性化光と共に、活性化光として前記光スイッチに供給される論理ゲート。
【請求項20】
ナンド機能を提供し、前記第1の光スイッチが第1の光スイッチ及び第2の光スイッチを備え、前記信号光が前記活性化光の波長より長い波長を有する、請求項14〜17のうちのいずれか1つに記載の論理ゲートであって、更に、
信号光入力を受け取る第1及び第2の論理入力と、
前記第1の入力の信号光の波長を前記活性化光の波長まで短くするように動作する第1の波長修正器と、
前記第2の入力の信号光の波長を前記活性化光の波長まで短くするように動作する第2の波長修正器と、
前記第1の光スイッチからの信号光の波長を短くするように動作する第3の波長修正器と、
前記第1の波長修正器からの前記光の一部を第1の光吸収器に供給する第1の光通路と、
前記第1の波長修正器からの前記光の一部を前記第1の光スイッチに供給する第2の光通路と、
前記第2の波長修正器からの前記光の一部を第2の光吸収器に供給する第3の光通路と、
前記第2の波長修正器からの前記光の一部を前記第1の光スイッチに供給する第4の光通路と、
前記第1の光スイッチからの信号光を前記第3の波長修正器に供給する第5の光通路と、
前記第3の波長修正器からの光波長修正された光を活性化光として前記第2の光スイッチに供給する第6の光通路と
を備えた論理ゲート。
【請求項21】
オア機能を提供し、前記少なくとも1つの光スイッチが単一の光スイッチを備え、前記信号光が前記活性化光の波長よりも長い波長を有する、請求項14〜17のうちのいずれか1つに記載の論理ゲートであって、更に、
信号光入力を受け取る第1及び第2の論理入力と、
前記第1の光入力に沿った光の波長を前記活性化光の波長まで短くするように動作する第1の波長修正器と、
前記第2の光入力に沿った光の波長を前記活性化光の波長まで短くするように動作する第2の波長修正器と、
前記第1の波長修正器からの波長修正された光の位相を活性化光の位相に整合させるように動作する第1の位相整合器と、
前記第2の波長修正器からの光の位相を前記活性化光の位相に整合させるように動作する第2の位相整合器と、
前記第1の位相整合器からの前記光の一部を第1の光吸収器に供給する第1の光通路と、
前記第2の位相整合器からの前記光の一部を第2の光吸収器に供給する第2の光通路と、
第1の光移相器と、
第2の光移相器と、
前記第1の位相整合器からの前記光の一部を前記第1の光移相器に供給し、それにより前記第1の位相整合器からの光を前記活性化光に対して位相外れにする第3の光通路と、
前記第2の位相整合器からの前記光の一部を第2の光移相器に供給し、それにより前記第1の位相整合器からの光を前記供給活性化光に対して位相外れにする第4の光通路と、
前記第1の光移相器からの光を前記光スイッチに供給する第5の光通路と、
前記第2の光移相器からの光を前記光スイッチに供給する第6の光通路と
を備え、前記光スイッチが、前記第5及び第6の光通路から前記活性化光及び信号光を受け取る論理ゲート。
【請求項22】
オア機能を提供し、前記少なくとも1つの光スイッチが第1及び第2の光スイッチを備え、前記信号光が前記活性化光の波長よりも長い波長を有する、請求項14〜17のうちのいずれか1つに記載の論理ゲートであって、更に、
信号光入力を受け取る第1及び第2の論理入力と、
前記第1の光入力に沿った光の波長を前記活性化光の波長まで短くするように動作する第1の波長修正器と、
前記第2の光入力に沿った光の波長を前記活性化光の波長まで短くするように動作する第2の波長修正器と、
前記第1及び第2の波長修正器からの波長修正された光を供給する第1及び第2の光通路と、
前記第1の波長修正器及び第2の波長修正器から前記それぞれの第1及び第2の光通路を介して光を受け取る光出力制限器であって、前記第1の波長修正器及び第2の波長修正器からの光出力を所定の光出力レベルに維持するように動作する光出力制限器と、
前記光出力制限器からの光出力制限された光を前記第1の光スイッチに供給する第3の光通路と、
前記第1の光スイッチから信号光を受け取る第3の波長修正器であって、受け取った光の波長を前記活性化光の波長まで短くするように動作する第3の波長修正器と、
前記第3の波長修正器からの光を前記第2の光スイッチに供給する第4の光通路と
を備えた論理ゲート。
【請求項23】
オア機能を提供し、前記少なくとも1つの光スイッチが単一の光スイッチを備え、前記信号光が前記活性化光の波長よりも長い波長を有する、請求項14〜17のうちのいずれか1つに記載の論理ゲートであって、更に、
信号光を受け取る第1及び第2の論理入力と、
前記第1の論理入力で受け取った前記信号光の第1の部分を受け取る第1の光通路と、
前記第1の論理入力で受け取った前記信号光の第2の部分を受け取る第2の光通路と、
前記第2の論理入力で受け取った前記信号光の第1の部分を受け取る第3の光通路と、
前記第2の論理入力で受け取った前記信号光の第2の部分を受け取る第4の光通路と、
前記第2の光通路に沿った光の波長を前記活性化光の波長まで短くするように動作する第1の波長修正器と、
前記第4の光通路に沿った光の波長を前記活性化光の波長まで短くするように動作する第2の波長修正器と、
前記第1の波長修正器からの波長修正された光を前記第2の波長修正器からの前記光に対して180度だけ位相外れにするように動作する光移相器と
を備え、前記光スイッチが、前記第1及び第3の光通路、前記第2の波長修正器及び前記光移相器から光を受け取る論理ゲート。
【請求項24】
前記少なくとも1つの光スイッチが、請求項1〜13のうちのいずれか1つに従って構成される、請求項14〜23のうちのいずれか1つに記載の論理ゲート。
【請求項25】
請求項14〜24のうちのいずれか1つに記載の論理ゲートを備えた論理機能。
【請求項26】
信号光を誘導するように構成された信号チャネルと、
前記信号チャネルに隣接する圧電素子と、
前記圧電素子に隣接する導電層と
を備えた光スイッチであって、
前記圧電素子に活性化光を印加することによって前記信号チャネルを通る前記信号光の通過が制御され、前記圧電素子に印加される電界が前記活性化光に応答して前記導電層によって強められる光スイッチ。
【請求項27】
前記導電層が前記圧電素子の表面に付着される、請求項26に記載の光スイッチ。
【請求項28】
前記圧電素子に前記活性化光を印加することによって、前記信号光が前記信号チャネルを通過することができないように前記圧電素子の形状を変化させる、請求項26又は27に記載の光スイッチ。
【請求項29】
前記信号チャネルが、圧縮性材料が充填されたチャンバを備える、請求項26に記載の光スイッチ。
【請求項30】
前記圧電素子が前記チャンバの一部を形成する、請求項29に記載の光スイッチ。
【請求項31】
前記圧電素子が、異なる圧電特性を有する少なくとも2つの層を備える、請求項26に記載の光スイッチ。
【請求項32】
前記圧電素子の2つの層が、異なる結晶配向を有する、請求項26に記載の光スイッチ。
【請求項33】
前記導電層が前記圧電素子の2つの層の間に付着される、請求項26に記載の光スイッチ。
【請求項34】
光スイッチを動作させるための方法であって、
圧電素子と該圧電素子に隣接する少なくとも1つの導電層とを備える光スイッチに信号光を印加するステップと、
前記圧電素子に活性化光を印加して前記光スイッチの状態を変化させるステップと
を含み、前記圧電素子に印加される電界が、印加される前記活性化光に応答して前記導電層によって強められる方法。
【請求項35】
前記導電層が前記圧電素子の表面に付着される、請求項34に記載の方法。
【請求項36】
前記圧電素子に前記活性化光を印加するステップによって、前記信号光が前記光スイッチを通過できないように前記圧電素子の形状を変化させる、請求項35に記載の方法。
【請求項37】
前記活性化光を印加するステップが、互いに位相が外れた2つの光信号を前記圧電素子に印加するステップと、前記光信号のうちの一方を除去し、他方の前記光信号を前記活性化光として残すステップとを含む、請求項34に記載の方法。
【請求項38】
前記圧電素子が、異なる圧電特性を有する少なくとも2つの層を備える、請求項34に記載の方法。
【請求項39】
前記圧電素子の2つの層が、異なる結晶配向を有する、請求項34に記載の方法。
【請求項40】
前記導電層が前記圧電素子の2つの層の間に付着される、請求項34に記載の方法。
【請求項41】
光スイッチを動作させるための方法であって、
少なくとも1つの導電層に隣接する圧電素子に隣接する信号チャネルに信号光を印加するステップと、
前記圧電素子に活性化光を印加して、前記信号光の前記信号チャネルの通過が阻止されるように前記圧電素子の形状を変化させるステップと
を含み、前記圧電素子に印加される電界が、印加される前記活性化光に応答して前記導電層によって強められる方法。
【請求項42】
前記圧電素子が、異なる圧電特性を有する少なくとも2つの層を備える、請求項41に記載の方法。
【請求項43】
前記導電層が、前記圧電素子の2つの層の間に付着される、請求項42に記載の方法。
【請求項44】
信号光を誘導するように構成された信号チャネルと、
前記信号チャネルに隣接する圧電素子と、
前記圧電素子に隣接する導電層と、
前記信号光の前記信号チャネルの通過が阻止されるように、前記圧電素子に活性化光を印加して前記圧電素子の形状を変化させる手段と
を備え、前記圧電素子に印加される電界が、印加される前記活性化光に応答して前記導電層によって強められる光スイッチ。
【請求項45】
前記信号光及び前記活性化光を前記信号チャネルに結合するための手段を更に備える、請求項44に記載の光スイッチ。
【請求項46】
活性化光を印加するための前記手段が活性化光源を備える、請求項44に記載の光スイッチ。
【請求項47】
前記圧電素子が、異なる圧電特性を有する少なくとも2つの層を備える、請求項44に記載の光スイッチ。
【請求項48】
前記導電層が、前記圧電素子の2つの層の間に付着される、請求項47に記載の光スイッチ。
【請求項49】
光スイッチを動作させるための方法であって、
異なる圧電特性を有する圧電材料の少なくとも2つの層を備えた圧電素子を有する光スイッチに信号光を印加するステップと、
前記圧電素子に活性化光を印加して前記光スイッチの状態を変化させるステップと
を含む方法。
【請求項50】
前記信号光が前記光スイッチを通過することができないよう、前記圧電素子に前記活性化光を印加して前記圧電素子の形状を変化させる、請求項49に記載の方法。
【請求項51】
前記圧電素子の形状の変化によって、前記光スイッチの信号チャネルの寸法を変化させる、請求項50に記載の方法。
【請求項52】
前記活性化光を印加するステップが、互いに位相が外れた2つの光信号を前記圧電素子に印加するステップと、前記光信号のうちの一方を除去し、他方の前記光信号を前記活性化光として残すステップとを含む、請求項49に記載の方法。
【請求項53】
前記光スイッチが、前記圧電素子に隣接する導電層を更に備え、前記圧電素子に印加される電界が、印加される前記活性化光に応答して前記導電層によって強められる、請求項49に記載の方法。
【請求項54】
前記圧電素子の2つの層が、異なる結晶配向を有する、請求項49に記載の方法。
【請求項55】
信号光を誘導するように構成された信号チャネルと、
前記信号チャネルに隣接する圧電素子であって、異なる圧電特性を有する圧電材料の少なくとも2つの層を備えた圧電素子と
を備え、前記圧電素子に活性化光を印加することによって、前記信号チャネルを通る前記信号光の通過を制御する光スイッチ。
【請求項56】
前記圧電素子の2つの層が、異なる結晶配向を有する、請求項55に記載の光スイッチ。
【請求項57】
前記圧電素子の前記2つの層が、直交する結晶配向を有する、請求項56に記載の光スイッチ。
【請求項58】
前記圧電素子に隣接する導電層を更に備え、前記圧電素子に印加される電界が、前記活性化光に応答して前記導電層によって強められる、請求項55に記載の光スイッチ。
【請求項59】
前記導電層が、前記圧電素子の表面に付着される、請求項58に記載の光スイッチ。
【請求項60】
前記導電層が、前記圧電素子の2つの層の間に付着される、請求項58に記載の光スイッチ。
【請求項61】
前記圧電素子に前記活性化光を印加して、前記信号光が前記光スイッチを通過することができないように前記圧電素子の形状を変化させる、請求項55に記載の光スイッチ。
【請求項62】
前記信号チャネルが、圧縮性材料が充填されたチャンバを備える、請求項55に記載の光スイッチ。
【請求項63】
前記圧電素子が、前記チャンバの一部を形成する、請求項62に記載の光スイッチ。
【請求項64】
光スイッチを動作させるための方法であって、
信号チャネルに信号光を印加するステップであって、前記信号チャネルが、異なる圧電特性を有する圧電材料の少なくとも2つの層を有する圧電素子に隣接するステップと、
前記圧電素子に活性化光を印加して、前記信号光の前記信号チャネルの通過が阻止されるように前記圧電素子の形状を変化させるステップと
を含む方法。
【請求項65】
前記光スイッチが前記圧電素子に隣接する導電層を備え、前記圧電素子に印加される電界が、印加される前記活性化光に応答して前記導電層によって強められる、請求項64に記載の方法。
【請求項66】
信号光を誘導するように構成された信号チャネルと、
前記信号チャネルに隣接する圧電素子であって、異なる圧電特性を有する少なくとも2つの異なる層を備えた圧電素子と、
前記圧電素子に活性化光を印加して、前記信号光の前記信号チャネルの通過が阻止されるように前記圧電素子の形状を変化させる手段と
を備えた光スイッチ。
【請求項67】
前記圧電素子の2つの層が、異なる結晶配向を有する、請求項66に記載の光スイッチ。
【請求項68】
前記信号光及び前記活性化光を前記信号チャネルに結合するための手段を更に備える、請求項66に記載の光スイッチ。
【請求項69】
活性化光を印加するための前記手段が活性化光源を備える、請求項66に記載の光スイッチ。
【請求項70】
前記圧電素子に隣接する導電層を更に備え、前記圧電素子に印加される電界が、印加される前記活性化光に応答して前記導電層によって強められる、請求項66に記載の光スイッチ。
【請求項71】
前記導電層が前記圧電素子の主表面に付着される、請求項70に記載の光スイッチ。

【図1A】
image rotate

【図1B】
image rotate

【図2A】
image rotate

【図2B】
image rotate

【図3】
image rotate

【図4A】
image rotate

【図4B】
image rotate

【図5A】
image rotate

【図5B】
image rotate

【図6A】
image rotate

【図6B】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10A】
image rotate

【図10B】
image rotate

【図10C】
image rotate

【図10D】
image rotate

【図10E】
image rotate

【図11A】
image rotate

【図11B】
image rotate

【図12A】
image rotate

【図12B】
image rotate

【図13A】
image rotate

【図13B】
image rotate

【図14A】
image rotate

【図14B】
image rotate

【図15A】
image rotate

【図15B】
image rotate

【図16A】
image rotate

【図16B】
image rotate

【図17A】
image rotate

【図17B】
image rotate

【図18A】
image rotate

【図18B】
image rotate

【図19A】
image rotate

【図19B】
image rotate

【図20】
image rotate

【図21】
image rotate

【図22】
image rotate

【図23】
image rotate

【図24】
image rotate

【図25】
image rotate


【公表番号】特表2010−526322(P2010−526322A)
【公表日】平成22年7月29日(2010.7.29)
【国際特許分類】
【出願番号】特願2010−502636(P2010−502636)
【出願日】平成20年4月10日(2008.4.10)
【国際出願番号】PCT/IL2008/000494
【国際公開番号】WO2008/126080
【国際公開日】平成20年10月23日(2008.10.23)
【出願人】(510089498)ガルトロニクス・オプティカル・リミテッド (1)
【Fターム(参考)】