説明

光学クロスコネクト

【課題】パワー損失を減らし、フレキシブルな周波数ルーティング機能を有する光学コネクトシステムを提供すること。
【解決手段】本発明の光学クロスコネクト100は、複数の入力ファイバ112から光学信号を受領するレンズ列114を有する。このレンズ列は複数のレンズ素子から構成され、各レンズ素子は、光学信号をMEMSミラー列118、122に向ける。即ち、集光する。このMEMSミラー列は、複数のミラー素子を有し、各素子は制御信号を所望のミラー素子に加えることにより一つあるいは複数の回転軸の周囲で傾斜する。かくして光学信号は様々なパスに沿って様々な出力ファイバ128に向けることが出来る。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、光ファイバ通信システムに関し、特にマイクロ電子機械システム(micro Electromechanical systems;MEMS)傾斜ミラー列を用いた光学クロスコネクト構造に関する。
【背景技術】
【0002】
光ファイバ通信システムにおいては、信号のルーティングがデータを搬送している光学信号を目的とする場所に向けるために必要である。既存のルーティング技術は、入力ファイバと出力ファイバとの間の光学信号の結合の効率が悪いために光学パワー損失を受ける。このため光学パワーを光学システム内に注入することによりパワー損失を補うために用いられる光学パワーソース(例、ポンプレーザ)への依存度を増すことになる。光学パワーソースが必要となることにより光学システムの全体的なコストが上昇する。
【0003】
信号ルーティングに対する別の必須要件は、複数の入力ファイバあるいはポートの一つから受信した信号を複数の出力ファイバあるいはポートの何れかに、光学信号の周波数と無関係に向けることを特徴とするが出来ることである。公知の光学信号のルーターは、周波数依存性があるために信号の周波数に基づいて出力ポートにそれぞれが別々の波長を有する複数の信号をルーティングすることに対し影響力を有する。例えば、米国特許出願第09/414,622号(1999年10月8日出願)においては周波数が隣接する複数の波長は、ランダムに選択された出力ファイバではなく、空間的に隣接する出力ファイバにルーティングされる。
【発明の概要】
【発明が解決しようとする課題】
【0004】
従って、光学コネクトシステムはパワー損失を減らし、フレキシブルな周波数ルーティング機能を有するのが好ましい。
【課題を解決するための手段】
【0005】
従来公知の光学クロスコネクトに対する改良は、入力光ファイバから出力光ファイバに光学信号を向けるための傾斜したマイクロ電子機械システム(MEMS)ミラーの列を用いた光学クロスコネクトを提供することにより実現できる。本発明の光学クロスコネクトは、複数の入力ファイバから光学信号を受領するレンズ列を有する。このレンズ列は複数のレンズ素子から構成され、各レンズ素子は、光学信号をMEMSミラー列に向ける。即ち、集光する。このMEMSミラー列は、複数のミラー素子を有し、各素子は制御信号を所望のミラー素子に加えることにより一つあるいは複数の回転軸の周囲で傾斜する。かくして光学信号は様々なパスに沿って様々な出力ファイバに向けることが出来る。
【0006】
本発明の一実施例においては、入力用と出力用のレンズ列は入力用と出力用のMEMSミラー列と共に用いられる。この入力用レンズは入力光学信号を入力用のMEMS列に向けて、そしてこの入力用MEMS列が各信号を各ミラーの傾斜方向に関連した方向に反射させる。この反射した信号を出力用のMEMSミラー列が受光し、更にそれを出力用レンズ列に向けて反射して出力用ファイバと結合する。
【0007】
本発明の他の実施例においては、入力用と出力用のレンズ列は、共通の基板上に形成され、反射表面がそれらの間に配置されて入力用と出力用のMEMSミラー列が第1の基板とは反対の場所に配置された第2の共通基板上に形成される。この反射表面は、入力用のMEMS列から反射された光学信号を受光し、それらを出力用のMEMS列に向ける。
【0008】
本発明の更に別の実施例においては、透過特性を有する光学素子を第1のMEMSミラーと第2のMEMSミラーと光学的に導通する場所に配置する。この光学素子は、光学信号を透過あるいは反射の何れかでもって第1と第2のミラー列との間で光学信号を向けて第1光ファイバ列と第2光ファイバ列の間に光学信号を選択的に転送する。
【図面の簡単な説明】
【0009】
【図1】本発明と共に用いられるMEMSミラー列の一例を表す平面図。
【図2】本発明の一実施例による光学クロスコネクトを表す図。
【図3】図2の光学クロスコネクトの他の実施例を表す図。
【図4】図2の光学クロスコネクトの更に別の実施例を表す図。
【図5】本発明の更に別の実施例による「折り曲げられた」光学クロスコネクトを表す図。
【発明を実施するための形態】
【0010】
マイクロ電子機械システム(MEMS)技術を用いて実現した2軸の傾斜ミラーの列により、光学システムで用いられる大規模な光学クロスコネクトが構成できる。光学クロスコネクトを用いて複数の入力光学パスを複数の出力光学パスに接続する。光学クロスコネクトの一般的な要件は、何れかの入力も、何れかの出力に接続できることである。ミラー列10の例を図1に示す。このミラー列10は、スプリング14に搭載され電極(図示せず)により制御された複数の傾斜ミラー12を有する。各傾斜ミラー12は、100−500μmの大きさで四角形、円形、楕円形のような形状をしており、電極に加えられた電圧により決定される傾斜角でもってX−Y軸の周囲に回転、即ち、傾斜する。ミラー列10の動作の詳細は、米国特許出願第09/415,178号(出願日;1999年10月8日)に開示されている。複数のミラー列10を用いて光学クロスコネクトを構成する一般的な技術は、米国特許出願第09/410,586号(出願日;1999年10月1日)に開示されている。
【0011】
本発明によれば1つあるいは複数のMEMS傾斜ミラー列をレンズ列と共に用いることにより様々な光学クロスコネクトの構成がコンパクトなサイズ(即ち、クロスコネクト構成要素の間のスペースが最小)で光学パワー損失が最小となるようなものが実現できる。本発明によるクロスコネクト100を図2に示す。クロスコネクト100は、従来公知の列として形成した複数の入力用光ファイバ列112を介して光学信号108を受光する。入力用光ファイバ列112は、説明を容易にするために4本の入力用光ファイバ列112a,入力用光ファイバ列112b,入力用光ファイバ列112c,入力用光ファイバ列112dを有する一次元列として示している。本明細書における光ファイバ列112と他の光ファイバ列は2次元のNxNの列とする。
【0012】
入力用光ファイバ列112はコリメートレンズとして機能する入力用レンズ列114に光学信号108を送る。入力用レンズ列114は入力用光ファイバ列112に対し、各レンズは光学信号108からのペンシルビーム116を生成できる光ファイバと光学的に通じるように配置される。ビーム116aは入力用光ファイバ列112aにより搬送された信号から生成され、ビーム116dは入力用光ファイバ列112dにより搬送された信号から生成される。以下同様である。
【0013】
第1のMEMS傾斜ミラー列である118は、入力列とも称し、入力用レンズ列114と整合して配置され、その結果傾斜ミラー12がビーム116を受光する。ミラー素子は米国特許出願第09/415,178号に開示された方法で傾斜して、ビーム116を第2の即ち出力用MEMSミラー列である122に反射する。そしてこのMEMS列122は、MEMS列118と光学的に導通した位置に配置されている。MEMS列118内の各ミラー素子の傾斜角に依存して反射信号は、MEMS列122内の特定のミラー素子に選択的に向けられる。この原理を示すためにビーム116aは、反射ビーム120aと反射ビーム120a’を生成し、ビーム116dは、反射ビーム120dと反射ビーム120d’を反射するように示している。これらのビームをMEMS列122内のミラー素子が受光し、それをビーム124として出力用レンズ列126に向ける。出力用ファイバ列128は、出力用レンズ列126と整合して光学信号129を受領する。斯くして出力用レンズ列126はビーム124を出力用ファイバ列128に結合する。
【0014】
クロスコネクト100は各出力ファイバを出力ミラー列内のミラーに1対1でマッピングする。これはシングルモードファイバで必要であるがその理由は、パワー損失を低く押さえるために入力ビームと出力ビームが光ファイバの軸と同軸で整合するのに必要な開口数が小さいためである。図2のクロスコネクトによりファイバ列とミラー列との十分なスペースが必要とされるミラー角のズレを制限することが出来る。
【0015】
回析損失を低下させるような通常のスペース寸法は、50−100mmである。ミラー列とレンズ列とファイバ列が同一面上にある。即ち、入力用光ファイバ列112と入力用レンズ列114とMEMS列122が互いに同一面上にある場合には出力用ファイバ列128,出力用レンズ列126,MEMS列118は互いに同一面上にあり、かくして2つの類似のモノリシックなブロックが形成できる。このクロスコネクトの組立は、1つの6軸整合を必要とするだけである。
【0016】
本発明の他のクロスコネクト200を図3に示す。図2のクロスコネクト100と同様にクロスコネクト200は、入力用レンズ列214と出力用レンズ列226とを有し、それぞれ入力用光ファイバ列212と出力用ファイバ列228とを通過する光学信号を通じさせる。入力用ミラー列MEMS列218と出力用ミラー列222は入力ファイバ列と出力ファイバ列の間で光学信号を向けることが出来るように入力用レンズ列214と出力用レンズ列226とから離間している。クロスコネクト100とは異なり図3のデバイスは、クロスコネクト網の反対側に配置されたMEMSミラー列とレンズ列とを有し、これにより製造が容易となる。特にミラー列は第1の共通基板上にモノリシックに集積され、レンズ列とファイバ列は第2の共通基板上にモノリシックに集積される。MEMSミラー列の間の信号ルーティングを行うために入力用レンズ列214と出力用レンズ列226は互いに離間して共通基板上に形成され、その結果それらの間に反射素子230が配置される。反射素子230は、個別の平面ミラーあるいはレンズ基板上に形成された反射コーティング材料(例、金)でMEMS列218とMEMS列222との間の光学信号を通信するよう配置されている。レンズ列が配置されると反射ビーム220は同一面のミラー列で1個の6軸整合が必要とされるだけである。
【0017】
図4に図3の変形例をクロスコネクト300として示す。図3との主な違いは反射素子230を取り除いたことである。同図に示すように、MEMS列318とMEMS列322は、入力用レンズ列314,出力用レンズ列326を含む基板面に対し傾斜しており、その結果光学信号は、ミラー列との間を直接やりとりされる。この実施例においては各ファイバ列(例、入力用光ファイバ列312)と対向するミラー列(例、MEMS列318)との間の最大距離は小さい。これは重要な設計上の考慮事項であり、特にファイバ列の正確な方向付けが弱いときにそうである。ミラー列内のミラー素子は、スイッチの接続(例、ルーティング機能)を調整するためのみならず、ファイバ列の不完全性を補うためにも用いることが出来る。
【0018】
図5は、MEMSミラー列420に対しオフセット構造のミラー430を採用した別のクロスコネクト400を示す。この実施例においては1つのファイバ列410と1つのレンズ列416と1つのMEMSミラー列420が折り重なった状態のクロスコネクト構成で用いられる。1本のファイバ列は、組み合わされた入力/出力列として機能する。入力信号412は 光ファイバ414によりレンズ列416に与えられ、MEMSミラー列420a上にイメージを形成する。その後このビームはミラー430に反射され、更にMEMSミラー列420bに反射して戻され、レンズ列416を介して出力用ファイバ422に出力する。この構成においては入力ポートと出力ポートとの間の区別は存在しない。斯くして1つのポートを使用せずに32×32のミラー列でもってこのクロスコネクトは、1×1023のスイッチ、あるいは3411×2のスイッチの列、あるいは512×512の光学クロスコネクトとして用いることが出来る。他の変形例も存在する。例えば、クロスコネクトの要素の他の組み合わせ(例、2個の1×128のスイッチ、64個の2×2のスイッチ、1個の256×256スイッチを32×32ミラー列と共に使用することが出来る)である。
【符号の説明】
【0019】
10 ミラー列
12 傾斜ミラー
14 スプリング
100,200,300 クロスコネクト
108,208,308 光学信号
112,212,312 入力用光ファイバ列
114,214,314 入力用レンズ列
116,216,316 ビーム
118,218,318 MEMS列
120,220 反射ビーム
122,222,322 MEMS列
124,224,324 ビーム
126,226,326 出力用レンズ列
128,228,328 出力用ファイバ列
129,229,329 光学信号
230 反射素子
400 クロスコネクト
410 ファイバ列
412 入力信号
414 光ファイバ
416 レンズ列
418 ビーム
420 MEMSミラー列
430 ミラー
422 出力用ファイバ

【特許請求の範囲】
【請求項1】
複数の入力用光ファイバから受光した光学信号を複数の出力ファイバに向ける光学クロスコネクトにおいて、
複数の入力用光ファイバから光学信号を受光し、この光学信号を方向づけるよう配置されたレンズ列と、
複数のミラー素子を有するMEMSミラー列と、
から成り、前記ミラー素子は、ミラー素子が選択的に傾斜可能な回転軸を有し、
前記ミラー列は、前記レンズ列により向けられた光学信号を受光し、この向けられた光学信号を複数の出力用光ファイバに反射するよう配置される
ことを特徴とする光学クロスコネクト。
【請求項2】
前記レンズ列は、前記MEMSミラー列から反射された光学信号を受光し、この反射された光学信号を前記複数の出力用光ファイバに向ける
ことを特徴とする請求項1記載の光学クロスコネクト。
【請求項3】
前記各回転軸は、第1の回転軸と第2の回転軸とを有し、
前記各ミラー素子は、前記第1の回転軸と第2の回転軸に対し傾斜可能である
ことを特徴とする請求項1記載の光学クロスコネクト。
【請求項4】
前記MEMSミラー列は、入力用ミラー列と出力用ミラー列とを有し、
前記出力用ミラー列は、前記入力用ミラー列と光学的に導通するよう配置され、前記入力用ミラー列からの反射された光学信号を受光し、前記受光し反射された光学信号を前記複数の出力用光ファイバに向ける
ことを特徴とする請求項1記載の光学クロスコネクト。
【請求項5】
前記レンズ列は、複数の入力用光ファイバから光学信号を受光する入力用レンズ列を有し、
前記光学信号を複数の出力用光ファイバに向ける、前記MEMSミラー列と光学的に導通する出力用レンズ列
を更に有することを特徴とする請求項1記載の光学クロスコネクト。
【請求項6】
前記レンズ列は、前記複数の入力用光ファイバから光学信号を受光し、この受光した光学信号を前記入力用ミラー列に向ける入力用レンズ列を有し、
前記出力用ミラー列から光学信号を受光し、この受光した光学信号を前記複数の出力用光ファイバに向ける、前記MEMSミラー列と光学的に導通した出力用レンズ列
を更に有することを特徴とする請求項4記載の光学クロスコネクト。
【請求項7】
前記入力用レンズ列は、前記出力用レンズ列と同一面にある
ことを特徴とする請求項6記載の光学クロスコネクト。
【請求項8】
前記入力用レンズ列と出力用レンズ列とは互いに空間を形成するよう離間して共通基板上に形成され、
前記入力用ミラー列からの光学信号を受光し、この光学信号を前記出力用ミラー列に向ける、前記空間上に配置される反射素子
を更に有することを特徴とする請求項7記載の光学クロスコネクト。
【請求項9】
前記複数の入力用光ファイバと前記複数の出力用光ファイバが光ファイバ列を構成し、
前記MEMSミラー列から光学信号を受光し、この受光した光学信号をMEMSミラー列に反射して戻す、出力用ミラー列に向ける、前記MEMSミラー列と光学的に導通した位置に配置された反射素子を有し、
前記反射された光学信号は、MEMSミラー列により前記レンズ列に向けられて前記光ファイバ列が受光する
ことを特徴とする請求項1記載の光学クロスコネクト。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate


【公開番号】特開2010−134472(P2010−134472A)
【公開日】平成22年6月17日(2010.6.17)
【国際特許分類】
【出願番号】特願2010−3906(P2010−3906)
【出願日】平成22年1月12日(2010.1.12)
【分割の表示】特願2000−350490(P2000−350490)の分割
【原出願日】平成12年11月17日(2000.11.17)
【出願人】(596092698)アルカテル−ルーセント ユーエスエー インコーポレーテッド (965)
【Fターム(参考)】