説明

光学活性ハロヒドリン誘導体およびそれを用いた光学活性エポキシアルコール誘導体の製造法

医薬品中間体として有用な光学活性エポキシアルコール誘導体を、安価で入手可能な原料から、簡便かつ工業的に安全に実施可能な方法、ならびにそれらの重要新規中間体化合物ハロヒドリン誘導体を提供する。また、ハロヒドリンをトリアゾールのスルホンアミド体と反応させることにより短工程でトリアゾール系抗真菌剤中間体を製造するプロセスを提供する。光学活性置換プロピオン酸エステル誘導体を塩基存在下、ハロ酢酸誘導体と反応させることにより、光学活性ハロケトン誘導体とし、次いでアリール金属化合物と反応させて立体選択的に得られるハロヒドリン誘導体を水酸基上置換基の脱離、塩基によるエポキシ化により光学活性なエポキシアルコール誘導体を製造する。また、ハロヒドリン誘導体をトリアゾールのスルホンアミド体と反応させることにより短工程でトリアゾール系抗真菌剤中間体を製造する。

【発明の詳細な説明】
【技術分野】
本発明は、医薬分野をはじめ多方面において製造上の重要な中間体化合物である光学活性エポキシアルコール誘導体の新規製造法に関するものであり、加えて、当該化合物を製造するにあたり重要な中間原料となる新規な光学活性ハロヒドリン誘導体に関するものである。また、光学活性ハロヒドリンとスルホン酸トリアゾールアミドを反応させることによるトリアゾール系抗真菌剤中間体の製造法に関するものである。
【背景技術】
2−アリール−3−メチル−2−[(1H−1,2,4−トリアゾール−1−イル)メチル]オキシラン化合物や2−アリール−3−メチル−1−(1H−1,2,4−トリアゾール−1−イル)−2,4−ブタンジオール化合物、特に、2位のアリール基が2,4−ジフルオロフェニル基や2,5−ジフルオロフェニル基である化合物はトリアゾール系抗真菌剤の重要な中間体であることが知られている(特開平2−191262、特開平3−128338、特開平10−306079、特開平8−165263、US6300353)。
2−アリール−3−メチル−2−[(1H−1,2,4−トリアゾール−1−イル)メチル]オキシラン化合物の製造法としては、
1)L−乳酸と1,3−ジフルオロベンゼンから4工程かけて製造される光学活性塩化アリル誘導体の立体選択的オスミウム酸化反応を鍵反応として、3工程にて合成される方法(特開平2−191262)。
2)同じくL−乳酸と1,3−ジフルオロベンゼンから6工程で製造される光学活性α−ケトアルコール誘導体に対するGrignard試薬の立体選択的付加反応を経て、さらに3工程から9工程かけて合成される方法(特開平2−191262、特開平10−212287)。
3)D−乳酸から3工程をかけて製造される光学活性α−ケトアルコール誘導体に対する立体選択的エポキシ化反応を経て、さらに3工程かけて合成される方法(特開平10−306079、US6300353)。
4)塩化クロロ酢酸と1,3−ジフルオロベンゼンから7工程かけて製造されるアリルアルコール誘導体を、シャープレスらによって開発された不斉酸化反応を鍵反応とし、さらに2工程で製造する方法(Synlett 1110−1112、1995)などが知られている。
また、2−アリール−3−メチル−1−(1H−1,2,4−トリアゾール−1−イル)−2,4−ブタンジオール化合物は、光学活性3−ヒドロキシ−2−メチルプロピオン酸エステル化合物から5工程かけて製造される3−アリール−4−ブテン−4−アルコキシ−1−ブテン化合物の立体選択的ジヒドロキシ化を鍵反応とし、さらに3工程をかけて製造される(特開平8−165263)。
さらに、上記中間体2−アリール−3−メチル−2−[(1H−1,2,4−トリアゾール−1−イル)メチル]オキシラン化合物の重要原料と位置付けられるのが光学活性1,2−エポキシアルコール体、すなわち1,2−エポキシ−2−アリールブタン−3−オールであるが、これは、L−乳酸および芳香族化合物から4工程以上かけて合成されるアリルアルコール誘導体を、金属触媒存在下、tert−ブチルヒドロペルオキシドを用いて立体選択的に酸化する方法が知られている(特開平2−191262)。
しかしながら、(2R、3S)−2−アリール−3−メチル−1−(1H−1,2,4−トリアゾール−1−イル)−2,4−ブタンジオールの製造法については、高価でかつ毒性が極めて高いことが知られているオスミウム酸化物やジシクロヘキシルカルボジイミドを使用しなければならないなど安全面、コスト面の問題の他に、入手容易な原料から始めて9工程も必要とし、簡便な方法は知られていなかった。
また、光学活性1,2−エポキシアルコールの製造では酸化剤として過酸を使用しなければならず、工業的に見た場合、安全上の問題を考えると大量での製造には問題がある。さらに、上記の酸化反応はL−乳酸由来の水酸基不斉点を利用したジアステレオ選択的な反応であるが、製造することができる化合物は2種のジアステレオマー(Threo体およびErythro体)のうちErythro体だけであるため、トリアゾール系抗真菌剤中間体の製造に必要なThreo体を得るためにさらに2工程を要してErythro体からThreo体の光学活性エポキシアルコールへと変換しなければならない。
また、前述のトリアゾール系抗真菌剤中間体である2−アリール−3−メチル−2−[(1H−1,2,4−トリアゾール−1−イル)メチル]オキシラン化合物の従来製造法のうち、1)は、高価で、かつ毒性が極めて高いことが知られているオスミウム酸化物を使用しなければならない、2)は1)と同じくオスミウム酸化物を使用しなければならない点や、工業的に入手可能な原料から換算して10工程から15工程必要である、3)は、光学活性α−ケトアルコール誘導体に対する立体選択的エポキシ化反応においてジアステレオマー体として生成するが、そのジアステレオマー精製にカラムクロマトグラフィーが利用されている、4)は、シャープレス不斉酸化反応において、過酸であるtert−ブチルヒドロペルオキシドを酸素源としなければならない、など、いずれも工業的に実施するには多くの問題がある。
【発明の開示】
本発明者らは、医薬分野等で重要な中間体である光学活性エポキシアルコール誘導体の製造に関して、上に述べた従来法の諸問題を鑑み、工業的に取り扱いが容易で、かつ安価に入手可能な原料、試剤のみを用いて大規模でも安全に操作することが可能な方法を鋭意検討した結果、光学活性乳酸エステルより2工程で効率よく製造可能な光学活性ハロケトン誘導体に対し、アリール金属化合物を高立体選択的に付加させることにより、構造新規な光学活性ハロヒドリン誘導体を得、続いて1工程ないし2工程で光学活性エポキシアルコール誘導体を製造可能な新規な方法を開発するに至った。上記ハロケトン誘導体に対するアリール金属化合物の付加反応における立体選択性は、ハロケトン誘導体のα−位の置換基を変えることにより制御可能で、光学活性ハロヒドリン誘導体の各種ジアステレオマーを自在に製造することが可能な応用範囲の広い製造法である。また、上記ハロケトン誘導体に対し、炭素鎖が1つ長いハロケトン誘導体を用いることで、さらに応用範囲を広げることもできる。
また、上記エポキシアルコール誘導体にトリアゾールを反応させると、トリアゾール系抗真菌剤中間体2−アリール−3−メチル−2−[(1H−1,2,4−トリアゾール−1−イル)メチル]オキシランを製造できる。また、同様に、上記炭素鎖が1つ長いハロケトン誘導体から得られるエポキシアルコール誘導体にトリアゾールを反応させることで、有用なトリアゾール系抗真菌剤中間体2−アリール−3−メチル−1−(1H−1,2,4−トリアゾール−1−イル)−2,4−ブタンジオールを製造することもできる。
さらには、本発明で製造可能な光学活性なハロヒドリンとスルホン酸トリアゾールアミドと反応させ、1工程でトリアゾール系抗真菌剤中間体2−アリール−3−メチル−2−[(1H−1,2,4−トリアゾール−1−イル)メチル]オキシランを製造できる方法も開発した。
本発明は、これまで知られている多種多様なトリアゾール系抗真菌剤中間体の製造に幅広く応用可能で有用なものである。
即ち、本発明は、下記一般式(6);

(式中、Xはハロゲン原子を表し、Rは水素、炭素数1〜18の置換もしくは無置換のアルキル基、炭素数6〜20の置換もしくは無置換のアリール基、炭素数7〜20の置換もしくは無置換のアラルキル基、置換もしくは無置換のシリル基、炭素数1〜20の置換もしくは無置換のアシル基、または、置換もしくは無置換のヘテロ環を表す。Arは炭素数6〜20の置換もしくは無置換のアリール基を表す。*3、*4は不斉炭素を表す。)で表される化合物に酸処理、フッ素化合物処理および水素化分解反応のうち少なくとも1つの方法を行うことにより、下記一般式(13);

(式中、X,Ar,*3、*4は前記に同じ。)で表される光学活性ハロジオール誘導体に導き、その後、塩基で処理するか、または、前記式(6)で表される化合物を塩基で処理することを特徴とする、下記一般式(14);

(式中、Arは前記に同じ。*5、*6は不斉炭素を表す。)で表される光学活性エポキシアルコール誘導体の製造法に関する。
また、本発明は、下記一般式(4);

(式中、X、R、*3は前記に同じ。)で表される光学活性ハロケトン誘導体と、下記一般式(5);

(式中Arは前記に同じ。Mはアルカリ金属またはハロゲン化アルカリ土類金属を表す。)で表される化合物を反応させることを特徴とする前記式(6)で表される光学活性ハロヒドリン誘導体の製造法に関する。
また、本発明は、下記一般式(6a);

(式中、X、Ar、*3、*4は前記に同じ。Rは炭素数1〜18の置換もしくは無置換のアルキル基、炭素数6〜20の置換もしくは無置換のアリール基、炭素数7〜20の置換もしくは無置換のアラルキル基、置換もしくは無置換のシリル基、または、置換もしくは無置換のヘテロ環を表す。)で表される化合物に酸処理、フッ素化合物処理、および、水素化分解反応のうち少なくとも1つの方法を行うことを特徴とする、前記式(13)で表される光学活性ハロジオール誘導体の製造法に関する。
また、本発明は、前記式(13)で表される光学活性ハロジオール誘導体を、下記一般式(15);

(式中、R11は炭素数1〜18の置換もしくは無置換のアルキル基、炭素数6〜20の置換もしくは無置換のアリール基、または、炭素数7〜20の置換もしくは無置換のアラルキル基を表す。)で表される化合物と反応させることを特徴とする、下記一般式(16);

(式中、Arは前記に同じ。*7、*8は不斉炭素を表す。)で表される光学活性エポキシド誘導体の製造法に関する。
また、本発明は、下記一般式(19);

(式中、X、R、Arは前記に同じ。*9、*10は不斉炭素を表す。)で表される化合物に酸処理、フッ素化合物処理および水素化分解反応のうち少なくとも1つの方法を行うことにより、下記一般式(20);

(式中、X,Ar,*9、*10は前記に同じ。)で表される光学活性ハロジオール誘導体に導き、その後、塩基で処理するか、または、前記式(19)で表される化合物を塩基で処理することにより得られる下記一般式(17);

(式中、Ar、*9、*10は前記に同じ。)で表される化合物の製造法に関する。
また、本発明は、下記一般式(21);

(式中、X、R、*9は前記に同じ。)で表される光学活性ハロケトン誘導体と、前記式(5)で表される化合物を反応させることを特徴とする前記式(19)で表される光学活性ハロヒドリン誘導体の製造法に関する。
また、本発明は、下記一般式(19a);

(式中、X、Ar、R、*9、*10は前記に同じ。)で表される化合物に酸処理、フッ素化合物処理、および、水素化分解反応のうち少なくとも1つの方法を行うことを特徴とする、前記式(20)で表される光学活性ハロジオール誘導体の製造法に関する。
また、本発明は、一般式(7);

(式中、Yはハロゲン原子、または、置換もしくは無置換のヘテロ環を表す。Zは下記一般式(8);

[式中、Rは水素、炭素数1〜18の置換もしくは無置換のアルキル基、炭素数6〜20の置換もしくは無置換のアリール基、炭素数7〜20の置換もしくは無置換のアラルキル基、置換もしくは無置換のシリル基、炭素数1〜20の置換もしくは無置換のアシル基、または、置換もしくは無置換のヘテロ環表す。]、下記−般式(9);

[式中、R、Rはそれぞれ独立に水素、炭素数1〜18の置換もしくは無置換のアルキル基、炭素数6〜20の置換もしくは無置換のアリール基、炭素数7〜20の置換もしくは無置換のアラルキル基、置換もしくは無置換のシリル基、炭素数1〜20の置換もしくは無置換のアシル基、炭素数1〜18の置換もしくは無置換のアルキルオキシカルボニル基、炭素数7〜20の置換もしくは無置換のアラルキルオキシカルボニル基、または、炭素数6〜20の置換もしくは無置換のアリールオキシカルボニル基を表す。]、または、下記一般式(10);

[式中、Rは水素または炭素数1〜18の置換もしくは無置換のアルキル基、炭素数6〜20の置換もしくは無置換のアリール基または炭素数7〜20の置換もしくは無置換のアラルキル基を表す。nは0〜2の整数を表す。]、または、下記一般式(11);

[式中、Rは水素、炭素数1〜18の置換もしくは無置換のアルキル基、炭素数6〜20の置換もしくは無置換のアリール基、炭素数7〜20の置換もしくは無置換のアラルキル基、置換もしくは無置換のシリル基、炭素数1〜20の置換もしくは無置換のアシル基、または、置換もしくは無置換のヘテロ環表す。]、を表す。*3は不斉炭素を表す。)で表される化合物を、前記式(5)で表される化合物と反応させることを特徴とする、一般式(12);

(式中、Y、Ar、Z、*3、*4は不斉炭素を表す。)で表される光学活性ヒドロキシ化合物の製造法に関する。
また、本発明は、一般式(1);

(式中、Xはハロゲン原子を表し、Arは炭素数6〜20の置換もしくは無置換のアリール基、Rは水素、炭素数1〜18の置換もしくは無置換のアルキル基、炭素数6〜20の置換もしくは無置換のアリール基、炭素数7〜20の置換もしくは無置換のアラルキル基、置換もしくは無置換のシリル基、炭素数1〜20の置換もしくは無置換のアシル基、または、置換もしくは無置換のヘテロ環を表す。*1、*2は不斉炭素を表す。)で表される光学活性ハロヒドリン誘導体に関する。
また、本発明は、一般式(22);

(式中、X、X,Xはハロゲン原子を表し、R12は水素、炭素数1〜18の置換もしくは無置換のアルキル基、炭素数6〜20の置換もしくは無置換のアリール基、炭素数8〜20の置換もしくは無置換のアラルキル基、置換もしくは無置換のシリル基、脂肪族アシル基を表す。*11、*12は不斉炭素を表す。)で表される光学活性ハロヒドリン誘導体に関する。
また、本発明は、一般式(23);

(式中、X、X,Xはハロゲン原子を表し、R13は水素、炭素数1〜18の置換もしくは無置換のアルキル基、炭素数6〜20の置換もしくは無置換のアリール基、炭素数7〜20の置換もしくは無置換のアラルキル基、置換もしくは無置換のシリル基、炭素数1〜20の置換もしくは無置換のアシル基、または、置換もしくは無置換のヘテロ環を表す。*13、*14は不斉炭素を表す。)で表される光学活性ハロヒドリン誘導体に関する。
【発明を実施するための最良の形態】
まず、下記一般式(2);

で表されるプロピオン酸エステル化合物と、下記一般式(3);

で表されるハロ酢酸誘導体と塩基との反応により生じるエノラートを反応させた後、酸処理し、下記一般式(4);

で表されるハロケトン誘導体を製造する工程について述べる。
本工程で使用されるプロピオン酸エステル誘導体(2)は、市販されているL−またはD−乳酸エステルを直接使用しても良いし、必要に応じて公知技術として知られている一般的な方法(たとえば、プロテクティブ グループ イン オーガニック シンセシス サードエディションに記載の方法)で水酸基上に置換基を導入したものを用いてもよい。
式中、Rはアルキル基、アリール基、アラルキル基を表す。各々について説明する。本明細書中に示す炭素数については、置換基の炭素数は含まない値である。
アルキル基としては、炭素数1〜18の置換もしくは無置換のものを示し、例えばメチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、n−ペンチル基、イソペンチル基、n−ヘキシル基などを挙げることができる。アリール基としては炭素数6〜20の置換もしくは無置換のものを示し、例えば、フェニル基、1−ナフチル基、2−ナフチル基、4−メチルフェニル基、3−メチルフェニル基、2−メチルフェニル基、4−エチルフェニル基、3−エチルフェニル基、4−メトキシフェニル基、3−メトキシフェニル基、2−メトキシフェニル基、4−ニトロフェニル基、4−フェニルフェニル基、4−クロロフェニル基、4−ブロモフェニル基などを挙げることができる。アラルキル基としては炭素数7〜20の置換もしくは無置換のものを示し、例えば、ベンジル基、4−メチルベンジル基、3−メチルベンジル基、2−メチルベンジル基、4−メトキシベンジル基、3−メトキシベンジル基、2−メトキシベンジル基、1−フェニルエチル基、2−フェニルエチル基、1−(4−メチルフェニル)エチル基、1−(4−メトキシフェニル)エチル基、3−フェニルプロピル基、2−フェニルプロピル基等を挙げることができる。これらのなかで、好ましくはアルキル基であり、さらに好ましくはメチル基、またはエチル基である。
としては水素、アルキル基、アリール基、アラルキル基、シリル基、アシル基、またはヘテロ環を表す。アルキル基としては、炭素数1〜18の置換もしくは無置換のものを示し、例えばメチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、n−ペンチル基、イソペンチル基、n−ヘキシル基などを挙げることができる。アリール基としては炭素数6〜20の置換もしくは無置換のものを示し、例えば、フェニル基、1−ナフチル基、2−ナフチル基、4−メチルフェニル基、3−メチルフェニル基、2−メチルフェニル基、4−エチルフェニル基、3−エチルフェニル基、4−メトキシフェニル基、3−メトキシフェニル基、2−メトキシフェニル基、4−ニトロフェニル基、4−フェニルフェニル基、4−クロロフェニル基、4−ブロモフェニル基などを挙げることができる。アラルキル基としては炭素数7〜20の置換もしくは無置換のものを示し、例えば、ベンジル基、4−メチルベンジル基、3−メチルベンジル基、2−メチルベンジル基、4−メトキシベンジル基、3−メトキシベンジル基、2−メトキシベンジル基、1−フェニルエチル基、2−フェニルエチル基、1−(4−メチルフェニル)エチル基、1−(4−メトキシフェニル)エチル基、3−フェニルプロピル基、2−フェニルプロピル基等を挙げることができる。シリル基としては、ケイ素上に炭素数1〜18の置換もしくは無置換のアルキル基、炭素数6〜20の置換もしくは無置換のアリール基、または、炭素数7〜20の置換もしくは無置換のアラルキル基からそれぞれ独立に選ばれる0〜3個の基が結合したシリル基を示し、アルキル基、アリール基、アラルキル基としてはそれぞれ上述の基を挙げることができ、具体的なシリル基としては、トリメチルシリル基、トリエチルシリル基、トリプロピルシリル基、トリイソプロピルシリル基、tert−ブチルジメチルシリル基、ジメチルフェニルシリル基、エチルジメチルシリル基、ジメチルプロピルシリル基、ジメチルイソプロピルシリル基、トリフェニルシリル基などを挙げることができる。アシル基としては、炭素数1〜20の置換もしくは無置換のものを示し、たとえば、アセチル基、エチルカルボニル基、プロピルカルボニル基、イソプロピルカルボニル基、ブチルカルボニル基、イソブチルカルボニル基、sec−ブチルカルボニル基、ピバロイル基、ペンチルカルボニル基、イソペンチルカルボニル基、ベンゾイル基、4−メチルフェニルベンゾイル基、4−メトキシベンゾイル基などを挙げることができる。ヘテロ環としては、テトラヒドロピラニル基、テトラヒドロフラニル基、テトラヒドロチオピラニル基、4−メトキシテトラヒドロピラニル基、1,4−ジオキサン−2−イル基などを例示することができる。これらのうち、好ましくは、シリル基、アシル基、ヘテロ環であり、さらに好ましくはシリル基の場合、tert−ブチルジメチルシリル基であり、アシル基の場合、ピバロイル基であり、ヘテロ環の場合テトラヒドロピラニル基である。とりわけ好ましくはピバロイル基である。
*3で表される不斉炭素はR体の絶対配置を有するものであってもよいし、S体の絶対配置を有するものであってもよいが、好ましくは*3はR体である。
式(3)中、Xはハロゲン原子を表し、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子を挙げることができるが、好ましくは塩素原子、臭素原子であり、さらに好ましくは塩素原子である。
式(3)中、Mは水素、アルカリ金属、またはハロゲン化アルカリ土類金属を表す。具体的には、水素、リチウム、ナトリウム、カリウム、塩化マグネシウム、臭化マグネシウム、塩化カルシウム等を挙げることができるが、これらに限定されるものではない。好ましくはナトリウムまたは塩化マグネシウムであり、さらに好ましくはナトリウムである。
従って、好ましいハロ酢酸誘導体(3)としては、たとえばクロロ酢酸ナトリウム、ブロモ酢酸ナトリウムなどが挙げられる。
ハロ酢酸誘導体(3)の使用量としては、プロピオン酸エステル誘導体(2)に対して1〜10モル当量であり、好ましくは1〜3モル当量である。
ハロ酢酸誘導体(3)からエノラートを発生させる際に用いられる塩基としては、特に限定されず、例えば、リチウムアミド、ナトリウムアミド、リチウムジイソプロピルアミド、塩化マグネシウムジイソプロピルアミド、臭化マグネシウムジイソプロピルアミド、塩化マグネシウムジシクロヘキシルアミド等の金属アミド類やメチルリチウム、n−ブチルリチウム、臭化メチルマグネシウム、塩化イソプロピルマグネシウム、塩化tert−ブチルマグネシウム等のアルキル金属類、さらにはナトリウムメトキシド、マグネシウムエトキシド、カリウムtert−ブトキシド等の金属アルコキシドまたは水素化リチウム、水素化ナトリウム、水素化カリウム、水素化カルシウム等の金属水素化物等を挙げることができるが、なかでも塩化tert−ブチルマグネシウムが好ましい。
これら塩基の使用量は、プロピオン酸エステル誘導体(2)に対して1〜10モル当量であり、好ましくは2〜5モル当量である。
本工程において、(3)のエノラートとプロピオン酸エステル誘導体(2)を反応させる際に、上記塩基の他にアミンを共存させると収率が向上する場合がある。
上記アミンとしては、特に限定されないが、第三アミンが好ましく、例えば、トリエチルアミン、トリブチルアミン、ジイソプロピルエチルアミン、トリオクチルアミン、N−メチルモルホリン、N−メチルピロリジン、N−メチルピペリジン等のアルキルアミンやジメチルアニリン、ジエチルアニリン等のアリールアミン、またはピリジン、キノリン等の芳香族アミンを挙げることができる。さらにこのましくはトリエチルアミンである。
アミンの使用量は、プロピオン酸エステル誘導体(2)に対して1〜5モル当量であり、好ましくは1〜3モル当量である。
本工程において、ハロ酢酸誘導体(3)、塩基、プロピオン酸エステル誘導体(2)およびアミンの混合順序は任意であるが、例えば、ハロ酢酸誘導体(3)、プロピオン酸エステル誘導体(2)およびアミンの混合液に対して塩基の溶液を滴下することにより、エノラート調製およびエノラートとプロピオン酸エステル誘導体(2)の反応を一度に行うことができる。
本工程において用いられる反応溶媒は、特に限定されないが、塩基として金属アミド類あるいはアルカリ金属塩を使用する場合、非プロトン性溶媒の使用が好ましい。非プロトン性溶媒としては、たとえば、ベンゼン、トルエン、n−ヘキサン、シクロヘキサン等の炭化水素系溶媒、ジエチルエーテル、テトラヒドロフラン(THF)、1,4−ジオキサン、tert−ブチルメチルエーテル、ジメトキシエタン、エチレングリコールジメチルエーテル等のエーテル系溶媒、塩化メチレン、クロロホルム、1,1,1−トリクロロエタン等のハロゲン系溶媒、ジメチルホルムアミド(DMF)、N−メチル−2−ピロリドン(NMP)などのアミド系溶媒等を挙げることができるが、好ましくはTHFである。なお、これらは、単独で用いても、2種以上を併用してもよい。
反応温度は、通常、−100℃〜120℃の範囲であり、使用する塩基、溶媒の種類により好ましい反応温度は異なるが、−20℃〜60℃が好ましい。
本工程において、化合物(2)と上記エノラートの反応終了後、酸処理を行うことにより、前記式(4)で表される化合物を得ることができる。酸処理で用いられる酸は、一般的な無機酸または有機酸であればよく、特に限定されないが、塩酸、硫酸、硝酸、酢酸、クエン酸等を例示することができる。
酸処理を行う際の温度は特に限定されないが、−20℃〜60℃が適当である。酸の使用量は塩基に対して1モル当量〜100モル当量であり、このましくは1モル当量〜50モル当量、さらに好ましくは1モル当量〜20モル当量である。
本工程で反応した後、前記式(4)で表される生成物は酢酸エチル、エーテル、ヘキサン、トルエンなどの有機溶媒から抽出することにより得ることができ、必要に応じてクロマトグラフィー、結晶化、蒸留などの操作により精製単離することができる。また、精製することなく、次工程に供してもよい。
次に、前記式(4)で表されるハロケトン誘導体と下記一般式(5);

で表される化合物との反応により、下記一般式(6);

で表される光学活性ハロヒドリン誘導体を製造する工程について述べる。
前記式(4)、(6)中、R、X、*3は前記に同じである。*4は不斉炭素を表す。
式(5)中、Arとしては、炭素数6〜20の置換もしくは無置換のアリール基を示し、例えば、フェニル基、1−ナフチル基、2−ナフチル基、4−メチルフェニル基、3−メチルフェニル基、2−メチルフェニル基、4−エチルフェニル基、3−エチルフェニル基、4−メトキシフェニル基、3−メトキシフェニル基、2−メトキシフェニル基、4−ニトロフェニル基、3−ニトロフェニル基、2−ニトロフェニル基、4−フェニルフェニル基、4−クロロフェニル基、4−ブロモフェニル基、4−フルオロフェニル基、3−フルオロフェニル基、2−フルオロフェニル基、2,3−ジフルオロフェニル基、2,4−ジフルオロフェニル基、2,5−ジフルオロフェニル基、3,4−ジフルオロフェニル基、2、3−ジメチルフェニル基、2,4−ジメチルフェニル基、3,4−ジメチルフェニル基などを挙げることができるが、好ましくは4−フルオロフェニル基、3−フルオロフェニル基、2−フルオロフェニル基、2,3−ジフルオロフェニル基、2,4−ジフルオロフェニル基、2,5−ジフルオロフェニル基、3,4−ジフルオロフェニル基であり、さらに好ましくは2,4−ジフルオロフェニル基、2,5−ジフルオロフェニル基である。
はアルカリ金属またはハロゲン化アルカリ土類金属を表す。具体的には、リチウム、ナトリウム、カリウム、塩化マグネシウム、臭化マグネシウム、塩化カルシウム等を挙げることができるが、これらに限定されるものではない。好ましくはリチウム、塩化マグネシウム、臭化マグネシウムであり、さらに好ましくは塩化マグネシウム、臭化マグネシウムである。
化合物(5)は、市販されているものもあり、また対応する芳香族ハロゲン化物と金属または金属化合物から既知の方法(たとえばテトラヘドロンレターズ 42、3331、2001)にて容易に調製することができる。使用量としては、ハロケトン化合物(4)に対して0.5〜5.0モル当量であり、好ましくは1.0〜3.0モル当量である。
反応温度は、通常−100℃〜50℃の範囲で、後述する溶媒の種類により好ましい反応温度は異なるが、−20℃〜30℃が好ましい。
反応時間は、反応温度により異なるが、通常0.5〜36時間であり、好ましくは1.0〜24時間である。
本工程において用いられる反応溶媒は、特に限定されないが、非プロトン性溶媒の使用が好ましい。非プロトン性溶媒としては、たとえば、ベンゼン、トルエン、n−ヘキサン、シクロヘキサン等の炭化水素系溶媒、ジエチルエーテル、テトラヒドロフラン(THF)、1,4−ジオキサン、tert−ブチルメチルエーテル、ジメトキシエタン、エチレングリコールジメチルエーテル等のエーテル系溶媒、塩化メチレン、クロロホルム、1,1,1−トリクロロエタン等のハロゲン系溶媒、ジメチルホルムアミド(DMF)、N−メチル−2−ピロリドン(NMP)などのアミド系溶媒等を挙げることができるが、好ましくはTHF、トルエン、ヘキサンである。なお、これらは、単独で用いても、2種以上を併用してもよい。
本工程において、化合物(4)、(5)、反応溶媒の添加順序、添加方法に特に制限はない。
*3で表される不斉炭素はR体の絶対配置を有するものであってもよいし、S体の絶対配置を有するものであってもよく、同様に*4で表される不斉炭素はR体の絶対配置を有するものであっても、S体の絶対配置を有するものであってもよいが、好ましくは*3はR体、*4はS体である。
本工程で反応を行った後、生成物(6)は酢酸エチル、エーテル、ヘキサン、トルエンなどの有機溶媒から抽出することにより得ることができる。
この反応は、置換基の種類にもよるが、通常、高立体選択的に進行し、高いジアステレオマー比で光学活性ハロヒドリン誘導体(6)を得ることができる。
また、必要に応じてクロマトグラフィー、結晶化、蒸留などの操作により精製単離することができる。また、精製、単離することなく、次工程に供してもよい。
また、化合物(6)は、通常、ジアステレオマー混合物として生成するので、必要に応じて結晶化によりそのジアステレオマー過剰率を好適に高めることができる。ここで、ジアステレオマー過剰率とは、
(ジアステレオマーAの存在量−ジアステレオマーBの存在量)/(ジアステレオマーAの存在量+ジアステレオマーBの存在量)*100 % で定義される。
結晶化に用いる溶媒としては化合物により異なるため特に制限はなく、例えばペンタン、ヘキサン、ヘプタン、オクタン、水、メタノール、エタノール、n−プロパノール、イソプロパノール、n−ブタノール、イソブタノール、tert−ブタノール、ベンゼン、キシレン、トリメチルベンゼン、テトラヒドロフラン、テトラヒドロピラン、1,3−ジオキサン、1,4−ジオキサン、酢酸メチル、酢酸エチル、酢酸n−プロピル、酢酸イソプロピル、酢酸n−ブチル、酢酸イソブチル、酢酸tert−ブチル、ジメチルエーテル、tert−ブチルメチルエーテル、アセトニトリル、プロピオニトリル、ブチロニトリル、アセトン、DMF、DMSO、N−メチル−2−ピロリドン(NMP)、およびこれら2種以上の混合溶媒などを挙げることができる。
次に、前記式(6)で表される化合物に酸処理、フッ素化合物処理および水素化分解反応のうち少なくとも1つの方法を行うことにより、下記一般式(13);

で表される光学活性ハロジオール誘導体に導き、その後、塩基で処理するか、または、前記式(6)で表される化合物を塩基で処理することによって、下記一般式(14);

で表される光学活性エポキシアルコール誘導体を製造する方法について述べる。
式中、Ar,X,R,*3,*4は前記と同じである。*5、*6は不斉炭素を表す。
前記式(6)において、Rが、炭素数1〜18の置換もしくは無置換のアルキル基、炭素数6〜20の置換もしくは無置換のアリール基、炭素数7〜20の置換もしくは無置換のアラルキル基、置換もしくは無置換のシリル基、置換もしくは無置換のヘテロ環を表す場合、化合物(6)に酸処理、フッ素化合物処理および水素化分解反応のうち少なくとも1つの方法を行うことにより、前記式(13)で表される光学活性ハロジオール誘導体に導き、その後、塩基で処理することによって前記式(14)で表される光学活性エポキシアルコール誘導体を製造することが好ましい。以下に詳細な方法について述べる。
化合物(6)から化合物(13)へ変換する際には、例えばプロテクティブグループ イン オーガニック シンセシス サードエディションに記載の方法のように、酸処理、フッ素化合物処理、および水素化分解反応のいずれかを用いることができる。酸処理に用いる酸としては塩酸、硫酸、硝酸、酢酸、トリフルオロ酢酸、トルエンスルホン酸、メタンスルホン酸、塩化アンモニウムなどを例示することができ、好ましくは塩酸、硫酸、塩化アンモニウムである。フッ素化合物処理に用いるフッ素化合物としてはフッ化テトラブチルアンモニウム(TBAF)、フッ化カリウム、フッ化ナトリウム、フッ化リチウム、フッ化セシウムなどを例示することができるが、好ましくはTBAF,フッ化カリウム、フッ化ナトリウムである。水素化分解反応としては、パラジウム化合物、白金化合物、ロジウム化合物、ルテニウム化合物などの貴金属化合物を用いて、水素、ギ酸、ギ酸アンモニウムなどの水素源となる化合物で水素化分解すればよい。
がシリル基である場合には酸処理またはフッ素化合物処理が好ましい。Rがアルキル基、アラルキル基、アリール基の場合は、酸処理または水素化分解反応が好ましい。Rがヘテロ環である場合には酸処理が好ましい。
本工程で反応を行った後、生成物(13)は酢酸エチル、エーテル、ヘキサン、トルエンなどの有機溶媒から抽出することにより得ることができる。
必要に応じてクロマトグラフィー、結晶化、蒸留などの操作により精製単離することができる。また、精製することなく、次工程に供してもよい。
結晶化に用いる溶媒としては化合物により異なるため特に制限はなく、例えばペンタン、ヘキサン、ヘプタン、オクタン、水、メタノール、エタノール、n−プロパノール、イソプロパノール、n−ブタノール、イソブタノール、tert−ブタノール、ベンゼン、キシレン、トリメチルベンゼン、テトラヒドロフラン、テトラヒドロピラン、1,3−ジオキサン、1,4−ジオキサン、酢酸メチル、酢酸エチル、酢酸n−プロピル、酢酸イソプロピル、酢酸n−ブチル、酢酸イソブチル、酢酸tert−ブチル、ジメチルエーテル、tert−ブチルメチルエーテル、アセトニトリル、プロピオニトリル、ブチロニトリル、アセトン、DMF、DMSO、N−メチル−2−ピロリドン(NMP)、およびこれら2種以上の混合溶媒などを挙げることができる。
次に、前記式(13)で表されるハロジオールから前記式(14)で表される光学活性エポキシアルコール誘導体への変換工程について述べる。
反応に用いられる塩基としては、特に限定されず、無機塩基及び有機塩基などがあげられる。無機塩基としては、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、炭酸カリウム、炭酸ナトリウム、炭酸リチウムなどがあげられる。有機塩基としては、酢酸ナトリウム、酢酸カリウム、酢酸リチウム、ナトリウムメトキシド、リチウムメトキシド、カリウムメトキシド、ナトリウムエトキシド、カリウムtert−ブトキシド、トリエチルアミン、ジイソプロピルエチルアミンなどが挙げられる。好ましくは水酸化リチウム、水酸化ナトリウム、水酸化カリウム、リチウムメトキシド、ナトリウムメトキシド、カリウムメトキシドであり、さらに好ましくは水酸化リチウム、水酸化ナトリウム、水酸化カリウムである。
使用される塩基の量は、化合物(13)に対し、1.0〜10.0モル当量であり、好ましくは1.0〜5.0モル当量である。
反応溶媒としては特に限定されず、ベンゼン、トルエン、ジエチルエーテル、テトラヒドロフラン(THF)、1,4−ジオキサン、メチルtert−ブチルエーテル、ジメチルホルムアミド(DMF)、N−メチル−2−ピロリドン(NMP)、DMSO,メタノール、エタノール、イソプロパノール、水などを用いることができ、これらは単独で用いても、2種以上を併用してもよい。
化合物(13)、塩基および反応溶媒の添加順序、添加方法に特に制限はない。
反応温度は、通常、−20℃〜60℃の範囲であり、使用する塩基、溶媒の種類により好ましい反応温度は異なるが、−10℃〜50℃が好ましい。
*5で表される不斉炭素はR体の絶対配置を有するものであってもよいし、S体の絶対配置を有するものであってもよく、同様に*6で表される不斉炭素はR体の絶対配置を有するものであっても、S体の絶対配置を有するものであってもよいが、好ましくは*5はR体、*6はR体である。
前記式(6)において、Rが水素、炭素数1〜20の置換もしくは無置換のアシル基を表す場合、化合物(6)を塩基で処理することによって前記式(14)で表される光学活性エポキシアルコール誘導体を製造する方法が好ましい。下記に詳細な方法について述べる。
使用される塩基としては、特に制限されず、水酸化テトラブチルアンモニウム、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、炭酸カリウム、炭酸ナトリウム、炭酸リチウムなどの無機塩基や酢酸ナトリウム、酢酸カリウム、酢酸リチウム、ナトリウムメトキシド、リチウムメトキシド、カリウムメトキシド、ナトリウムエトキシド、カリウムtert−ブトキシド、トリエチルアミン、ジイソプロピルエチルアミン等の有機塩基などが挙げられるが、特に好ましくは、水酸化テトラブチルアンモニウム、ナトリウムメトキシド、リチウムメトキシド、カリウムメトキシド、ナトリウムエトキシド、カリウムtert−ブトキシドである。
使用される塩基の量は、化合物(6)に対し、1.0〜10.0モル当量であり、好ましくは1.0〜5.0モル当量である。
反応溶媒としては特に限定されないが、ベンゼン、トルエン、ジエチルエーテル、テトラヒドロフラン(THF)、1,4−ジオキサン、tert−ブチルメチルエーテル、ジメチルホルムアミド(DMF)、N−メチル−2−ピロリドン(NMP)、DMSO,メタノール、エタノール、イソプロパノール、水などを挙げることができ、これらは、単独で用いても、2種以上を併用してもよい。
反応温度は、通常、−20℃〜60℃の範囲であり、使用する塩基、溶媒の種類により好ましい反応温度は異なるが、−10℃〜50℃が好ましい。
化合物(6)、塩基、反応溶媒の添加順序、添加方法に特に制限はない。
生成物(14)は酢酸エチル、エーテル、ヘキサン、トルエンなどの有機溶媒から抽出することにより得ることができ、必要に応じてクロマトグラフィー、結晶化、蒸留などの操作により精製単離することができる。
次に、下記一般式(6a);

で表される化合物から前記式(13)で表される化合物を製造する方法について述べる。
前記式(6a)中、X、Ar、*3、*4は前記に同じである。Rとしては、アルキル基、アリール基、アラルキル基、シリル基、またはヘテロ環があげられる。
アルキル基としては、炭素数1〜18の置換もしくは無置換のものがあげられ、例えばメチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、n−ペンチル基、イソペンチル基、n−ヘキシル基などを挙げることができる。アリール基としては炭素数6〜20の置換もしくは無置換のものがあげられ、例えば、フェニル基、1−ナフチル基、2−ナフチル基、4−メチルフェニル基、3−メチルフェニル基、2−メチルフェニル基、4−エチルフェニル基、3−エチルフェニル基、4−メトキシフェニル基、3−メトキシフェニル基、2−メトキシフェニル基、4−ニトロフェニル基、4−フェニルフェニル基、4−クロロフェニル基、4−ブロモフェニル基などを挙げることができる。アラルキル基としては炭素数7〜20の置換もしくは無置換のものがあげられ、例えば、ベンジル基、4−メチルベンジル基、3−メチルベンジル基、2−メチルベンジル基、4−メトキシベンジル基、3−メトキシベンジル基、2−メトキシベンジル基、1−フェニルエチル基、2−フェニルエチル基、1−(4−メチルフェニル)エチル基、1−(4−メトキシフェニル)エチル基、3−フェニルプロピル基、2−フェニルプロピル基等を挙げることができる。シリル基としては、ケイ素上に炭素数1〜18の置換もしくは無置換のアルキル基、炭素数6〜20の置換もしくは無置換のアリール基、または、炭素数7〜20の置換もしくは無置換のアラルキル基からそれぞれ独立に選ばれる0〜3個の基が結合した基を示し、アルキル基、アリール基、アラルキル基としてはそれぞれ上述の基を挙げることができ、シリル基として例示すれば、トリメチルシリル基、トリエチルシリル基、トリプロピルシリル基、トリイソプロピルシリル基、tert−ブチルジメチルシリル基、ジメチルフェニルシリル基、エチルジメチルシリル基、ジメチルプロピルシリル基、ジメチルイソプロピルシリル基、トリフェニルシリル基などを挙げることができる。
ヘテロ環としては、置換もしくは無置換のものをあげることができ、テトラヒドロピラニル基、テトラヒドロフラニル基、テトラヒドロチオピラニル基、4−メトキシテトラヒドロピラニル基、1,4−ジオキサン−2−イル基などを例示することができる。
これらのうち、好ましくは、シリル基、ヘテロ環であり、特に好ましくはシリル基ではtert−ブチルジメチルシリル基、ヘテロ環ではテトラヒドロピラニル基である。
化合物(6a)から化合物(13)への反応工程は、前述した化合物(6)から化合物(13)への反応工程と同様な方法で実施できる。
次に、前記式(13)で表される化合物と下記一般式(15);

で表される化合物を反応させて下記一般式(16);

で表される化合物を製造する工程について述べる。
式(16)、(13)中、Ar、X、*3,*4は前記と同じである。*7,*8は不斉炭素を表す。
前記式(15)で表される化合物は例えばトリアゾールとスルホン酸クロリドから製造される(J.Am.Chem.Soc.97、7332、1975)。
式(15)中、R11はアルキル基、アリール基、アラルキル基を表す。アルキル基としては、炭素数1〜18の置換もしくは無置換のものを示し、例えばメチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、n−ペンチル基、イソペンチル基、n−ヘキシル基などを挙げることができる。アリール基としては炭素数6〜20の置換もしくは無置換のものを示し、例えば、フェニル基、1−ナフチル基、2−ナフチル基、4−メチルフェニル基、3−メチルフェニル基、2−メチルフェニル基、4−エチルフェニル基、3−エチルフェニル基、4−メトキシフェニル基、3−メトキシフェニル基、2−メトキシフェニル基、4−ニトロフェニル基、4−フェニルフェニル基、4−クロロフェニル基、4−ブロモフェニル基などを挙げることができる。アラルキル基としては炭素数7〜20の置換もしくは無置換のものを示し、例えば、ベンジル基、4−メチルベンジル基、3−メチルベンジル基、2−メチルベンジル基、4−メトキシベンジル基、3−メトキシベンジル基、2−メトキシベンジル基、1−フェニルエチル基、2−フェニルエチル基、1−(4−メチルフェニル)エチル基、1−(4−メトキシフェニル)エチル基、3−フェニルプロピル基、2−フェニルプロピル基等を挙げることができる。化合物(15)の使用量は、化合物(13)に対し、1.0〜5.0モル当量であるが、好ましくは1.0〜3.0モル当量である。
前記式(13)と前記式(15)で表される化合物の反応は、塩基存在下行われる。使用される塩基としては、水素化ナトリウム、水酸化テトラブチルアンモニウム、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、炭酸カリウム、炭酸ナトリウム、炭酸リチウムなどの無機塩基や酢酸ナトリウム、酢酸カリウム、酢酸リチウム、ナトリウムメトキシド、リチウムメトキシド、カリウムメトキシド、ナトリウムエトキシド、カリウムtert−ブトキシド、n−ブチルリチウム、リチウムジイソプロピルアミド、リチウムヘキサメチルジシラザン、カリウムヘキサメチルジシラザン、ナトリウムヘキサメチルジシラザンが挙げられるが、特に好ましくは、水素化ナトリウム、カリウムtert−ブトキシドである。
使用される塩基の量は、化合物(13)に対し、1.0〜10.0モル当量であり、好ましくは1.0〜5.0モル当量、さらに好ましくは1.0〜3.0モル当量である。
反応溶媒としては特に限定されないが、ベンゼン、トルエン、ジエチルエーテル、テトラヒドロフラン(THF)、1,4−ジオキサン、tert−ブチルメチルエーテル、ジメチルホルムアミド(DMF)、N−メチル−2−ピロリドン(NMP)、DMSOなどを挙げることができ、これらは、単独で用いても、2種以上を併用してもよい。
化合物(13)、(15)、反応溶媒、塩基の添加順序、添加方法に特に制限はない。
反応温度は、通常、−20℃〜60℃の範囲であり、使用する塩基、溶媒の種類により好ましい反応温度は異なるが、0℃〜50℃が好ましい。
生成物(16)は酢酸エチル、エーテル、ヘキサン、トルエンなどの有機溶媒から抽出することにより得ることができ、必要に応じてクロマトグラフィー、結晶化、蒸留などの操作により精製単離することができる。
*7で表される不斉炭素はR体の絶対配置を有するものであってもよいし、S体の絶対配置を有するものであってもよく、同様に*8で表される不斉炭素はR体の絶対配置を有するものであっても、S体の絶対配置を有するものであってもよいが、好ましくは*7はS体、*8はR体である。
次に、下記一般式(21);

で表されるハロケトン誘導体と前記式(5)で表される化合物との反応により、下記一般式(19);

で表される光学活性ハロヒドリン誘導体を製造する工程について述べる。
式中、R、X、Ar、Mは前記に同じである。*9、*10は不斉炭素を表し、R体の絶対配置を有するものであってもよいし、S体の絶対配置を有するものであっても良い。
化合物(21)は、例えば、WO9623756記載の化合物と、市販の試薬より合成し、入手可能である。
本反応は、前記式(4)で表される化合物と前記式(5)で表される化合物との反応により、前記式(6)で表される光学活性ハロヒドリン誘導体を製造する工程と、同様な反応溶媒、反応条件で実施出来る。化合物(19)の後処理、精製、単離についても同様である。
次に、前記式(19)で表される化合物に酸処理、フッ素化合物処理および水素化分解反応のうち少なくとも1つの方法を行うことにより、下記一般式(20);

で表される光学活性ハロジオール誘導体に導き、その後、塩基で処理するか、または、前記式(19)で表される化合物を塩基で処理することにより得られる下記一般式(17);

で表される化合物を製造する方法について説明する。
式中、X、Ar、R、*9,*10は前記に同じである。上記製造法は、前記式(6)で表される化合物に酸処理、フッ素化合物処理および水素化分解反応の少なくとも1つの方法を行うことにより、前記式(13)で表される光学活性ハロジオール誘導体に導き、その後、塩基で処理するか、または、前記式(6)で表される化合物を塩基で処理することにより前記式(14)で表される化合物を製造する方法と同様な反応溶媒、反応条件で実施することができる。後処理、精製、単離工程についても同様である。
次に、前記式(17)に、1,2,4−トリアゾールを反応させて下記一般式(18);

で表されるトリアゾール誘導体を製造する方法について説明する。
式中、Ar、*9,*10は前記に同じである。
本反応は、塩基存在下に行われる。用いられる塩基としては水素化ナトリウム、水酸化テトラブチルアンモニウム、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、炭酸カリウム、炭酸ナトリウム、炭酸リチウムなどの無機塩基や酢酸ナトリウム、酢酸カリウム、酢酸リチウム、ナトリウムメトキシド、リチウムメトキシド、カリウムメトキシド、ナトリウムエトキシド、カリウムtert−ブトキシド、n−ブチルリチウム、リチウムジイソプロピルアミド、リチウムヘキサメチルジシラザン、カリウムヘキサメチルジシラザン、ナトリウムヘキサメチルジシラザンがあげられる。好ましくは、無機塩基であり、さらに好ましくは炭酸カリウム、炭酸ナトリウム、炭酸リチウムであり、最も好ましくは炭酸カリウムである。
使用される塩基の量は、化合物(17)に対し、1.0〜10.0モル当量であり、好ましくは1.0〜5.0モル当量である。
反応溶媒としては特に限定されないが、ベンゼン、トルエン、ジエチルエーテル、テトラヒドロフラン(THF)、1,4−ジオキサン、tert−ブチルメチルエーテル、ジメチルホルムアミド(DMF)、N−メチル−2−ピロリドン(NMP)、DMSOなどを挙げることができるが、このましくはDMF、DMSOであり、さらに好ましくはDMSOである。これらは、単独で用いても、2種以上を併用してもよい。
反応温度は、通常、20℃〜120℃の範囲であり、使用する塩基、溶媒の種類により好ましい反応温度は異なるが、40℃〜100℃が好ましい。
生成物(18)は酢酸エチル、エーテル、ヘキサン、トルエンなどの有機溶媒から抽出することにより得ることができ、必要に応じてクロマトグラフィー、結晶化、蒸留などの操作により精製単離することができる。
化合物(17)、1,2,4−トリアゾール、塩基、反応溶媒の添加方法、添加順序に特に制限はない。
次に、下記一般式(7);

で表されるハロケトン誘導体と前記式(5)で表される化合物の反応により下記一般式(12);

で表される光学活性ハロヒドリン誘導体の製造工程について述べる。Ar、M、*3、*4は前記に同じである。
Yはハロゲン原子、置換もしくは無置換のヘテロ環を示す。
ハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子を挙げることができるが、望ましくは塩素原子、臭素原子であり、さらに好ましくは塩素原子である。
ヘテロ環としては、置換されていても無置換でもよいヘテロ環があげられ、例えば、テトラヒドロピラニル基、テトラヒドロフラニル基、テトラヒドロチエニル基、ピリジル基、ピラジル基、ピリジミル基、チエニル基、ヒドロキシピリジル基、イミダゾール基、チアゾール基、ピラゾール基、ピラゾロン基、イソオキサゾール基、イソチアゾール基、ピロール基、フラン基、トリアゾール基などを挙げることができるが、好ましくはトリアゾール基である。
式(7)中、Zは下記一般式(8);

[式中、Rは水素、アルキル基、アリール基、アラルキル基、シリル基、またはアシル基、ヘテロ環を表す。]
下記一般式(9);

[式中、R、Rはそれぞれ独立に水素、アルキル基、アリール基、アラルキル基、シリル基、アシル基、アルキルオキシカルボニル基、アラルキルオキシカルボニル基、または、アリールオキシカルボニル基を表す。]
下記一般式(10);

[式中、Rは水素、アルキル基、アリール基またはアラルキル基を表す。nは0〜2の整数を表す。]
または、下記一般式(11);

[式中、Rは水素、アルキル基、アリール基、アラルキル基、シリル基、またはアシル基、ヘテロ環を表す。]を表す。
式(8)、式(9)、式(10)、式(11)において、R、R、R、R、Rが表すアルキル基としては、炭素数1〜18の置換もしくは無置換のものを示し、例えばメチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、n−ペンチル基、イソペンチル基、n−ヘキシル基などを挙げることができる。アラルキル基としては炭素数7〜20の置換もしくは無置換のものを示し、例えば、ベンジル基、4−メチルベンジル基、3−メチルベンジル基、2−メチルベンジル基、4−メトキシベンジル基、3−メトキシベンジル基、2−メトキシベンジル基、1−フェニルエチル基、2−フェニルエチル基、1−(4−メチルフェニル)エチル基、1−(4−メトキシフェニル)エチル基、3−フェニルプロピル基、2−フェニルプロピル基等を挙げることができる。アリール基としては炭素数6〜20の置換もしくは無置換のものを示し、例えば、フェニル基、1−ナフチル基、2−ナフチル基、4−メチルフェニル基、3−メチルフェニル基、2−メチルフェニル基、4−エチルフェニル基、3−エチルフェニル基、4−メトキシフェニル基、3−メトキシフェニル基、2−メトキシフェニル基、4−ニトロフェニル基、4−フェニルフェニル基、4−クロロフェニル基、4−ブロモフェニル基などを挙げることができる。
さらにR、R、R、Rが表すシリル基としては、ケイ素上に、炭素数1〜18の置換もしくは無置換のアルキル基、炭素数6〜20の置換もしくは無置換のアリール基、または、炭素数7〜20の置換もしくは無置換のアラルキル基からそれぞれ独立に選ばれる0〜3個の基が結合した基を示し、アルキル基、アリール基、アラルキル基としてはそれぞれ上述の基を挙げることができ、シリル基として具体例を挙げればトリメチルシリル基、トリエチルシリル基、トリプロピルシリル基、トリイソプロピルシリル基、tert−ブチルジメチルシリル基、ジメチルフェニルシリル基、エチルジメチルシリル基、ジメチルプロピルシリル基、ジメチルイソプロピルシリル基、トリフェニルシリル基などを挙げることができる。
、R、R、Rが示すアシル基としては、炭素数1〜20の置換もしくは無置換のものを示し、たとえば、アセチル基、エチルカルボニル基、プロピルカルボニル基、イソプロピルカルボニル基、ブチルカルボニル基、イソブチルカルボニル基、sec−ブチルカルボニル基、ピバロイル基、ペンチルカルボニル基、イソペンチルカルボニル基、ベンゾイル基、4−メチルフェニルベンゾイル基、4−メトキシベンゾイル基などを挙げることができる。
また、RまたはRが示すアルキルオキシカルボニル基としては、炭素数1〜18の置換もしくは無置換のアルキル基置換オキシカルボニル基があげられ、例えば、メトキシカルボニル基、エトキシカルボニル基、プロピルオキシカルボニル基、イソプロピルオキシカルボニル基、ブチルカルボニル基、sec−ブチルカルボニル基、イソブチルカルボニル基、tert−ブチルオキシカルボニル基、ペンチルオキシカルボニル基、イソペンチルオキシカルボニル基、sec−ペンチルオキシカルボニル基、tert−ペンチルオキシカルボニル基、ネオペンチルオキシカルボニル基などを挙げることができる。アラルキルオキシカルボニル基としては炭素数7〜20の置換もしくは無置換のアラルキル基置換オキシカルボニル基があげられ、例えば、ベンジルオキシカルボニル基、1−フェニルエチルオキシカルボニル基、2−フェニルエチルオキシカルボニル基、4−メチルベンジルオキシカルボニル基、3−メチルベンジルオキシカルボニル基、2−メチルベンジルオキシカルボニル基、4−メトキシベンジルオキシカルボニル基、3−メトキシベンジルオキシカルボニル基、2−メトキシベンジルオキシカルボニル基、4−クロロベンジルオキシカルボニル基、3−クロロベンジルオキシカルボニル基、2−クロロベンジルオキシカルボニル基、4−シアノベンジルオキシカルボニル基、3−シアノベンジルオキシカルボニル基、2−シアノベンジルオキシカルボニル基、3,4−ジメチルベンジルオキシカルボニル基、2,4−ジメチルベンジルオキシカルボニル基、3,4−ジメトキシベンジルオキシカルボニル基、2,4−ジメトキシベンジルオキシカルボニル基、1−フェニルプロピルオキシカルボニル基、2−フェニルプロピルオキシカルボニル基、3−フェニルプロピルオキシカルボニル基などを挙げることができる。アリールオキシカルボニル基としては、炭素数6〜20の無置換もしくは置換のアリール基置換オキシカルボニル基を示し、例えば、フェニルオキシカルボニル基、1−ナフチルオキシカルボニル基、2−ナフチルオキシカルボニル基、4−メチルフェニルオキシカルボニル基、3−メチルフェニルオキシカルボニル基、2−メチルフェニルオキシカルボニル基、4−メトキシフェニルオキシカルボニル基、3−メトキシフェニルオキシカルボニル基、2−メトキシフェニルオキシカルボニル基、4−ニトロフェニルオキシカルボニル基、3−ニトロフェニルオキシカルボニル基、2−ニトロフェニルオキシカルボニル基、4−クロロフェニルオキシカルボニル基、3−クロロフェニルオキシカルボニル基、2−クロロフェニルオキシカルボニル基、4−ブロモフェニルオキシカルボニル基、3−ブロモフェニルオキシカルボニル基、2−ブロモフェニルオキシカルボニル基、4−シアノフェニルオキシカルボニル基、3−シアノフェニルオキシカルボニル基、フェニルオキシカルボニル基、2−シアノフェニルオキシカルボニル基、などを挙げることができる。
、Rが示すヘテロ環としては、置換もしくは無置換のヘテロ環があげられ、テトラヒドロピラニル基、テトラヒドロフラニル基、テトラヒドロチオピラニル基、4−メトキシテトラヒドロピラニル基、1,4−ジオキサン−2−イル基などを例示することができる。
これらのうち、Rとして好ましいのは、シリル基、アシル基、ヘテロ環であり、シリル基のなかで特に好ましくはtert−ブチルジメチルシリル基、アシル基の中で特に好ましくはピバロイル基、ヘテロ環で好ましくはテトラヒドロピラニル基があげられる。とりわけ好ましくはピバロイル基である。
、Rとしては特に限定されず、上記置換基類の任意の組み合わせでよいが、好ましくは、Rが水素で、Rはベンジルオキシカルボニル基、tert−ブチルオキシカルボニル基、または、メチルオキシカルボニル基である。
として好ましくは、メチル基、フェニル基である。
として好ましいのは、シリル基、アシル基、ヘテロ環であり、シリル基のなかで特に好ましくはtert−ブチルジメチルシリル基、アシル基の中で特に好ましくはピバロイル基、ヘテロ環で好ましくはテトラヒドロピラニル基があげられる。
反応は、上で述べた化合物(4)と化合物(5)を反応させ化合物(6)を製造する工程と同様の条件で実施することができる。
次に、下記一般式(1);

で表されるハロヒドリン誘導体化合物について述べる。Xはハロゲン原子を表し、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子を挙げることができるが、好ましくは塩素原子、臭素原子であり、さらに好ましくは塩素原子である。
は水素、アルキル基、アリール基、アラルキル基、シリル基、アシル基、またはヘテロ環を表す。
アルキル基としては、炭素数1〜18の置換もしくは無置換のものを示し、例えばメチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、n−ペンチル基、イソペンチル基、n−ヘキシル基などを挙げることができる。アリール基としては、炭素数6〜20の置換もしくは無置換のものを示し、例えば、フェニル基、1−ナフチル基、2−ナフチル基、4−メチルフェニル基、3−メチルフェニル基、2−メチルフェニル基、4−エチルフェニル基、3−エチルフェニル基、4−メトキシフェニル基、3−メトキシフェニル基、2−メトキシフェニル基、4−ニトロフェニル基、4−フェニルフェニル基、4−クロロフェニル基、4−ブロモフェニル基などを挙げることができる。アラルキル基としては、炭素数7〜20の置換もしくは無置換のものを示し、例えば、ベンジル基、4−メチルベンジル基、3−メチルベンジル基、2−メチルベンジル基、4−メトキシベンジル基、3−メトキシベンジル基、2−メトキシベンジル基、1−フェニルエチル基、2−フェニルエチル基、1−(4−メチルフェニル)エチル基、1−(4−メトキシフェニル)エチル基、3−フェニルプロピル基、2−フェニルプロピル基等を挙げることができる。シリル基としては、ケイ素上に炭素数1〜18の置換もしくは無置換のアルキル基、炭素数6〜20の置換もしくは無置換のアリール基、または、炭素数7〜20の置換もしくは無置換のアラルキル基からそれぞれ独立に選ばれる0〜3個の基が結合した基を示し、アルキル基、アリール基、アラルキル基としてはそれぞれ上述の基を挙げることができ、具体的なシリル基としては、トリメチルシリル基、トリエチルシリル基、トリプロピルシリル基、トリイソプロピルシリル基、tert−ブチルジメチルシリル基、ジメチルフェニルシリル基、エチルジメチルシリル基、ジメチルプロピルシリル基、ジメチルイソプロピルシリル基、トリフェニルシリル基などを挙げることができる。アシル基としては、炭素数1〜20の置換もしくは無置換のものを示し、たとえば、アセチル基、エチルカルボニル基、プロピルカルボニル基、イソプロピルカルボニル基、ブチルカルボニル基、イソブチルカルボニル基、sec−ブチルカルボニル基、ピバロイル基、ペンチルカルボニル基、イソペンチルカルボニル基、ベンゾイル基、4−メチルフェニルベンゾイル基、4−メトキシベンゾイル基などを挙げることができる。ヘテロ環としては、置換もしくは無置換のものを示し、テトラヒドロピラニル基、テトラヒドロフラニル基、テトラヒドロチオピラニル基、4−メトキシテトラヒドロピラニル基、1,4−ジオキサン−2−イル基などを例示することができる。
これらのうち、好ましくは、シリル基、アシル基、ヘテロ環であり、さらに好ましくはシリル基の場合、tert−ブチルジメチルシリル基であり、アシル基の場合、ピバロイル基であり、ヘテロ環の場合テトラヒドロピラニル基である。 とりわけ好ましくはピバロイル基である。
Arとしては、炭素数6〜20の置換もしくは無置換のアリール基を示し、例えば、フェニル基、1−ナフチル基、2−ナフチル基、4−メチルフェニル基、3−メチルフェニル基、2−メチルフェニル基、4−エチルフェニル基、3−エチルフェニル基、4−メトキシフェニル基、3−メトキシフェニル基、2−メトキシフェニル基、4−ニトロフェニル基、3−ニトロフェニル基、2−ニトロフェニル基、4−フェニルフェニル基、4−クロロフェニル基、4−ブロモフェニル基、4−フルオロフェニル基、3−フルオロフェニル基、2−フルオロフェニル基、2,3−ジフルオロフェニル基、2,4−ジフルオロフェニル基、2,5−ジフルオロフェニル基、3,4−ジフルオロフェニル基、2、3−ジメチルフェニル基、2,4−ジメチルフェニル基、3,4−ジメチルフェニル基などを挙げることができるが、好ましくは4−フルオロフェニル基、3−フルオロフェニル基、2−フルオロフェニル基、2,3−ジフルオロフェニル基、2,4−ジフルオロフェニル基、2,5−ジフルオロフェニル基、3,4−ジフルオロフェニル基であり、さらに好ましくは2,4−ジフルオロフェニル基、2,5−ジフルオロフェニル基である。*1で表される不斉炭素はR体の絶対配置を有するものであってもよいし、S体の絶対配置を有するものであってもよく、同様に*2で表される不斉炭素はR体の絶対配置を有するものであっても、S体の絶対配置を有するものであってもよい。(1)は本発明者らによってトリアゾール系抗真菌剤中間体としての用途が見出された新規化合物である。
次に、下記一般式(22);

で表されるハロヒドリン誘導体化合物について述べる。Xは前記と同じである。
、Xは、ハロゲン原子を表し、同一、もしくは異なっても良い。例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子を挙げることができるが、好ましくはX,Xがともにフッ素原子である。
12は水素、アルキル基、アリール基、アラルキル基、シリル基、または、脂肪族アシル基を表す。
アルキル基としては、炭素数1〜18の置換もしくは無置換のものを示し、例えばメチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、n−ペンチル基、イソペンチル基、n−ヘキシル基などを挙げることができる。アリール基としては、炭素数6〜20の置換もしくは無置換のものを示し、例えば、フェニル基、1−ナフチル基、2−ナフチル基、4−メチルフェニル基、3−メチルフェニル基、2−メチルフェニル基、4−エチルフェニル基、3−エチルフェニル基、4−メトキシフェニル基、3−メトキシフェニル基、2−メトキシフェニル基、4−ニトロフェニル基、4−フェニルフェニル基、4−クロロフェニル基、4−ブロモフェニル基などを挙げることができる。アラルキル基としては、炭素数8〜20の置換もしくは無置換のものを示し、例えば、4−メチルベンジル基、3−メチルベンジル基、2−メチルベンジル基、4−メトキシベンジル基、3−メトキシベンジル基、2−メトキシベンジル基、1−フェニルエチル基、2−フェニルエチル基、1−(4−メチルフェニル)エチル基、1−(4−メトキシフェニル)エチル基、3−フェニルプロピル基、2−フェニルプロピル基等を挙げることができる。シリル基としては、ケイ素上に炭素数1〜18の置換もしくは無置換のアルキル基、炭素数6〜20の置換もしくは無置換のアリール基、または、炭素数7〜20の置換もしくは無置換のアラルキル基からそれぞれ独立に選ばれる0〜3個の基が結合した基を示し、アルキル基、アリール基、アラルキル基としてはそれぞれ上述の基を挙げることができ、具体的なシリル基としては、トリメチルシリル基、トリエチルシリル基、トリプロピルシリル基、トリイソプロピルシリル基、tert−ブチルジメチルシリル基、ジメチルフェニルシリル基、エチルジメチルシリル基、ジメチルプロピルシリル基、ジメチルイソプロピルシリル基、トリフェニルシリル基などを挙げることができる。脂肪族アシル基としては、たとえば、アセチル基、エチルカルボニル基、プロピルカルボニル基、イソプロピルカルボニル基、ブチルカルボニル基、イソブチルカルボニル基、sec−ブチルカルボニル基、ピバロイル基、ペンチルカルボニル基、イソペンチルカルボニル基などを挙げることができる。
これらのうち、好ましくは、シリル基、脂肪族アシル基であり、さらに好ましくはシリル基の場合、tert−ブチルジメチルシリル基であり、脂肪族アシル基の場合、ピバロイル基である。とりわけ好ましくはピバロイル基である。
*11で表される不斉炭素はR体の絶対配置を有するものであってもよいし、S体の絶対配置を有するものであってもよく、同様に*12で表される不斉炭素はR体の絶対配置を有するものであっても、S体の絶対配置を有するものであってもよいが、好ましくは*11はS体、*12はR体であり、このような絶対配置を有する(22)は本発明者らによってトリアゾール系抗真菌剤中間体としての用途が見出された新規化合物である。
次に、下記一般式(23);

で表されるハロヒドリン誘導体化合物について述べる。Xは前記と同じである。
、Xは、ハロゲン原子を表し、同一、もしくは異なっても良い。例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子を挙げることができるが、好ましくはX,Xがともにフッ素原子である。
13は水素、アルキル基、アリール基、アラルキル基、シリル基、アシル基、またはヘテロ環を表す。
アルキル基としては、炭素数1〜18の置換もしくは無置換のものを示し、例えばメチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、n−ペンチル基、イソペンチル基、n−ヘキシル基などを挙げることができる。アリール基としては、炭素数6〜20の置換もしくは無置換のものを示し、例えば、フェニル基、1−ナフチル基、2−ナフチル基、4−メチルフェニル基、3−メチルフェニル基、2−メチルフェニル基、4−エチルフェニル基、3−エチルフェニル基、4−メトキシフェニル基、3−メトキシフェニル基、2−メトキシフェニル基、4−ニトロフェニル基、4−フェニルフェニル基、4−クロロフェニル基、4−ブロモフェニル基などを挙げることができる。アラルキル基としては、炭素数7〜20の置換もしくは無置換のものを示し、例えば、ベンジル基、4−メチルベンジル基、3−メチルベンジル基、2−メチルベンジル基、4−メトキシベンジル基、3−メトキシベンジル基、2−メトキシベンジル基、1−フェニルエチル基、2−フェニルエチル基、1−(4−メチルフェニル)エチル基、1−(4−メトキシフェニル)エチル基、3−フェニルプロピル基、2−フェニルプロピル基等を挙げることができる。シリル基としては、ケイ素上に炭素数1〜18の置換もしくは無置換のアルキル基、炭素数6〜20の置換もしくは無置換のアリール基、または、炭素数7〜20の置換もしくは無置換のアラルキル基からそれぞれ独立に選ばれる0〜3個の基が結合した基を示し、アルキル基、アリール基、アラルキル基としてはそれぞれ上述の基を挙げることができ、具体的なシリル基としては、トリメチルシリル基、トリエチルシリル基、トリプロピルシリル基、トリイソプロピルシリル基、tert−ブチルジメチルシリル基、ジメチルフェニルシリル基、エチルジメチルシリル基、ジメチルプロピルシリル基、ジメチルイソプロピルシリル基、トリフェニルシリル基などを挙げることができる。アシル基としては、炭素数1〜20の置換もしくは無置換のものを示し、たとえば、アセチル基、エチルカルボニル基、プロピルカルボニル基、イソプロピルカルボニル基、ブチルカルボニル基、イソブチルカルボニル基、sec−ブチルカルボニル基、ピバロイル基、ペンチルカルボニル基、イソペンチルカルボニル基、ベンゾイル基、4−メチルフェニルベンゾイル基、4−メトキシベンゾイル基などを挙げることができる。ヘテロ環としては、置換もしくは無置換のものを示し、テトラヒドロピラニル基、テトラヒドロフラニル基、テトラヒドロチオピラニル基、4−メトキシテトラヒドロピラニル基、1,4−ジオキサン−2−イル基などを例示することができる。
これらのうち、好ましくは、シリル基、アシル基、ヘテロ環であり、さらに好ましくはシリル基の場合、tert−ブチルジメチルシリル基であり、アシル基の場合、ピバロイル基であり、ヘテロ環の場合テトラヒドロピラニル基である。とりわけ好ましくはピバロイル基である。
*13で表される不斉炭素はR体の絶対配置を有するものであってもよいし、S体の絶対配置を有するものであってもよく、同様に*14で表される不斉炭素はR体の絶対配置を有するものであっても、S体の絶対配置を有するものであってもよいが、好ましくは*13はS体、*14はR体であり、このような絶対配置を有する(23)は本発明者らによってトリアゾール系抗真菌剤中間体としての用途が見出された新規化合物である。
【実施例】
以下に例を挙げて本発明を更に詳しく説明するが、本発明はこれら実施例に限定されるものではない。
[実施例1](R)−1−クロロ−3−ヒドロキシブタン−2−オン
(R)−乳酸メチル6.25g(60mmol)、クロロ酢酸ナトリウム10.49g(90mmol)、トリエチルアミン9.09g(90mmol)、THF250ml混合物を氷冷し、ここに塩化tert−ブチルマグネシウム(1.75M)137g(240mmol)溶液を2時間かけて滴下した。滴下終了後、さらに室温で2時間反応させた後、反応溶液中に濃塩酸20ml/水50mlを加え、25℃で0.5時間攪拌した。生成物を酢酸エチル(200ml×2)で抽出した。有機層を無水硫酸ナトリウムで乾燥後、減圧濃縮し、無色油状物として表題化合物を6.03g得た(収率82%)。H−NMR(400MHz,CDCl)δ1.46(d,3H,J=6.3Hz),4.30(s,2H),4.55(q,1H,J=6.3Hz)。
[実施例2](R)−1−クロロ−3−(tert−ブチルジメチルシリルオキシ)ブタン−2−オン
(R)−2−(tert−ブチルジメチルシリルオキシ)プロピオン酸エチル5.00g(21.52mmol)、クロロ酢酸ナトリウム3.76g(32.3mmol)、トリエチルアミン2.18g(21.5mmol)、THF50ml混合物を氷冷し、ここに塩化tert−ブチルマグネシウム37ml(1.75M、64.6mmol)溶液を1時間かけて滴下した。滴下終了後、0℃で3時間反応させた後、反応溶液中に6M塩酸(約20ml)を加えpH=6.0に調整し、続いて25℃で2時間攪拌した。生成物を酢酸エチル(100ml×2)にて抽出した。有機層を無水硫酸ナトリウムで乾燥後、減圧濃縮し、無色油状物として、表題化合物を5.19g得た(収率100%)。H−NMR(400MHz,CDCl)δ0.10(s,6H),0.92(s,9H),1.24(d,3H,J=6.8Hz),4.35(q,1H,J=6.8Hz),5.50(q,2H,J=17.0Hz)。
[実施例3]1−クロロ−2−(2,4−ジフルオロフェニル)−3−(tert−ブチルジメチルシリルオキシ)ブタン−2−オール
窒素雰囲気下、マグネシウム0.693g(28.5mmol)を無水THF5mlに浸し、ここに、0℃で2,4−ジフルオロフェニルブロモベンゼン5.00g(26.0mmol)/THF21ml溶液を滴下した。滴下終了後、0℃でさらに2時間攪拌した後、さらに室温で1時間攪拌し、臭化2,4−ジフルオロフェニルマグネシウム(0.62M)を得た。
次に、(R)−1−クロロ−3−(tert−ブチルジメチルシリルオキシ)ブタン−2−オン0.69g(3.0mmol)のTHF5ml溶液を0℃に冷却し、ここに、先に調製した臭化2,4−ジフルオロフェニルマグネシウム5.3ml(3.3mmol)を15分間かけて滴下した。滴下終了後、さらに2時間攪拌を続け、飽和塩化アンモニウム水溶液10mlを添加し、反応を停止した。さらに、水10mlを加え、酢酸エチル(20ml×2)抽出した。無水硫酸ナトリウムにて乾燥後、減圧濃縮し、無色油状物を1.01g得た。HPLC(カラム:COSMOSIL ナカライテスク社、移動相:アセトニトリル/0.01wt%リン酸水溶液=7/3、流速:1.0mL/min.、カラム温度:40℃、検出器:UV210nm,保持時間25分(2S,3R)、20分(2R,3R))にて定量分析を行い、表題化合物を0.92g(収率89%)得た((2S,3R):(2R,3R)=91:9)。H−NMR(400MHz,CDCl)(2S,3R)δ0.10(s,6H),0.93(s,12H),3.85(d,1H,J=12.0Hz),4.07(d,1H,J=12.0Hz),4.36(q,1H,J=6.6Hz),6.77−6.80(m,1H),6.91−6.93(m,1H),7.69−7.71(m,1H)。
[実施例4]1−クロロ−2−(2,4−ジフルオロフェニル)−3−(tert−ブチルジメチルシリルオキシ)ブタン−2−オール
(R)−1−クロロ−3−(tert−ブチルジメチルシリルオキシ)ブタン−2−オン0.69g(3.0mmol)のTHF5ml溶液を−20℃に冷却し、ここに、実施例3と同様の方法で調製した臭化2,4−ジフルオロフェニルマグネシウム溶液5.3ml(3.3mmol)を15分間かけて滴下した。滴下終了後、さらに2時間攪拌を続け、飽和塩化アンモニウム水溶液10mlを添加し、反応を停止した。さらに、水10mlを加え、酢酸エチル抽出(20ml×2)した。無水硫酸ナトリウムにて乾燥後、減圧濃縮し、無色油状物を得た。HPLCにて定量分析(HPLC測定条件は実施例3に同じ)を行い、収率68%で表題化合物を得た。((2S,3R):(2R,3R)=92:8)。
[実施例5]1−クロロ−2−(2,4−ジフルオロフェニル)−3−(tert−ブチルジメチルシリルオキシ)ブタン−2−オール
(R)−1−クロロ−3−(tert−ブチルジメチルシリルオキシ)ブタン−2−オン0.69g(3.0mmol)のトルエン5ml溶液を0℃に冷却し、ここに、実施例3と同様の方法で調整した臭化2,4−ジフルオロフェニルマグネシウム溶液5.3ml(3.3mmol)を15分間かけて滴下した。滴下終了後、さらに2時間攪拌を続け、飽和塩化アンモニウム水溶液10mlを添加し、反応を停止した。さらに、水10mlを加え、酢酸エチル抽出(20ml×2)した。無水硫酸ナトリウムにて乾燥後、減圧濃縮し、無色油状物を得た。HPLCにて定量分析を行い(HPLCの測定条件は実施例3に同じ)、収率94%で表題化合物を得た。((2S,3R):(2R,3R)=90:10)。
[実施例6]1−クロロ−2−(2,4−ジフルオロフェニル)ブタン−2,3−ジオール
1−クロロ−2−(2,4−ジフルオロフェニル)−3−(tert−ブチルジメチルシリルオキシ)ブタン−2−オール((2S,3R)/(2R,3R)=91/9)0.45g(1.28mmol)/メタノール5ml溶液に、室温で濃塩酸0.25mlを加えた。滴下終了後、室温で18時間攪拌を行った。ここに、水10mlを加え反応を停止し、酢酸エチル20mlをもちいて抽出した。有機層を無水硫酸ナトリウムにて乾燥後、減圧濃縮し無色油状の粗生成物を得た。HPLCを用いた定量分析により、表題化合物を77%収率で得た((2S,3R)/(2R,3R))=90/10)(HPLC カラム:CAPCELL PAK C18 TYPE MG 資生堂、移動相:アセトニトリル/20mMリン酸(カリウム)緩衝液(pH=2.5)=3/7、流速:1.0mL/min.、カラム温度:30℃、検出器:UV210nm,保持時間26分((2S,3R)17分(2R,3R))。H−NMR(400MHz,CDCl)(2S,3R)δ0.98(d,3H,J=6.6Hz),2.50(brs,1H),3.21(s,1H),4.11−4.23(m,3H),6.77−6.80(m,1H),6.91−6.93(m,1H),7.69−7.71(m,1H):(2R,3R)δ1.93(dd,3H,J=6.3,1.2Hz),2.25(d,1H,J=5.2Hz),3.15(s,1H),3.96(d,J=11.0Hz),4.08(q,1H,J=6.3Hz),4.35(d,J=11.2hz),6.77−6.80(m,1H),6.91−6.93(m,1H),7.69−7.71(m,1H)。
[実施例7](2S,3R)−1−クロロ−2−(2,4−ジフルオロフェニル)ブタン−2,3−ジオール
1−クロロ−2−(2,4−ジフルオロフェニル)−3−(tert−ブチルジメチルシリルオキシ)ブタン−2−オール((2S,3R)/(2R,3R)=91/9)0.45g(1.28mmol)/THF5ml溶液を氷冷し、ここにTBAF(1.0MTHF溶液)1.3mlを滴下した。滴下終了後、さらに1.5時間反応させた後、さらに室温で11時間反応させた。水10mlを加えて反応を停止し、酢酸エチル20mlで抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧濃縮し、無色油状物の粗生成物を得た。これをHPLCにて定量分析を行い(HPLCの測定条件は実施例6に同じ)、表題化合物を15%収率((2S,3R)/(2R,3R)=91/9)で得た。
[実施例8]1−クロロ−2−(2,4−ジフルオロフェニル)ブタン−2,3−ジオール
1−クロロ−2−(2,4−ジフルオロフェニル)−3−(tert−ブチルジメチルシリルオキシ)ブタン−2−オール((2S,3R)/(2R,3R)=91/9)0.27g(0.77mmol)/メタノール3ml溶液にフッ化カリウム0.06g(0.94mmol)を加え、10時間反応、さらに50℃で25時間反応させた。水5mlを加えて反応を停止し、酢酸エチル10mlで抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧濃縮し、無色油状物の粗生成物を得た。これをHPLCにて定量分析を行い(HPLCの測定条件は実施例6に同じ)、表題化合物を17%収率((2S,3R)/(2R,3R)=95/5)で得た。
[実施例9](2R,3R)−1,2−エポキシ−2−(2,4−ジフルオロフェニル)ブタン−3−オール
(2S,3R)−1−クロロ−2−(2,4−ジフルオロフェニル)ブタン−2,3−ジオール0.12g(0.45mmol)/メタノール3ml溶液を氷冷し、ここにNaOMe(28%メタノール溶液)0.12g(0.6mmol)を加え、2時間反応させた。水10mlを加えて反応を停止し、酢酸エチル(10ml)抽出を行った。無水硫酸ナトリウムで乾燥後、減圧濃縮し粗生成物を得た。これをシリカゲルカラムにより精製し、表題化合物を0.09g(収率96%)得た。
[実施例10]1,2−エポキシ−2−(2,4−ジフルオロフェニル)ブタン−3−オール
(2S,3R)−1−クロロ−2−(2,4−ジフルオロフェニル)ブタン−2,3−ジオール((2S,3R)/(2R,3R)=88/12)0.28g(1.2mmol)/メタノール3ml溶液を氷冷し、ここにNaOH水溶液(1M)1.4mlを加え、1.5時間反応させた。水10mlを加えて反応を停止し、酢酸エチル(20ml)抽出を行った。無水硫酸ナトリウムで乾燥後、減圧濃縮し粗生成物を得た。これをHPLCにて定量分析し、表題化合物を収率95%((2R,3R)/(2S,3R)=88/12)で得た。(HPLC カラム:CAPCELL PAK C18 TYPE MG、移動相アセトニトリル/20mMリン酸(カリウム)緩衝液(pH=2.5)=2/8、流速:1.0mL/min.、カラム温度:30℃、検出器:UV210nm,保持時間28 分(2S,3R)30分(2R,3R))H−NMR(400MHz,CDCl)(2R,3R)δ1.16(d,3H,J=6.1Hz),2.80(d,1H,J=4.4Hz),3.30(d,1H,J=4.4Hz),4.09(q,1H,J=6.1Hz),6.80−6.93(m,2H),7.32−7.37(m,1H)。
[実施例11](S)−1−クロロ−3−(tert−ブチルジメチルシリルオキシ)ブタン−2−オン
(S)−2−(tert−ブチルジメチルシリルオキシ)プロピオン酸エチル5.00g(21.52mmol)、クロロ酢酸ナトリウム3.76g(32.3mmol)、トリエチルアミン2.18g(21.5mmol)、THF50ml混合物を氷冷し、ここに塩化tert−ブチルマグネシウム37ml(1.75M、64.6mmol)溶液を1時間かけて滴下した。滴下終了後、さらに0℃で3時間反応させた後、反応溶液中に6M塩酸(約20ml)を加え、pH=6.0となるように調整し、続いて25℃で2時間攪拌した。生成物を酢酸エチル(100ml×2)抽出した。有機層を無水硫酸ナトリウムで乾燥後、減圧濃縮し、無色油状物として、表題化合物を5.01g得た(収率98%)。H−NMR(400MHz,CDCl)δ0.10(s,6H),0.92(s,9H),1.24(d,3H,J=6.8Hz),4.35(q,1H,J=6.8Hz),5.50(q,2H,J=17.0Hz)。
[実施例12]1−クロロ−2−(2,4−ジフルオロフェニル)−3−(tert−ブチルジメチルシリルオキシ)ブタン−2−オール
(S)−1−クロロ−3−(tert−ブチルジメチルシリルオキシ)ブタン−2−オン0.69g(3.0mmol)のトルエン5ml溶液を−20℃に冷却し、ここに、実施例3と同様の方法で調製した臭化2,4−ジフルオロフェニルマグネシウム溶液5.3ml(3.3mmol)を15分間かけて滴下した。滴下終了後、さらに2時間攪拌を続け、飽和塩化アンモニウム水溶液10mlを添加し、反応を停止した。さらに、水10mlを加え、酢酸エチル抽出(20ml×2)した。無水硫酸ナトリウムにて乾燥後、減圧濃縮し、無色油状物を得た。HPLCにて定量分析を行い(HPLC測定条件は実施例3に同じ)、表題化合物を収率91%で得た。((2R,3S)/(2S,3S)=92/8)。H−NMR(400MHz,CDCl)(2R,3S)δ0.10(s,6H),0.92(s,12H),3.85(d,1H,J=12.0Hz),4.07(d,1H,J=12.0Hz),4.35(q,1H,J=6.6Hz),6.77−6.79(m,1H),6.93−6.93(m,1H),7.69−7.71(m,1H)。
[実施例13]1−クロロ−2−(2,4−ジフルオロフェニル)ブタン−2,3−ジオール
1−クロロ−2−(2,4−ジフルオロフェニル)−3−(tert−ブチルジメチルシリルオキシ)ブタン−2−オール((2R,3S)/(2S,3S)=92/8)0.45g(1.28mmol)/メタノール5ml溶液に、室温で濃塩酸0.25mlを加えた。滴下終了後、室温で18時間攪拌を行った。ここに、水10mlを加え反応を停止し、酢酸エチル(20ml)抽出した。有機層を無水硫酸ナトリウムにて乾燥後、減圧濃縮し無色油状の粗生成物を得た。HPLCを用いた定量分析により(HPLC測定条件は実施例6に同じ)、表題化合物を75%収率で得た((2R,3S)/(2S,3S)=91/9)。H−NMR(400MHz,CDCl)(2R,3S)δ0.98(d,3H,J=6.6Hz),2.48(brs,1H),3.20(s,1H),4.11−4.23(m,3H),6.77−6.80(m,1H),6.91−6.93(m,1H),7.69−7.71(m,1H):(2S,3S)δ1.93(dd,3H,J=6.3,1.2Hz),2.25(d,1H,J=5.2Hz),3.15(s,1H),3.97(d,J=11.0Hz),4.06(q,1H,J=6.3Hz),4.35(d,J=11.2Hz),6.75−6.82(m,1H),6.91−6.93(m,1H),7.69−7.71(m,1H)。
[実施例14](2S,3S)−1,2−エポキシ−2−(2,4−ジフルオロフェニル)ブタン−3−オール
(2R,3S)−1−クロロ−2−(2,4−ジフルオロフェニル)ブタン−2,3−ジオール0.12g(0.45mmol)/メタノール3ml溶液を氷冷し、ここにNaOMe(28%メタノール溶液)0.12g(0.6mmol)を加え、2時間反応させた。水10mlを加えて反応を停止し、酢酸エチル(10ml)抽出を行った。無水硫酸ナトリウムで乾燥後、減圧濃縮し粗生成物を得た。これをシリカゲルカラムにより精製し、表題化合物を0.086g(収率96%)得た。
[実施例15](R)−1−クロロ−3−トリメチルシリルオキシブタン−2−オン
(R)−乳酸エチル5.00g(42.3mmol)、クロロ酢酸ナトリウム7.40g(63.5mmol)、トリエチルアミン4.28g(42.3mmol)、THF50ml混合物を氷冷し、ここに塩化tert−ブチルマグネシウム97g(1.75M、109mmol)溶液を2時間かけて滴下した。滴下終了後、さらに室温で2時間反応させた後、反応溶液中に濃塩酸20ml/水50mlを加え、続いて25℃で0.5時間攪拌した。生成物を酢酸エチル(200ml×2)抽出した。有機層を無水硫酸ナトリウムで乾燥後、減圧濃縮し、無色油状物を得た。
次に、この濃縮物をTHF50mlに溶解し、ここにTMSCl8.1ml(63.5mmol)を氷冷下5分かけて滴下し、続いて同温にてトリエチルアミン11.8ml(84.6mmol)を10分間かけて滴下した。さらに、1時間反応を行ったのち、水80mlを加え、酢酸エチル抽出(100ml×2)した。無水硫酸ナトリウムで乾燥後、減圧濃縮し、表題化合物を油状物として5.04g(収率61%)得た。H−NMR(400MHz,CDCl)δ0.17(s,9H),1.35(d,3H,J=6.0Hz),4.35(q,1H,J=6.0Hz),4.48(d,2H,J=17.1Hz)。
[実施例16]1−クロロ−2−(2,4−ジフルオロフェニル)−3−(トリメチルシリルオキシ)ブタン−2−オール
(R)−1−クロロ−3−(トリメチルシリルオキシ)ブタン−2−オン0.7g(3.6mmol)のTHF5ml溶液を0℃に冷却し、ここに、実施例3と同様の方法で調製した臭化2,4−ジフルオロフェニルマグネシウム溶液5.4ml(0.7M、3.8mmol)を10分間かけて滴下した。滴下終了後、さらに5時間攪拌を続け、飽和塩化アンモニウム水溶液10mlを添加し反応を停止した。さらに、水10mlを加え、酢酸エチル抽出(20ml×2)した。無水硫酸ナトリウムにて乾燥後、減圧濃縮し、1−クロロ−2−(2,4−ジフルオロフェニル)ブタン−2、3−ジオールとして得た。HPLCにて定量分析を行い(HPLC測定条件は実施例6に同じ)、収率87%であった((2S,3R)/(2R,3R)=41/59)。
[実施例17]1−クロロ−2−(2,4−ジフルオロフェニル)−3−(トリメチルシリルオキシ)ブタン−2−オール
(R)−1−クロロ−3−(トリメチルシリルオキシ)ブタン−2−オン0.7g(3.6mmol)のTHF5ml溶液を−20℃に冷却し、ここに、実施例3と同様の方法で調整した臭化2,4−ジフルオロフェニルマグネシウム溶液5.4ml(0.7M、3.8mmol)を10分間かけて滴下した。滴下終了後、さらに5時間攪拌を続け、飽和塩化アンモニウム水溶液10mlを添加し反応を停止した。さらに、水10mlを加え、酢酸エチル抽出(20ml×2)した。無水硫酸ナトリウムにて乾燥後、減圧濃縮し、無色油状物の1−クロロ−2−(2,4−ジフルオロフェニル)ブタン−2、3−ジオールとして得た。HPLCにて定量分析を行い、収率79%であった((2S,3R)/(2R,3R)=43/57)(HPLC測定条件は実施例6に同じ)。
[実施例18](R)−1−クロロ−3−ピバロイルオキシブタン−2−オン
(R)−2−ピバロイルオキシプロピオン酸メチル32.8g(147mmol)、クロロ酢酸ナトリウム30.5g(261.8mmol)、トリエチルアミン26.4g(261.55mmol)、THF400ml混合物を氷冷し、ここに塩化tert−ブチルマグネシウム299g(1.75M、523.5mmol)溶液を3時間かけて滴下した。滴下終了後、さらに25℃で2時間反応させた後、反応溶液を氷冷し、ここに濃塩酸45ml/水200ml、次いで酢酸エチル250mlを加え、さらに濃塩酸を加えてpH=6.0となるように調整し、25℃で1時間攪拌した。酢酸エチル層を分離し、水層にさらに酢酸エチル150mlを加えて再抽出し、酢酸エチル層を合わせ、無水硫酸ナトリウムで乾燥した。これを減圧濃縮し、油状物として粗生成物を42.6g得た。これをHPLCを用いた定量分析を行い、表題化合物を29.4g得た(収率82%、98.7%ee)(HPLC カラム:YMC−A302 ワイエムシィ社、移動相アセトニトリル/20mMリン酸(カリウム)緩衝液(pH=2.5)=6/4、流速:1.0mL/min.、カラム温度:30℃、検出器:UV210nm,保持時間5分)H−NMR(400MHz,CDCl)δ 1.25(s,9H),1.46(d,1H,J=6.6Hz),4.30(s,2H),5.27(q,1H,J=6.6Hz)。
[実施例19]1−クロロ−2−(2,4−ジフルオロフェニル)−3−ピバロイルオキシブタン−2−オール
(R)−1−クロロ−3−ピバロイルオキシブタン−2−オン0.41g(2.0mmol)のTHF5ml溶液を0℃に冷却し、ここに、実施例3と同様の方法で調整した臭化2,4−ジフルオロフェニルマグネシウム溶液3.2ml(0.69M、2.2mmol)を5分間かけて滴下した。滴下終了後、さらに1時間攪拌を続け、飽和塩化アンモニウム水溶液10mlを添加し、反応を停止した。さらに、水10mlを加え、酢酸エチル抽出(20ml×2)した。無水硫酸ナトリウムにて乾燥後、減圧濃縮し、粗生成物を得た。HPLCにて定量分析を行い、表題化合物を収率15%で得た。((2S,3R)/(2R,3R)=92/8)(HPLC カラム:YMC−A302 ワイエムシィ社、移動相アセトニトリル/20mMリン酸(カリウム)緩衝液(pH=2.5)=6/4、流速:1.0mL/min.、カラム温度:30℃、検出器:UV210nm,保持時間10分(2S,3R) 8分(2R,3R))。H−NMR(400MHz,CDCl)δ1.05(d,3H,J=6.3Hz),1.25(s,9H),3.86(d,1H,J=11.5Hz),4.19(d,1H,11.5Hz),5.38(q,1H,J=6.3Hz),6.77−6.80(m,1H),6.91−6.93(m,1H),7.69−7.71(m,1H)
[実施例20]1−クロロ−2−(2,4−ジフルオロフェニル)−3−ピバロイルオキシブタン−2−オール
(R)−1−クロロ−3−ピバロイルオキシブタン−2−オン0.41g(2.0mmol)のトルエン5ml溶液を0℃に冷却し、ここに、実施例3と同様の方法で調製した臭化2,4−ジフルオロフェニルマグネシウム溶液3.2ml(0.69M、2.2mmol)を5分間かけて滴下した。滴下終了後、さらに1時間攪拌を続け、飽和塩化アンモニウム水溶液10mlを添加し、反応を停止した。さらに、水10mlを加え、酢酸エチル抽出(20ml×2)した。無水硫酸ナトリウムにて乾燥後、減圧濃縮し、粗生成物を0.54g得た。シリカゲルカラムにより精製し、表題化合物を0.450g得た(収率71%)。((2S,3R)/(2R,3R)=93/7(ジアステレオマー比はHPLCで測定した。HPLC測定条件は実施例19に同じ))。
[実施例21]1−クロロ−2−(2,4−ジフルオロフェニル)−3−ピバロイルオキシブタン−2−オール
実施例3と同様の方法で調製した臭化2,4−ジフルオロフェニルマグネシウム溶液8.9ml(0.9M、8.0mmol)を0℃に冷却し、ここに(R)−1−クロロ−3−ピバロイルオキシブタン−2−オン0.83g(4.0mmol)のトルエン10ml溶液を5分間かけて滴下した。滴下終了後、さらに1時間攪拌を続け、飽和塩化アンモニウム水溶液20mlを添加し、反応を停止した。さらに、水10mlを加え、酢酸エチル抽出(30ml×2)した。無水硫酸ナトリウムにて乾燥後、減圧濃縮し、粗生成物を1.57g得た。HPLCにて定量分析を行い、表題化合物を収率94%で得た。((2S,3R)/(2R,3R)=93/7、(ジアステレオマー比はHPLCで測定した。HPLC測定条件は実施例19と同じ))。
[実施例22]1−クロロ−2−(2,4−ジフルオロフェニル)−3−ピバロイルオキシブタン−2−オール
(R)−1−クロロ−3−ピバロイルオキシブタン−2−オン0.41g(2.0mmol)のトルエン5ml溶液を−20℃に冷却し、ここに、実施例3と同様の方法で調整した臭化2,4−ジフルオロフェニルマグネシウム溶液3.2ml(0.69M、2.2mmol)を5分間かけて滴下した。滴下終了後、さらに1時間攪拌を続け、飽和塩化アンモニウム水溶液10mlを添加し、反応を停止した。さらに、水10mlを加え、酢酸エチル抽出(20ml×2)した。無水硫酸ナトリウムにて乾燥後、減圧濃縮し、粗生成物を得た。HPLCにて定量分析を行い、表題化合物を収率60%で得た。((2S,3R)/(2R,3R)=94/6、(ジアステレオマー比はHPLCで測定した。HPLC測定条件は実施例19と同じ))。
[実施例23]1,2−エポキシ−2−(2,4−ジフルオロフェニル)ブタン−3−オール
1−クロロ−2−(2,4−ジフルオロフェニル)−3−(ピバロイルオキシ)ブタン−2−オール((2S,3R)/(2R,3R)=93/7)0.45g(1.4mmol)/メタノール3ml溶液を0℃に冷却し、NaOMe(28%メタノール溶液)0.33g(1.7mmol)を加え、1時間、さらに室温で16時間反応させた。水5mlを加えて反応を停止し、酢酸エチル(20ml)抽出を行った。無水硫酸ナトリウムで乾燥後、減圧濃縮し、粗生成物として0.31g得た。これをシリカゲルカラムにて精製し、表題化合物を0.11g(収率40%)得た((2R,3R)/(2S,3R)=96/4(ジアステレオマー比はHPLCで測定した。HPLC測定条件は実施例10に同じ))。
[実施例24](R)−1−クロロ−3−(3,4,5,6−テトラヒドロ−2H−ピラン−2−イルオキシ)ブタン−2−オン
(R)−2−(3,4,5,6−テトラヒドロ−2H−ピラン−2−イルオキシ)プロピオン酸メチル9.41g(50mmol)、クロロ酢酸ナトリウム8.74g(75mmol)、トリエチルアミン7.53g(75mmol)、THF200ml混合物を氷冷し、ここに塩化tert−ブチルマグネシウム199g(1.6M、300mmol)溶液を2時間かけて滴下した。滴下終了後、さらに室温で2時間反応させた後、反応溶液を再び氷冷し、ここに水50ml、酢酸エチル100mlを順次加え、さらにpH=6.0となるまで10%塩酸を加えた。室温で1時間攪拌した後、有機層を分離し、無水硫酸ナトリウムで乾燥後、減圧濃縮を行い、粗生成物として9.81g得た。これをシリカゲルカラムにより精製し、表題化合物を6.79g(収率73%)得た。H−NMR(400MHz,CDCl)δ 1.35(d,3H,J=6.6Hz),1.50−1.55(m,4H),1.80−1.84(m,3H),3.42−3.53(m,1H),3.83−3.96(m,1H),4.24(q,1H,J=6.8Hz),5.58(m,2H)。
[実施例25]1−クロロ−2−(2,4−ジフルオロフェニル)−3−(3,4,5,6−テトラヒドロ−2H−ピラン−2−イルオキシ)ブタン−2−オール
(R)−1−クロロ−3−(3,4,5,6−テトラヒドロ−2H−ピラン−2−イルオキシ)ブタン−2−オン0.413g(2.0mmol)のTHF5ml溶液を0℃に冷却し、ここに、実施例3と同様の方法で調製した臭化2,4−ジフルオロフェニルマグネシウム溶液2.7ml(0.81M、2.2mmol)を5分間かけて滴下した。滴下終了後、さらに2時間攪拌を続け、飽和塩化アンモニウム水溶液10mlを添加し、反応を停止した。さらに、水10mlを加え、酢酸エチル抽出(20ml×2)した。無水硫酸ナトリウムにて乾燥後、減圧濃縮し、無色油状物を0.634g得た。これをシリカゲルカラムにより精製し、表題化合物を0.51g(収率79%)得た((2R,3R)/(2S,3R)=82/18(ジアステレオマー比はHPLCで測定した。HPLC条件 カラム:YMC−A302 ワイエムシィ社、移動相アセトニトリル/20mMリン酸(カリウム)緩衝液(pH=2.5)=6/4、流速:1.0mL/min.、カラム温度:30℃、検出器:UV210nm,保持時間15、17分(2R,3R)19、22分(2S,3R)))。H−NMR(400MHz,CDCl)(2R,3R)δ0.87−1.86(m,10H),3.43−3.45(m,1H),3.81−4.39(m,4H),6.77−6.80(m,1H),6.91−6.93(m,1H),7.69−7.71(m,1H);(2S,3R)δ0.95−1.85(m,10H),3.42−3.55(m,1H),3.85−4.95(m,4H),6.77−6.80(m,1H),6.91−6.93(m,1H),7.69−7.71(m,1H)。
[実施例26](2R,3R)−1−クロロ−2−(2,4−ジフルオロフェニル)ブタン−2,3−ジオール
(2R,3R)−1−クロロ−2−(2,4−ジフルオロフェニル)−3−(3,4,5,6−テトラヒドロ−2H−ピラン−2−イルオキシ)ブタン−2−オール 0.15g(0.47mmol)/メタノール5ml/p−トルエンスルホン酸1水和物0.02g混合溶液を室温で30分攪拌した。減圧濃縮し、得られた粗生成物をシリカゲルカラムにより精製し、表題化合物を0.12g(収率97%)得た。
[実施例27](2S,3R)−1,2−エポキシ−2−(2,4−ジフルオロフェニル)ブタン−3−オール
(2R,3R)−1−クロロ−2−(2,4−ジフルオロフェニル)ブタン−2,3−ジオール1.00g(4.23mmol)/メタノール8ml溶液を氷冷し、ここにNaOMe(28%メタノール溶液)0.91g(4.65mmol)を加え、2時間反応させた。水10mlを加えて反応を停止し、酢酸エチル20mlをもちいて抽出を行った。無水硫酸ナトリウムで乾燥後、減圧濃縮し粗生成物を得た。これをHPLCにて定量分析し(HPLC測定条件は実施例10に同じ)、表題化合物を収率97%で得た。H−NMR(400MHz,CDCl)δ1.19(d,3H,J=6.3Hz),2.22(s,1H),2.91(d,1H,J=4.9Hz),3.28(d,1H,J=4.9Hz),4.11(d,1H,J=6.3Hz),6.80−6.91(m,2H),7.34−7.39(m,1H)。
[実施例28](R)−1−クロロ−3−(tert−ブチルオキシ)ブタン−2−オン
(R)−2−(tert−ブチルオキシ)プロピオン酸メチル8.00g(50mmol)、クロロ酢酸ナトリウム8.74g(75mmol)、トリエチルアミン7.53g(75mmol)、THF200ml混合物を氷冷し、ここに塩化tert−ブチルマグネシウム93.8g(1.6M、150mmol)溶液を2時間かけて滴下した。滴下終了後、さらに室温で2時間反応させた後、反応溶液を再び氷冷し、ここに濃塩酸20ml、酢酸エチル100mlを順次加え、室温で1時間攪拌した後、有機層を分離し、無水硫酸ナトリウムで乾燥後、減圧濃縮を行い、粗生成物として7.35g得た。これをシリカゲルカラムにより精製し、表題化合物を6.66g(収率80%)得た。H−NMR(400MHz,CDCl)δ 1.21(s,9H),1.35(d,3H,J=6.6Hz),4.20(q,1H,J=6.6Hz),5.50(s,2H)。
[実施例29]1−クロロ−2−(2,5−ジフルオロフェニル)−3−ピバロイルオキシブタン−2−オール
2,5−ジフルオロブロモベンゼン5.79g(30.0mmol)、マグネシウム0.759g(31.2mmol)から実施例3と同様の方法で調製した臭化2,5−ジフルオロフェニルマグネシウム溶液を0℃に冷却し、ここに(R)−1−クロロ−3−ピバロイルオキシブタン−2−オン3.10g(15.0mmol)のトルエン15ml溶液を滴下した。滴下終了後、さらに1時間攪拌を続け、飽和塩化アンモニウム水溶液10mlを添加し、反応を停止した。さらに、水10mlを加え、酢酸エチル抽出(20ml×2)した。無水硫酸ナトリウムにて乾燥後、減圧濃縮し、粗生成物を得た。HPLCにて定量分析を行い、表題化合物を収率63%で得た。((2S,3R)/(2R,3R)=94/6)(HPLC カラム:YMC−A302 ワイエムシィ社、移動相アセトニトリル/20mMリン酸(カリウム)緩衝液(pH=2.5)=6/4、流速:1.0mL/min.、カラム温度:30℃、検出器:UV210nm,保持時間17.0分(2S,3R) 13分(2R,3R))。H−NMR(400MHz,CDCl)(2S,3R)δ1.07(d,3H,J=6.3Hz),1.24(s,9H),3.86(d,1H,J=11.5Hz),4.20(d,1H,11.5Hz),5.42(q,1H,J=6.3Hz),7.00−7.03(m,2H),7.40−7.44(m,1H),、(2R,3R)δ1.03(s,9H),1.58(d,3H,J=6.3Hz),3.91(d,1H,J=11.5Hz),4.28(d,1H,11.5Hz),5.31(q,1H,J=6.3Hz),6.99−7.02(m,2H),7.26−7.37(m,1H)
[実施例30]1,2−エポキシ−2−(2,5−ジフルオロフェニル)ブタン−3−オール
1−クロロ−2−(2,5−ジフルオロフェニル)−3−(ピバロイルオキシ)ブタン−2−オール((2S,3R)/(2R,3R)=94/6)1.70g(5.3mmol)/THF20ml溶液を0℃に冷却し、NaOMe(28%メタノール溶液)3.5g(17.8mmol)を加え、5時間反応させた。1M塩酸20mlを加えて反応を停止し、酢酸エチル(30ml)抽出を行った。無水硫酸ナトリウムで乾燥後、減圧濃縮し、粗生成物として1.51g得た。これをシリカゲルカラムにて精製し、表題化合物を0.838g(収率79%)得た((2R,3R)/(2S,3R)=98/2(ジアステレオマー比はHPLCで測定した。HPLC測定条件は実施例10に同じ。(2R,3R)32分,(2S,3R)30分)。H−NMR(400MHz,CDCl)(2R,3R)δ1.70(d,3H,J=6.6Hz),2.80(d,1H,J=5.1Hz),3.34(d,1H,J=5.1Hz),4.17(q,1H,6.6Hz),6.98−7.00(m,2H),7.14−7.26(m,1H)
[実施例31]1−クロロ−2−(2,4−ジフルオロフェニル)−3−(tert−ブチルオキシ)ブタン−2−オール
(R)−1−クロロ−3−(tert−ブチルオキシ)ブタン−2−オン0.385g(2.0mmol)のTHF5ml溶液を0℃に冷却し、ここに、実施例3と同様の方法で調製した2,4−ジフルオロフェニルマグネシウムブロマイド溶液3.3ml(0.68M、2.2mmol)を5分間かけて滴下した。滴下終了後、さらに1時間攪拌を続け、飽和塩化アンモニウム水溶液10mlを添加し、反応を停止した。さらに、水10mlを加え、酢酸エチル抽出(20ml×2)した。無水硫酸ナトリウムにて乾燥後、減圧濃縮し、0.489gの油状物を得た。シリカゲルカラム精製を行い、表題化合物を0.34g(収率58%)得た((2S,3R)/(2R,3R)=59/41)(ジアステレオマー比はHPLCで測定した。HPLC条件 カラム:YMC−A302 ワイエムシィ社、移動相アセトニトリル/20mMリン酸(カリウム)緩衝液(pH=2.5)=6/4、流速:1.0mL/min.、カラム温度:30℃、検出器:UV210nm,保持時間8分(2R,3R)9分(2S,3R))。H−NMR(400MHz,CDCl)δ1.15−1.48(m,12H),3.55−4.31(m,3H),6.77−6.80(m,1H),6.91−6.93(m,1H),7.69−7.71(m,1H)。
[実施例32](2R,3S)−2−(2,4−ジフルオロフェニル)−3−メチル−2−[(1H−1,2,4−トリアゾール−1−イル)メチル]オキシラン
DMF3ml中に水素化ナトリウム(60%含量)0.21g(5.10mmol)を懸濁し、氷冷後、ここに(2R,3R)−1−クロロ−2−(2,4−ジフルオロフェニル)ブタン−2,3−ジオール0.53g(2.19mmol)/DMF5ml溶液を加え、1時間攪拌した。次に、1−(p−トルエンスルホニル)−1,2,4−トリアゾール0.64g(2.85mmol)/トリアゾール0.06g(0.88mmol)/DMF3ml溶液を加え、反応溶液を60℃で3時間攪拌した。室温まで冷却し、水10mlを加えて反応を停止した。生成物を酢酸エチル(20ml*2)抽出し、減圧濃縮した。これをHPLCにて定量分析を行い、表題化合物を43%収率で得た(HPLC条件 カラム:CAPCELL PAK C18 TYPE MG 資生堂、移動相:アセトニトリル/20mMリン酸(カリウム)緩衝液(pH=2.5)=2/8、流速:1.0mL/min.、カラム温度:30℃、検出器:UV210nm,保持時間37分)。H−NMR(400MHz,CDCl)δ1.64(d,3H,J=5.6Hz),3.19(q,1H,J=5.6Hz),4.42(d,1H,J=14.6Hz),4.87(d,1H,J=14.6Hz),6.69−6.80(m,2H),6.98−7.03(m,1H),7.81(s,1H),7.98(s,1H)。
[実施例33]3,4−エポキシ−3−(2,5−ジフルオロフェニル)−2−メチルブタン−1−オール
(S)−1−クロロ−3−メチル−4−ピバロイルオキシブタン−2−オン0.66g(3.0mmol)のTHF4ml溶液を0℃に冷却し、ここに、実施例3と同様の方法で調製した臭化2,5−ジフルオロフェニルマグネシウム溶液3.9ml(0.86M、3.3mmol)を5分間かけて滴下した。滴下終了後、さらに1時間攪拌を続け、飽和塩化アンモニウム水溶液10mlを添加し、反応を停止した。さらに、水10mlを加え、酢酸エチル抽出(20ml×2)した。無水硫酸ナトリウムにて乾燥後、減圧濃縮し、粗生成物を得た。これをシリカゲルカラムにより精製し、1−クロロ−2−(2,5−ジフルオロフェニル)−3−メチル−4−ピバロイルオキシブタン−2−オールをジアステレオマー混合物として0.50g得た(収率50%)。((2S,3S):(2R,3S)=72:28)(HPLC カラム:YMC−A302 ワイエムシィ社、移動相アセトニトリル/20mMリン酸(カリウム)緩衝液(pH=2.5)=6/4、流速:1.0mL/min.、カラム温度:30℃、検出器:UV210nm,保持時間18分(2S,3S) 20分(2R,3S))。これをTHF10mlに溶かし、氷冷下NaOMe(28%メタノール溶液)1.02g(5.25mmol)を加え、5時間反応させた。反応生成物を酢酸エチル抽出(10ml×2)し、無水硫酸ナトリウムにて乾燥後、減圧濃縮して粗生成物を得た。これをシリカゲルカラムにより精製し、表題化合物を0.28g得た(収率88%)。(HPLC カラム:YMC−A302 ワイエムシィ社、移動相アセトニトリル/20mMリン酸(カリウム)緩衝液(pH=2.5)=3/7、流速:1.0mL/min.、カラム温度:30℃、検出器:UV210nm,保持時間17分(2R,3S) 18分(2S,3S))。H−NMR(400MHz,CDCl)(2R,3S)δ0.97(d、3H、J=6.6Hz),2.25(q、1H、J=6.6Hz),2.88(d、1H、J=4.4Hz)、3.21(d、1H、J=4.4Hz)、3.51(d、2H、J=6.1Hz)、6.99−7.01(m、2H)、7.13−7.17(m、1H);(2S,3S)δ1.27(d、3H、J=6.6Hz)、2.14(q、1H、J=6.6Hz)、2.83(d、2H、J=4.4Hz)、3.17(d、1H、J=4.4Hz)、3.60(d、2H、J=5.9Hz)、6.99−7.01(m、2H)、7.13−7.17(m、1H).
[実施例34]3−(2,5−ジフルオロフェニル)−2−メチル−4−[1−(1、2,4−トリアゾリル)]−1,3−ブタンジオール
3、4−エポキシ−3−(2,5−ジフルオロフェニル)−2−メチルブタン−1−オール0.44g(2.1mmol)((2S,3S):(2R,3S)=72:28)、1,2,4−トリアゾール0.21g(3.0mmol)、炭酸カリウム0.83g(6.0mmol)、DMSO10mlを80℃で2時間反応させた。反応生成物を酢酸エチル抽出(10ml×2)し、無水硫酸ナトリウムにて乾燥後、減圧濃縮して粗生成物を得た。これをシリカゲルカラムにより精製し、表題化合物を0.49g得た(収率83%)((2S,3S)/(2R,3S)=70/30)。(HPLC カラム:YMC−A302 ワイエムシィ社、移動相アセトニトリル/20mMリン酸(カリウム)緩衝液(pH=2.5)=3/7、流速:1.0mL/min.、カラム温度:30℃、検出器:UV210nm,保持時間6分(2S,3S) 8分(2R,3S))。H−NMR(400MHz,CDCl)(2S,3S)δ1.36(d、3H、J=6.8Hz),2.36−2.42(m、2H)、3.48−3.57(m、2H)、4.56(d、1H、J=13.9Hz)、4.87(d、2H、J=13.9Hz)、5.19(s、1H)、6.85−6.97(m、2H)、7.12−7.17(m、1H)、7,26(s、1H)、7.90(s、1H);(2R,3S)δ0.86(d、3H、J=7.1Hz)、2.35−2.37(m、1H)、3.51−3.54(1H、brs)、3.84(t、1H、J=5.6Hz),4.0(d、1H,J=11.2Hz),4.77(d、1H、J=14.1Hz),4.98(d、1H、J=2.14(q、1H、J=6.6Hz)、5.37(s、1H)、6.85−6.97(m、2H)、7.12−7.17(m、1H)、7,26(s、1H)、7.90(s、1H).
(製造例1)(2R,3S)−2−(2,4−ジフルオロフェニル)−3−メチル−2−[(1H−1,2,4−トリアゾール−1−イル)メチル]オキシラ
(2R,3R)−1,2−エポキシ−2−(2,4−ジフルオロフェニル)ブタン−3−オール((2R,3R)/(2S,3R)=90/10)0.25g(1.25mmol)/トリエチルアミン0.19ml(1.37mmol)/塩化メチレン2.5ml溶液を氷冷し、ここに塩化メタンスルホニル0.11ml(1.37mmol)を加え、さらに2時間反応させた。つぎに飽和重曹水10mlを加えて反応を停止し、酢酸エチル(20ml×2)抽出した。無水硫酸ナトリウムで乾燥後、減圧濃縮し、油状物を0.35g得た。
つぎにDMF1mlに水素化ナトリウム(60%含量)0.13g(3.55mmol)を懸濁させ、氷冷後トリアゾール0.29g(4.15mmol)/DMF3ml溶液を加え、1・5時間反応させた。ここに、上記油状物0.35g/DMF3ml溶液を加え、室温で2時間、さらに50℃で3.5時間反応させた。つぎに飽和塩化アンモニウム水溶液5mlを加えて反応を停止し、トルエン30mlで抽出した。無水硫酸ナトリウムで乾燥後、減圧濃縮し、黄色結晶として0.284g得た。これをシリカゲルカラムにて精製し、表題化合物((2R,3S)/(2S,3S)=90/10(ジアステレオマー比はHPLCで測定した。HPLC条件 カラム:CAPCELL PAK C18 TYPE MG 資生堂移動相アセトニトリル/20mMリン酸(カリウム)緩衝液(pH=2.5)=2/8、流速:1.0mL/min.、カラム温度:30℃、検出器:UV210nm,保持時間37分(2R,3S)41分(2S,3S)))を白色結晶として0.189g(収率63%)で得た。
この白色結晶0.170gをヘキサン2mlに懸濁させ、50℃で結晶が完全に溶解するまで酢酸エチルを少量ずつ加えた。次に溶液を室温まで自然冷却し、3時間攪拌を続けた。析出した白色結晶をろ取し、(2R,3S)体を得た(0.07g)。
(製造例2)(2R,3S)−2−(2,4−ジフルオロフェニル)−3−メチル−2−[(1H−1,2,4−トリアゾール−1−イル)メチル]オキシラ
(2R,3R)−1,2−エポキシ−2−(2,4−ジフルオロフェニル)ブタン−3−オール((2R,3R)/(2S,3R)=93/7)18.0g(90.0mmol)/トリエチルアミン10.9g(108mmol)/トルエン150ml溶液を氷冷し、ここに塩化メタンスルホニル12.4g(108mmol)を加え、さらに2時間反応させた。水30ml、続いて5%水酸化カリウム水溶液50mlを加えて反応を停止し、有機相を分離した。無水硫酸ナトリウムで乾燥後、減圧濃縮し、油状物を32.07g得た。
NaOMe(28%メタノール溶液)4.2g(21.6mmol)、トリアゾール1.5g(21.6mmol)、DMF16ml混合液を室温で1時間攪拌したのち、ここに上記、メシル体5.0g(18.0mmol)/DMF19ml溶液を一気に加え、60℃で7時間反応させた。次にこの反応溶液を0℃に冷却し、水90mlを滴下して反応を停止した。トルエン90mlを加え、有機相を分離し、水相をトルエン90mlで再抽出した。トルエン相をあわせ、水90mlにて洗浄した。無水硫酸ナトリウムで乾燥後、減圧濃縮し、黄色結晶として4.776g得た。これをHPLC分析し、表題化合物を3.17g(収率71%)得た((2R,3S)/(2S,3S)=92/8(ジアステレオマー比はHPLCで測定した。HPLC条件 カラム:CAPCELL PAK C18 TYPE MG 資生堂移動相アセトニトリル/20mMリン酸(カリウム)緩衝液(pH=2.5)=2/8、流速:1.0mL/min.、カラム温度:30℃、検出器:UV210nm,保持時間37分(2R,3S)41分(2S,3S))。
(製造例3)(2R,3S)−2−(2,5−ジフルオロフェニル)−3−メチル−2−[(1H−1,2,4−トリアゾール−1−イル)メチル]オキシラ
(2R,3R)−1,2−エポキシ−2−(2,5−ジフルオロフェニル)ブタン−3−オール((2R,3R)/(2S,3R)=93/7)27.2g(135.7mmol)/トリエチルアミン17.9g(176.4mmol)/トルエン225ml溶液を氷冷し、ここに塩化メタンスルホニル20.3g(176.4mmol)を加え、さらに2時間反応させた。水46ml、続いて5%水酸化カリウム水溶液80mlを加えて反応を停止し、有機相を分離した。無水硫酸ナトリウムで乾燥後、減圧濃縮し、油状物を47.9g得た。
NaOMe(28%メタノール溶液)29.8g(154.5mmol)、トリアゾール10.7g(154.5mmol)、DMF111ml混合液を室温で1時間攪拌したのち、ここに上記粗メシル体47.9g/DMF134ml溶液を一気に加え、60℃で4時間反応させた。次にこの反応溶液を0℃に冷却し、水650mlを滴下して反応を停止した。トルエン900mlを加え、有機相を分離し、水相をトルエン900mlで再抽出した。トルエン相をあわせ、水650mlにて洗浄した。無水硫酸ナトリウムで乾燥後、減圧濃縮し、黄色結晶として34.3g得た。これをHPLC分析し、表題化合物を26.4g(収率82%)得た((2R,3S)/(2S,3S)=93/7(ジアステレオマー比はHPLCで測定した。HPLC条件 カラム:CAPCELL PAK C18 TYPE MG 資生堂移動相アセトニトリル/20mMリン酸(カリウム)緩衝液(pH=2.5)=3/7、流速:1.0mL/min.、カラム温度:30℃、検出器:UV210nm,保持時間14分(2R,3S)15分(2S,3S)))。H−NMR(400MHz,CDCl)δ1.64(d,3H,J=5.6Hz),3.20(q,1H,J=5.6Hz),4.42(d,1H,J=14.6Hz),4.97(d,1H,J=14.6Hz),6.76−6.80(m,1H),6.91−6.99(m,2H),7.83(s,1H),7.98(s,1H)。
(製造例4)(2R,3S)−3−(tert−ブチルジメチルシリルオキシ)−2−(2,4−ジフルオロフェニル)− 1−(1H−1,2,4−トリアゾール−1−イル)ブタン−2−オール
水素化ナトリウム(60%含量)0.22g(5.4mmol)/DMF3ml中にトリアゾール0.37g(5.4mmol)を加え、さらに(2R,3S)−1−クロロ−2−(2,4−ジフルオロフェニル)−3−(tert−ブチルジメチルシリルオキシ)ブタン−2−オール0.63g(1.8mmol)/DMF10ml溶液を加えた。この反応混合物を室温で2時間、50℃で12時間攪拌した。水10mlを加えて反応を停止し、酢酸エチル(30ml)抽出した。無水硫酸ナトリウムで乾燥後、減圧濃縮し、粗生成物を得た。これをシリカゲルカラムにより精製し、表題化合物を0.18g(収率25%)得た。H−NMR(400MHz,CDCl)δ0.22(s,6H),0.97(s,12H),4.42(dq,1H,J=5.9,1.2Hz),4.54(d,1H,J=1.4Hz),4.81(d,1H,J=1.4Hz),6.67−6.78(m,2H),7.32−7.38(m,1H),7.71(s,1H),7.96(s,1H)。
(製造例5)(2R,3S)−2−(2,4−ジフルオロフェニル)− 1−(1H−1,2,4−トリアゾール−1−イル)ブタン−2,3−ジオール
(2R,3S)−3−(tert−ブチルジメチルシリルオキシ)−2−(2,4−ジフルオロフェニル)− 1−(1H−1,2,4−トリアゾール−1−イル)ブタン−2−オール0.10g/THF1ml溶液中に、室温でTBAF(1M)0.3mlを加え、室温で3.5時間攪拌した。水5mlを加え、酢酸エチル(30ml)にて抽出した。無水硫酸ナトリウムで乾燥後、減圧濃縮し、粗生成物を得た。これをシリカゲルカラムにより精製し、表題化合物を0.61g(収率87%)得た。H−NMR(400MHz,CDCl)δ0.97(d,3H,J=6.3Hz),4.31(q,1H,J=6.3Hz),4.79−4.82(m,2H),6.67−6.81(m,2H),7.32−7.38(m,1H),7.72(s,1H),7.93(s,1H)。
【産業上の利用可能性】
安価に入手容易な原料から、簡便にかつ工業的に安全に実施可能な方法によって、トリアゾール系抗真菌剤中間体を製造することができる。また、抗真菌剤などの医薬品等の中間体として有用な光学活性エポキシアルコール誘導体を製造することができる。また、その重要中間体化合物光学活性ハロヒドリン誘導体化合物を提供することができる。

【特許請求の範囲】
【請求項1】
下記一般式(6);

(式中、Xはハロゲン原子を表し、Rは水素、炭素数1〜18の置換もしくは無置換のアルキル基、炭素数6〜20の置換もしくは無置換のアリール基、炭素数7〜20の置換もしくは無置換のアラルキル基、置換もしくは無置換のシリル基、炭素数1〜20の置換もしくは無置換のアシル基、または、置換もしくは無置換のヘテロ環を表す。Arは炭素数6〜20の置換もしくは無置換のアリール基を表す。*3、*4は不斉炭素を表す。)で表される化合物に酸処理、フッ素化合物処理および水素化分解反応のうち少なくとも1つの方法を行うことにより、下記一般式(13);

(式中、X,Ar,*3、*4は前記に同じ。)で表される光学活性ハロジオール誘導体に導き、その後、塩基で処理するか、または、前記式(6)で表される化合物を塩基で処理することを特徴とする、下記一般式(14);

(式中、Arは前記に同じ。*5、*6は不斉炭素を表す。)で表される光学活性エポキシアルコール誘導体の製造法。
【請求項2】
下記一般式(4);

(式中、Xはハロゲン原子を表し、Rは水素、炭素数1〜18の置換もしくは無置換のアルキル基、炭素数6〜20の置換もしくは無置換のアリール基、炭素数7〜20の置換もしくは無置換のアラルキル基、置換もしくは無置換のシリル基、炭素数1〜20の置換もしくは無置換のアシル基、または、置換もしくは無置換のヘテロ環を表す。*3は不斉炭素を表す。)で表される光学活性ハロケトン誘導体と、下記一般式(5);

(式中Arは炭素数6〜20の置換もしくは無置換のアリール基を表す。Mはアルカリ金属またはハロゲン化アルカリ土類金属を表す。)で表される化合物を反応させることを特徴とする下記一般式(6);

(式中、X、R、Ar、*3は前記に同じ。*4は不斉炭素を表す。)で表される光学活性ハロヒドリン誘導体の製造法。
【請求項3】
前記式(4)で表される光学活性ハロケトン誘導体が、一般式(2);

(式中、Rは炭素数1〜18の置換もしくは無置換のアルキル基、炭素数6〜20の置換もしくは無置換のアリール基、または、炭素数7〜20の置換もしくは無置換のアラルキル基を表し、Rは水素、炭素数1〜18の置換もしくは無置換のアルキル基、炭素数6〜20の置換もしくは無置換のアリール基、炭素数7〜20の置換もしくは無置換のアラルキル基、置換もしくは無置換のシリル基、炭素数1〜20の置換もしくは無置換のアシル基、または、置換もしくは無置換のヘテロ環を表す。*3は不斉炭素を表す。)で表される光学活性プロピオン酸エステル化合物を、一般式(3);

(式中、Xは前記に同じ。Mは水素、アルカリ金属またはハロゲン化アルカリ土類金属を表す。)で表されるハロ酢酸誘導体と塩基との反応により生じるエノラートと反応させた後、酸処理を行うことにより得られたものである請求の範囲第2項記載の製造法。
【請求項4】
塩基として塩化tert−ブチルマグネシウムを使用する請求の範囲第3項に記載の製造法。
【請求項5】
アミンの共存下、前記式(2)で表される化合物と前記式(3)で表される化合物の反応を行うことを特徴とする請求の範囲第3項または第4項のいずれかに記載の製造法。
【請求項6】
請求の範囲第2項〜第5項記載の方法を用いて得られる前記式(6)で表される化合物を使用することを特徴とする請求の範囲第1項記載の製造法。
【請求項7】
下記一般式(6a);

(式中、Xはハロゲン原子を表し、Arは炭素数6〜20の置換もしくは無置換のアリール基を表し、*3、*4は不斉炭素を表す。Rは炭素数1〜18の置換もしくは無置換のアルキル基、炭素数6〜20の置換もしくは無置換のアリール基、炭素数7〜20の置換もしくは無置換のアラルキル基、置換もしくは無置換のシリル基、または、置換もしくは無置換のヘテロ環を表す。)で表される化合物に酸処理、フッ素化合物処理、および、水素化分解反応のうち少なくとも1つの方法を行うことを特徴とする、下記一般式(13);

(式中、X、Ar、*3、*4は前記におなじ。)で表される光学活性ハロジオール誘導体の製造法。
【請求項8】
下記一般式(13);

(式中、Xはハロゲン原子を表し、Arは炭素数6〜20の置換もしくは無置換のアリール基を表し、*3、*4は不斉炭素を表す。)で表される光学活性ハロジオール誘導体を、下記一般式(15);

(式中、R11は炭素数1〜18の置換もしくは無置換のアルキル基、炭素数6〜20の置換もしくは無置換のアリール基、または、炭素数7〜20の置換もしくは無置換のアラルキル基を表す。)で表される化合物と反応させることを特徴とする、下記一般式(16);

(式中、Arは前記に同じ。*7、*8は不斉炭素を表す。)で表される光学活性エポキシド誘導体の製造法。
【請求項9】
請求の範囲第7項の方法を用いて得られる前記式(13)で表される化合物を使用することを特徴とする請求の範囲第8項記載の製造法。
【請求項10】
下記一般式(19);

(式中、Xはハロゲン原子を表し、Rは水素、炭素数1〜18の置換もしくは無置換のアルキル基、炭素数6〜20の置換もしくは無置換のアリール基、炭素数7〜20の置換もしくは無置換のアラルキル基、置換もしくは無置換のシリル基、炭素数1〜20の置換もしくは無置換のアシル基、または、置換もしくは無置換のヘテロ環を表す。Arは炭素数6〜20の置換もしくは無置換のアリール基を表す。*9、*10は不斉炭素を表す。)で表される化合物に酸処理、フッ素化合物処理および水素化分解反応のうち少なくとも1つの方法を行うことにより、下記一般式(20);

(式中、X,Ar,*9、*10は前記に同じ)で表される光学活性ハロジオール誘導体に導き、その後、塩基で処理するか、または、前記式(19)で表される化合物を塩基で処理することにより得られる下記一般式(17);

(式中、Ar、*9、*10は前記に同じ。)で表される化合物の製造法。
【請求項11】
下記一般式(21);

(式中、Xはハロゲン原子を表し、Rは水素、炭素数1〜18の置換もしくは無置換のアルキル基、炭素数6〜20の置換もしくは無置換のアリール基、炭素数7〜20の置換もしくは無置換のアラルキル基、置換もしくは無置換のシリル基、炭素数1〜20の置換もしくは無置換のアシル基、または、置換もしくは無置換のヘテロ環を表す。*9は不斉炭素を表す。)で表される光学活性ハロケトン誘導体と、下記一般式(5);

(式中Arは炭素数6〜20の置換もしくは無置換のアリール基を表す。Mはアルカリ金属またはハロゲン化アルカリ土類金属を表す。)で表される化合物を反応させることを特徴とする下記一般式(19);

(式中、X、R、Ar、*9は前記に同じ。*10は不斉炭素を表す。)で表される光学活性ハロヒドリン誘導体の製造法。
【請求項12】
請求の範囲第11項記載の方法を用いて得られる前記式(19)で表される化合物を使用することを特徴とする請求の範囲第10項記載の製造法。
【請求項13】
下記一般式(19a);

(式中、Xはハロゲン原子を表し、Arは炭素数6〜20の置換もしくは無置換のアリール基を表し、*9、*10は不斉炭素を表す。Rは炭素数1〜18の置換もしくは無置換のアルキル基、炭素数6〜20の置換もしくは無置換のアリール基、炭素数7〜20の置換もしくは無置換のアラルキル基、置換もしくは無置換のシリル基、または、置換もしくは無置換のヘテロ環を表す。)で表される化合物に酸処理、フッ素化合物処理、および、水素化分解反応のうち少なくとも1つの方法を行うことを特徴とする、下記一般式(20);

(式中、X、Ar、*9、*10は前記におなじ。)で表される光学活性ハロジオール誘導体の製造法。
【請求項14】
請求の範囲第10項または請求の範囲第12項のいずれかに記載の方法を用いて得られる前記式(17)で表される化合物と1,2,4−トリアゾールを反応させることを特徴とする一般式(18);

(式中、Ar、*9、*10は前記に同じ。)で表される化合物の製造法
【請求項15】
一般式(7);

(式中、Yはハロゲン原子、または、置換もしくは無置換のヘテロ環を表す。Zは下記一般式(8);

[式中、Rは水素、炭素数1〜18の置換もしくは無置換のアルキル基、炭素数6〜20の置換もしくは無置換のアリール基、炭素数7〜20の置換もしくは無置換のアラルキル基、置換もしくは無置換のシリル基、炭素数1〜20の置換もしくは無置換のアシル基、または、置換もしくは無置換のヘテロ環表す。]、下記一般式(9);

[式中、R、Rはそれぞれ独立に水素、炭素数1〜18の置換もしくは無置換のアルキル基、炭素数6〜20の置換もしくは無置換のアリール基、炭素数7〜20の置換もしくは無置換のアラルキル基、置換もしくは無置換のシリル基、炭素数1〜20の置換もしくは無置換のアシル基、炭素数1〜18の置換もしくは無置換のアルキルオキシカルボニル基、炭素数7〜20の置換もしくは無置換のアラルキルオキシカルボニル基、または、炭素数6〜20の置換もしくは無置換のアリールオキシカルボニル基を表す。]、または、下記一般式(10);

[式中、Rは水素または炭素数1〜18の置換もしくは無置換のアルキル基、炭素数6〜20の置換もしくは無置換のアリール基または炭素数7〜20の置換もしくは無置換のアラルキル基を表す。nは0〜2の整数を表す。]、または、下記一般式(11);

[式中、Rは水素、炭素数1〜18の置換もしくは無置換のアルキル基、炭素数6〜20の置換もしくは無置換のアリール基、炭素数7〜20の置換もしくは無置換のアラルキル基、置換もしくは無置換のシリル基、炭素数1〜20の置換もしくは無置換のアシル基、または、置換もしくは無置換のヘテロ環表す。]、を表す。*3は不斉炭素を表す。)で表される化合物を、下記一般式(5);

(式中、Arは炭素数6〜20の置換もしくは無置換のアリール基を表し、Mはアルカリ金属またはハロゲン化アルカリ土類金属を表す。)で表される化合物と反応させることを特徴とする、一般式(12);

(式中、Y、Ar、Z、*3は前記におなじ。*4は不斉炭素を表す。)で表される光学活性ヒドロキシ化合物の製造法。
【請求項16】
一般式(1);

(式中、Xはハロゲン原子を表し、Arは炭素数6〜20の置換もしくは無置換のアリール基、Rは水素、炭素数1〜18の置換もしくは無置換のアルキル基、炭素数6〜20の置換もしくは無置換のアリール基、炭素数7〜20の置換もしくは無置換のアラルキル基、置換もしくは無置換のシリル基、炭素数1〜20の置換もしくは無置換のアシル基、または、置換もしくは無置換のヘテロ環を表す。*1、*2は不斉炭素を表す。)で表される光学活性ハロヒドリン誘導体。
【請求項17】
Arが2,4−ジフルオロフェニル基または2,5−ジフルオロフェニル基である請求の範囲第16項記載のハロヒドリン誘導体。
【請求項18】
がtert−ブチルジメチルシリル基、ピバロイル基、またはテトラヒドロピラニル基である請求の範囲第16項または第17項のいずれかに記載のハロヒドリン誘導体。
【請求項19】
がピバロイル基である請求の範囲第16項〜第18項のいずれか1項に記載のハロヒドリン誘導体。
【請求項20】
一般式(22);

(式中、X、X,Xはハロゲン原子を表し、R12は水素、炭素数1〜18の置換もしくは無置換のアルキル基、炭素数6〜20の置換もしくは無置換のアリール基、炭素数8〜20の置換もしくは無置換のアラルキル基、置換もしくは無置換のシリル基、または、脂肪族アシル基を表す。*11、*12は不斉炭素を表す。)で表される光学活性ハロヒドリン誘導体。
【請求項21】
およびXがフッ素である請求の範囲第20項記載のハロヒドリン誘導体。
【請求項22】
12がtert−ブチルジメチルシリル基、ピバロイル基である請求の範囲第20項または第21項のいずれかに記載のハロヒドリン誘導体。
【請求項23】
12がピバロイル基である請求の範囲第20項〜第22項のいずれか1項に記載のハロヒドリン誘導体。
【請求項24】
一般式(23);

(式中、X、X,Xはハロゲン原子を表し、R13は水素、炭素数1〜18の置換もしくは無置換のアルキル基、炭素数6〜20の置換もしくは無置換のアリール基、炭素数7〜20の置換もしくは無置換のアラルキル基、置換もしくは無置換のシリル基、炭素数1〜20の置換もしくは無置換のアシル基、または、置換もしくは無置換のヘテロ環を表す。*13、*14は不斉炭素を表す。)で表される光学活性ハロヒドリン誘導体。
【請求項25】
およびXがフッ素である請求の範囲第24項記載のハロヒドリン誘導体。
【請求項26】
13がtert−ブチルジメチルシリル基、ピバロイル基、またはテトラヒドロピラニル基である請求の範囲第24項または第25項記載のハロヒドリン誘導体。
【請求項27】
13がピバロイル基である請求の範囲第24項〜第26項のいずれか1項に記載のハロヒドリン誘導体。

【国際公開番号】WO2005/007638
【国際公開日】平成17年1月27日(2005.1.27)
【発行日】平成18年8月31日(2006.8.31)
【国際特許分類】
【出願番号】特願2005−511819(P2005−511819)
【国際出願番号】PCT/JP2004/009883
【国際出願日】平成16年7月5日(2004.7.5)
【出願人】(000000941)株式会社カネカ (3,932)
【Fターム(参考)】