説明

光符号分割多重モジュール及び光符号分割多重における符号化方法

【課題】位相符号型のOCDMで、符号の変更が必要な場合に、符号器/復号器を交換することなく所望の符号に変更でき、かつ、符号器及び復号器を長期間安定に維持する。
【解決手段】同一の光ファイバ中に、複数個の同一構造の単位FBGを有しており、隣接する単位FBGの間隔が一定のSSFBGを用いる。SSFBGで構成された符号器に光信号が入力されると、一定の時間間隔で光チップパルスが出力され、隣り合う光チップパルス間の位相差が一定になる。この位相差を符号として用いる。SSFBGの温度を変化させると、隣接する光チップパルス間の位相が変化するので、温度変化により、符号器あるいは復号器の符号が変化させることができる。

【発明の詳細な説明】
【技術分野】
【0001】
この発明は、光符号分割多重モジュール及び光符号分割多重における符号化方法に関し、特に、符号器及び復号器を交換することなく符号の変更を行うことができる光符号分割多重モジュールと、この光符号分割多重モジュールを用いて実施可能な符号化方法に関する。
【背景技術】
【0002】
近年、インターネットの普及等により通信需要が急速に増大している。この通信需要の増大に対応して、光ファイバを用いた、高速・大容量光ネットワークが整備されつつある。
【0003】
このような高速・大容量光ネットワークでは、波長分割多重(WDM:Wavelength Division Multiplexing)通信方法、特に高密度WDM通信方法が注目されている。高密度WDM通信方法は、チャネル間に割り当てられた光搬送波の波長間隔を狭くすることにより、光搬送波の波長を波長軸上に高密度に配置して波長多重する方法である。
【0004】
WDM通信方法あるいはDWDM通信方法とは別の通信方法として、光符号分割多重(OCDM:Optical Code Division Multiplexing)を用いた通信方法も注目されている。
【0005】
OCDMによる通信方法では、送信側で並列に複数チャネルの光パルス信号を生成し、その光パルス信号をチャネルごとに異なる符号で符号化して符号化信号を生成する。各チャネルで生成された符号化信号は、多重された後、光符号分割多重(OCDM)信号として送信される。一方、受信側では、受信したOCDM信号を、送信側で符号化した際の符号と同一の符号で復号化することで、元の光パルス信号を復元する。
【0006】
OCDMによる通信方法は、多重度が高く、また、送信側と受信側とで同一の符号を鍵として用いるので、通信セキュリティが高い。さらに、OCDMを、WDMあるいはDWDMと併用することにより、波長利用効率が高まることが期待されている。
【0007】
OCDMには、波長ホップ/時間拡散方式や、位相符号方式などが知られている。波長ホップ/時間拡散方式は、複数の波長を含む光パルスを、単一波長の光チップパルスに分離して、この各波長の光チップパルスの時間軸上の配置順序を符号とする方式である。また、位相符号方式は、光チップパルス間の相対位相差を符号とする方式である。
【0008】
OCDMによる通信で用いられる符号器及び復号器として、ファイバブラッググレーティング(FBG:Fiber Bragg Grating)を用いたものが知られている。FBGは、光ファイバのコア内に回折格子(グレーティング)を形成したデバイスであり、特定波長の光を反射する。特に、位相符号方式のOCDMで用いられる符号器及び復号器として、スーパーストラクチャファイバブラッググレーティング(SSFBG:Superstructured FBG)が注目されている。SSFBGは、同一光ファイバ中に、複数個の同一構成のFBG(単位FBG)を有している。SSFBGを用いた符号器及び復号器は、これら符号器及び復号器の符号に応じて、隣り合う単位FBGの間隔を「0」又は所定の間隔としている。なお、以下の説明においては、位相符号方式のOCDMで用いられる符号器及び復号器をそれぞれ、位相符号器及び位相復号器と称することもある。
【0009】
ここで、SSFBGで構成した位相符号器及び位相復号器では、符号が隣接する単位FBGの間隔で定まるので、符号が固定されている。このため、符号の変更が必要な場合は、符号器/復号器を交換せざるを得ないという問題がある。
【0010】
SSFBGで構成した位相符号器/復号器の符号を変更する技術として、複数のタングステン線を一定の間隔でSSFBGに接触させ、各タングステン線による局所加熱で位相シフト量を調節することにより、所望の符号に設定する試みがある(例えば、非特許文献1参照)。
【0011】
また、アレイ導波路回折格子(AWG:Arrayed−Waveguide Grating)を用いて信号パルスを波長成分ごとに分離し、位相フィルタで変調することにより、所望の符号に設定するOCDM位相符号器/復号器がある(例えば、非特許文献2参照)。このAWGを用いたOCDM位相符号器/復号器は、平面導波路の一部として構成することができるので、例えば、遅延器やサーキュレータなどとの集積が可能である。
【非特許文献1】M.R.Mokhtar et al.、“Reconfigurable Multilevel Phase−Shift Keying Encoder−Decoder for All−Optical Networks”,IEEE Photonics Technology Letters, Vol.15, No.3, March 2003
【非特許文献2】H.Tsuda et al.,“Photonic spectral encoder/decoder using an arrayed−waveguide grating for coherent optical code division multiplexing”,presented at the OFC/IOOC '99, San Diego, CA, Feb.21−26,1999, Paper PD32
【発明の開示】
【発明が解決しようとする課題】
【0012】
しかしながら、上述の非特許文献1に開示されているOCDM位相符号器/復号器では、所望の符号に設定してから長時間経過すると、光ファイバの熱伝導により局所加熱領域が拡大する。この場合、局所加熱領域が拡大することにより、位相シフト量が変化し、その結果、符号が、所望の符号から変化してしまう。すなわち、所望の符号での符号化/復号化が行えなくなる。
【0013】
また、上述の非特許文献2に開示されているOCDM位相符号器/復号器では、小型化が困難であり、コストが高く、さらに、伝送路となる光ファイバ網への挿入損失が大きいなどの問題がある。
【0014】
また、この出願に係る発明者が研究を行ったところ、位相符号方式のOCDMでは、同一の符号の符号器と復号器の間に、僅か数pmの波長差があると、符号化/復号化を良好に行えないことが分かっている。従って、上述の非特許文献1又は2に開示されている符号器及び復号器では、対を成す符号器と復号器が設置された環境温度が異なる場合、あるいは、環境温度が変動した場合には、符号器及び復号器それぞれの反射中心波長が異なってしまい、符号化/復号化を良好に行えない。
【0015】
この発明は、上述の問題点に鑑みてなされたものである。この発明の目的は、符号の変更が必要な場合に、符号器/復号器を交換することなく所望の符号に変更でき、かつ、符号器及び復号器を長期間安定に維持できる、光符号分割多重モジュールと、この光符号分割多重モジュールを用いて実施可能な符号化方法を提供することにある。
【課題を解決するための手段】
【0016】
上述した目的を達成するために、発明者が鋭意研究を行ったところ、光符号分割多重を行うに当たり、符号器あるいは復号器として、同一の光ファイバ中に、複数個の同一構成の単位FBGを有しており、隣接する単位FBGの間隔が一定のSSFBGを用いることで、環境温度が変動した場合であっても、符号化/復号化を良好に行うことができ、かつ符号の変更が必要な場合に、符号器/復号器を交換することなく所望の符号に変更できることを見出した。
【0017】
上述したSSFBGで構成された符号器に光信号が入力されると、一定の時間間隔で光チップパルスが出力され、隣り合う光チップパルス間の位相差が一定になる。この位相差が符号を与える。
【0018】
復号器が符号器と同じ構造の場合、復号器の単位FBGで反射される光チップパルスは時間軸上で重なり、かつ重なった光チップパルスの位相が揃う。従って、復号器からの出力には自己相関ピークが現れ、光パルス信号の再生が可能になる。
【0019】
一方、復号器の構造が符号器の構造と異なる場合、すなわち、単位FBGの間隔が、符号器と復号器とで異なっている場合、復号器の単位FBGで反射される光チップパルスが時間軸上で重ならず、かつ位相も揃わない。従って、復号器からの出力には自己相関ピークが現れず、光パルス信号の再生ができない。
【0020】
また、SSFBGの温度を変化させると、隣接する光チップパルス間の位相が変化するので、このSSFBGの温度変化により、符号器あるいは復号器の符号を変更できる。
【0021】
この発明の第1の要旨によれば、SSFBGと、実装プレートと、サーモモジュールと、温度センサと、温度コントローラとを備える光符号分割多重モジュールが提供される。
【0022】
SSFBGは、同一の光ファイバ中に、複数個の同一構成の単位FBGを、等間隔に備えている。実装プレートには、SSFBGが固定される。サーモモジュールは、実装プレートを加熱又は冷却する。温度センサは、実装プレートの温度を測定する。温度コントローラは、温度センサで測定される温度に基づいてサーモモジュールを制御して、実装プレートの温度を調整して、位相変調による符号化又は復号化の際の符号を設定する。
【0023】
上述した光符号分割多重モジュールの実施にあたり、好ましくは、SSFBGが符号長Mに対応する個数の単位FBGを備え、SSFBGに入力された光が、各単位FBGでそれぞれ反射されたM個(Mは1以上の整数)の光パルスに分岐され、隣接する単位FBGで反射された光チップパルス間の位相差が一定であるのが良い。この位相差が光符号分割多重モジュールの符号を定める。
【0024】
さらに、上述した光符号分割多重モジュールの好適な実施形態によれば、実装プレートの温度が変化すると、位相差が変化する。
【0025】
また、この発明の光符号分割多重モジュールの実施にあたり、符号が、符号数N(Nは1以上の整数)のa番目(aは1以上N以下の整数)の符号であるとき、位相差ΔφをΔφ=(2a−1)*π/Nとするのが好適である。
【0026】
また、この発明の第2の要旨によれば、上述の光符号分割多重モジュールを用いて行われる、光符号分割多重における符号化方法が提供される。この符号化方法は、SSFBGに光信号を入力する過程と、光信号を、各単位FBGでそれぞれ反射させて、隣接する単位FBGで反射された光パルス間の位相差が一定であるM個の光パルスに分岐して符号化信号を生成する過程とを備える。この位相差が光符号分割多重モジュールの符号を定める。
【0027】
上述した符号化方法の好適な実施形態によれば、実装プレートの温度を変化させることにより、位相差が変化する。
【発明の効果】
【0028】
この発明の光符号分割多重モジュール及び符号化方法によれば、符号器あるいは復号器として、複数個の同一構成の単位FBGを等間隔に備えているSSFBGを用いており、SSFBG全体の温度により、符号を設定している。このため、符号の設定に局所加熱が不要となるため、長時間安定して、所望の符号での符号化及び復号化を行うことができる。
【0029】
また、SSFBG全体の温度を変化させることで、容易に符号の変更を行うことができる。
【発明を実施するための最良の形態】
【0030】
以下、図を参照して、この発明の実施の形態について説明するが、各構成要素の形状、大きさ及び配置関係については、この発明が理解できる程度に概略的に示したものに過ぎない。また、以下、この発明の好適な構成例につき説明するが、各構成要素の材質及び数値的条件などは、単なる好適例にすぎない。従って、この発明は以下の実施の形態に限定されるものではなく、この発明の構成の範囲を逸脱せずにこの発明の効果を達成できる多くの変更又は変形を行うことができる。
【0031】
(光符号分割多重モジュールの構成)
図1〜4を参照して、本発明の光符号分割多重(OCDM:Optical Coded Division Multiplexing)モジュールについて説明する。図1は、OCDMモジュールの模式図である。OCDMモジュール10は、位相符号方式のOCDM通信の受信装置あるいは送信装置として用いられる。図2は、OCDMモジュール10が備えるモジュールパッケージを側面から見た概略的断面図である。図3は、位相符号方式のOCDM通信で、符号器あるいは復号器として用いられるスーパーストラクチャファイバブラッググレーティング(SSFBG:Super Structure Fiber Bragg Grating)の模式図である。なお、以下の説明では、例として、SSFBGが、符号器として用いられる構成について説明する。図4は、モジュールパッケージ内に設けられるバッファの概略的断面図である。
【0032】
OCDMモジュール10は、モジュールパッケージ30及び温度コントローラ50を備えている。
【0033】
モジュールパッケージ30は、筺体32の内部に、サーモモジュール36、実装プレート40、温度センサ42及びSSFBG72を備えている。
【0034】
サーモモジュール36は、筺体32の内部の底面32a上に、第1のバッファ34を介して固定されている。また、サーモモジュール36の上面36a上には、第2のバッファ38が設けられている。実装プレート40は、第2のバッファ38を介して、サーモモジュール36に固定されている。すなわち、実装プレート40は、第2のバッファ38、サーモモジュール36及び第1のバッファ34を介して、筺体32に固定されている。
【0035】
実装プレート40には、光ファイバ70が引張張力や圧縮力などの応力が印加されていない状態で固定されている。光ファイバ70は、光の伝播方向に沿って離間した2点(例えば、図2中、Aで示す部分)で実装プレート40に接着固定される。この接着固定される2点間では、光ファイバ70は、実装プレート40に密着している。光ファイバ70の実装プレート40への接着固定には、紫外線硬化型のアクリル系接着剤(例えば、Summers Optics社製VTC−2)、又はエポキシ系の接着剤などを用いることができる。
【0036】
なお、以下の説明においては、光ファイバ70における光の伝播方向(図2又は図3での水平方向)を、モジュールパッケージ30の長手方向、あるいは、単に長手方向と称することもある。
【0037】
光ファイバ70として、コアにゲルマニウムなどを添加して紫外感光性を高めたシングルモード光ファイバが用いられる。この光ファイバ70が、実装プレート40に接着固定される2点間に、SSFBG72が形成されている。SSFBG72の詳細については、後述する。
【0038】
筺体32は、例えば表面に金メッキを施したアルミニウムで形成することができる。なお、筺体32の材料は、アルミニウムに限定されるものではなく、銅などの安価でかつ加工が容易な材料を使用することができる。
【0039】
筺体32は、箱状の形態であり、その側面にサーモモジュール36への電力供給端子(図示を省略する。)と温度センサ42からの出力端子(図示を省略する。)を備えている。また、筺体32は、筺体32の内部にサーモモジュール36、実装プレート40、温度センサ42及びSSFBG72などを実装するために、基体部と、開閉自在あるいは着脱自在に設けられた蓋部とからなるのが良い。この場合、蓋部が開いた状態あるいは取り外された状態で、基体部に対して実装を行い、実装後に蓋を取り付ければよい。
【0040】
サーモモジュール36は、例えばペルチェ素子を用いて構成される。サーモモジュール36には、温度コントローラ50から電力供給端子を経て電流が供給される。サーモモジュール36は、この電流に応じて熱を発生させ、あるいは熱を吸収する。このサーモモジュール36における熱の発生あるいは吸収により、実装プレート40の加熱あるいは冷却が行われる。SSFBG72の温度を均一に保つために、サーモモジュール36により加熱あるいは冷却される領域の、モジュールパッケージ36の長手方向の長さは、SSFBG72の長さと等しいか、それ以上であることが望ましい。
【0041】
筺体32とサーモモジュール36の間には、第1のバッファ34が設けられている。また、サーモモジュール36と実装プレート40の間には、第2のバッファ38が設けられている。第1のバッファ34及び第2のバッファ38は同様に構成できるので、ここでは、代表して、第1のバッファ34について説明する。
【0042】
第1のバッファ34は、バッファ材層80と、その下面80a及び上面80b上に粘着層82及び84を有している。ここで、バッファ材層80は、面方向に10%以上伸縮するなど伸縮性に優れ、かつ、熱伝導係数が1W/m・K以上の材料で形成されていることが望ましい。また、粘着層82及び84として、アクリル系やウレタン系など、180度剥離試験によって測定される粘着力が5N/cm以上であり、1kg荷重によって生じるずれが0.1mm未満となるせん断保持力を有している材料が用いられる。
【0043】
なお、第1のバッファ34及び第2のバッファ38は、上述の構造や材質に限定されるものではない。例えば、バッファ材層80として用いられる材料が、上述の伸縮性、粘着力及びせん断保持力を有している場合には、第1のバッファ34及び第2のバッファ38を、バッファ材の単層構造にすることができる。
【0044】
実装プレート40は、例えば上面に光ファイバ70を固定するための溝が形成された、角柱状の形状を有している。実装プレート40は、高熱伝導かつ低熱膨張係数の材質で形成されるのが良く、例えば、炭化珪素(SiC:シリコンカーバイド)セラミックと、珪素(Si:シリコン)の複合材料であるSSC−802−CI(エム・キューブド・テクノロジーズ・INC製)を用いることができる。このSSC−802−CIは、熱伝導率が190W/m・Kでアルミニウムとほぼ同等であり、熱膨張係数は、1.7×10−6/Kでインバーと同等である。
【0045】
温度センサ42は、実装プレート40の光ファイバ70を実装する上面上、あるいは、実装プレート40の上面又は側面に埋設して設置される。温度センサ42は、実装プレート40の温度を測定し、測定した温度に対応する電気信号を出力する。SSFBG72は、実装プレート40の上面に形成された溝内に密着固定されるので、実装プレート40の温度は、SSFBG72の温度とほぼ等しい。
【0046】
温度センサ42からの電気信号は、モジュールパッケージ30の筺体32に設けられた出力端子を経て、温度コントローラ50に送られる。温度センサ42として、例えば、サーミスタを用いることができる。また、温度センサ42として、熱電対や白金熱抵抗体を用いても良い。
【0047】
温度コントローラ50は、入力部52、受信部54、比較部56、送信部58及び記憶部60を備えて構成される。温度コントローラ50は、温度センサ42で測定される温度に基づいて、サーモモジュール36を制御して、実装プレート40の温度を調整する。温度の調整により、位相変調による符号化又は復号化の際の符号が設定される。
【0048】
記憶部60には、位相符号器の特性に基づいて予め測定された参照データが読み出し自在に記憶されている。この参照データは、位相符号器が示す符号と、位相符号器を構成するSSFBGの温度とを対応付けるデータである。
【0049】
利用者が、位相符号器の符号を入力部52にすると、入力部52は、記憶部60から参照データを読み出して、SSFBGの設定温度を定める。この設定温度は比較部56に送られる。
【0050】
また、受信部54は、モジュールパッケージ30から実装プレート40の温度を示す電気信号を受信する。受信部54は、受信した電気信号を、測定温度の情報に変換して、比較部56に送る。
【0051】
比較部56は、入力部52から受け取った設定温度と、受信部54から受け取った測定温度とを比較する。比較部56は、この比較の結果に応じて、測定温度が設定温度と等しくなるように、サーモモジュール36の加熱又は冷却と、その大きさを決定する。比較部56は、この決定の結果を、制御情報として送信部58に送る。
【0052】
送信部58は、比較部56から受け取った制御情報に対応する電流を、筺体32の電力供給端子を経てサーモモジュール36に供給する。
【0053】
温度コントローラ50が備える、制御対象の温度を所望の値に制御できる温度制御手段、すなわち、設定温度と測定温度とを等しくする温度制御手段は、任意好適な従来周知のものを用いることができる。また、符号と設定温度を対応付けて、符号の入力により設定温度を定める手段は、当業者ならば従来周知の技術を用いて容易に構成することができる。なお、入力部52に、利用者が設定温度を入力する構成にしてもよい。
【0054】
SSFBG72は、同一の光ファイバ70中に、複数個の単位ファイバブラッググレーティング(FBG:Fiber Bragg Grating)74及び複数個の位相変調部76が交互に形成された多点位相シフト構造を有している。複数個の単位FBG74は、同一の長さL1、及び同一の回折格子間隔で形成されている。すなわち、各単位FBG74は、同一構造を有している。また、複数個の位相変調部76は、同一の長さL2で形成されている。すなわち、複数個の単位FBG74は、等間隔で配置されている。隣接する1組の単位FBG74と位相変調部76を単位チップ73とすると、各単位チップ73の長さLは等しい。
【0055】
SSFBG72が、符号長がM(Mは2以上の整数)であり、及び、生成する符号数がN(Nは2以上の整数)である位相符号器として用いられる場合について説明する。この場合、単位FBG74の個数は、符号長Mに等しい。ここで、符号長Mは、符号数Nの自然数(1以上の整数)倍とする。
【0056】
SSFBG72に光パルス信号が入力されると、各単位FBG74で反射されて、M個の光チップパルスに分岐される。ここで、単位FBG74は、等間隔で配置されているので、M個の光チップパルスは、時間軸上に等間隔に配列される。また、隣接する単位FBG74で反射される光チップパルス間、すなわち時間軸上で隣接する光チップパルス間の位相差Δφは一定になる。この位相差Δφにより符号が定まる。
【0057】
N個生成される符号の中のa番目(aは1以上N以下の整数)の符号で、符号化する場合には、隣接する単位FBG74の間隔、すなわち、単位チップ73の長さLaを、隣接する光チップパルス間の位相差がΔφa=(2a−1)×π/Nになる長さにする。
【0058】
a番目の符号と異なるb番目の符号の符号器を生成する場合は、位相変調部76の長さLbが、Laと異なっていればよく、それ以外の条件を等しくする。Δφa=(2a−1)×π/Nと、Δφb=(2b−1)×π/Nは、SSFBGの温度が、共通の基準温度であるものとして設定される。
【0059】
一方、a番目の符号で符号化された信号を復号化する位相復号器は、a番目の位相符号器と同一構成のSSFBGを用いれば良く、受信側と送信側とで同じ構成のOCDMモジュール用いることができる。
【0060】
(符号化方法及び復号化方法)
図1〜4を参照して説明したOCDMモジュールを用いた、符号化方法及び復号化方法について、図5及び図6を参照して説明する。図5は、符号化を説明するための模式図である。また、図6は復号化を説明するための模式図である。
【0061】
送信側のOCDMモジュール10aが備えるSSFBG(以下、符号器と称する。)については、単位FBG74を、入力側から順にA1、A2、…、AMで示す。また、受信側のOCDMモジュール10bが備えるSSFBG(以下、復号器と称する。)については、単位FBG74を、入力側から順に、B1、B2、…、BMで示す。
【0062】
図5を参照して、光パルス信号が符号器に入力された場合について説明する。光パルス信号が、符号器に入力されると、光信号は、一定の割合で、符号器の各単位FBG74で反射される。この結果、符号器に入力された光信号は、M個の光チップパルスに分岐されて、光信号が入力された側と同じ側から、符号化信号として出力される。このとき、単位FBG74の配列周期、すなわち、単位チップ73の長さLは一定なので、M個の光チップパルスは、時間軸上に等間隔に配置される。また、時間軸上で隣接する光チップパルス間の位相差Δφも一定になる。
【0063】
例えば、A1で反射された光チップパルスの位相を0とすると、A2で反射された光チップパルスの位相はΔφとなる。同様に、A3で反射された光チップパルスの位相は2Δφとなり、AMで反射された光チップパルスの位相は(M−1)Δφとなる。
【0064】
次に、図6を参照して、符号化信号が復号器に入力された場合について説明する。1つの光パルス信号が符号化された符号化信号は、M個の光チップパルスからなる。このM個の光チップパルスが復号器に入力されると、各光チップパルスは、それぞれが各単位FBG74で反射されて、さらにM個の光チップパルスに分岐される。
【0065】
符号器側でp番目の単位FBGであるApで反射された光チップパルスは、1番目の単位FBGであるA1で反射された光チップパルスに対して、(p−1)×2×Laに対応する遅延を受ける。また、復号器側でq番目の単位FBGであるBqで反射された光チップパルスは、1番目の単位FBGであるB1で反射された光チップパルスに対して、(q−1)×2×Lbに対応する遅延を受ける。
【0066】
符号器のApで反射され、かつ、復号器のBqで反射された光パルスは、符号器のA1で反射され、かつ、復号器のB1で反射された光パルスに対して、(p−1)×2×La+(q−1)×2×La=(p+q−2)×2×Laに対応する遅延を受けることになる。従って、p+qが等しい光チップパルスは、復号器から出力されたときに時間軸上で重なる。
【0067】
また、符号器側のApで反射された光チップパルスは、A1で反射された光チップパルスに対して、(p−1)×Δφaに対応する位相遅延を受ける。また、復号器のBqで反射された光チップパルスは、B1で反射された光チップパルスに対して、(q−1)×Δφaに対応する位相遅延を受ける。
【0068】
符号器のApで反射され、かつ、復号器のBqで反射された光パルスは、符号器のA1で反射され、かつ、復号器のB1で反射された光パルスに対して、(p−1)×Δφa+(q−1)×Δφa=(p+q−2)×Δφaに対応する位相遅延を受けることになる。従って、p+qが等しい光チップパルスは、復号器から時間軸上で重なって出力されたときに位相が揃っている。
【0069】
このように、符号器のp番目の単位FBG74であるApで反射され、かつ、復号器のq番目の単位FBG74であるBqで反射された光パルスは、p+qが等しい場合に、時間軸上で重なり、さらに、位相が揃っている。この結果、復号器の出力は、時間軸上で重なった光チップパルスの信号強度が強くなるので、復号化信号は、図中、符号Iで示す自己相関ピークを示す。
【0070】
続いて、符号化するときの符号と、復号化するときの符号とが異なっている場合について説明する。ここでは、a番目の符号で符号化された信号をb番目の符号で復号化する場合を例にとって説明する。ここで、bは、1以上N以下であって、かつ、aとは異なる整数である。
【0071】
符号器側でp番目の単位FBGであるApで反射された光チップパルスは、1番目の単位FBGであるA1で反射された光チップパルスに対して、(p−1)×2×Laに対応する遅延を受ける。また、復号器側でq番目の単位FBGであるBqで反射された光チップパルスは、1番目の単位FBGであるB1で反射された光チップパルスに対して、(q−1)×2×Lbに対応する遅延を受ける。
【0072】
符号器のApで反射され、かつ、復号器のBqで反射された光パルスは、符号器のA1で反射され、かつ、復号器のB1で反射された光パルスに対して、(p−1)×2×La+(q−1)×2×Lbに対応する遅延を受けることになる。ここで、Lb=La+ΔLとすれば、(p−1)×2×La+(q−1)×2×Lb=(p+q−2)×2×La+(q−1)×2×ΔLとなるので、p+qが等しい光チップパルスは、復号器から出力されたときに、(q−1)×2×ΔLの項の分だけ、時間軸上の位置がずれる。
【0073】
また、符号器側のApで反射された光チップパルスは、A1で反射された光チップパルスに対して、(p−1)×Δφaに対応する位相遅延を受ける。また、復号器のBqで反射された光チップパルスは、B1で反射された光チップパルスに対して、(q−1)×Δφbに対応する位相遅延を受ける。
【0074】
符号器のApで反射され、かつ、復号器のBqで反射された光パルスは、符号器のA1で反射され、かつ、復号器のB1で反射された光パルスに対して、(p−1)×Δφa+(q−1)×Δφbに対応する位相遅延を受けることになる。従って、b=a+Δaとすると、以下の(1)式に示されるように、(q−1)×2Δa×π/Nの分だけ、位相がずれる。
【0075】
(p−1)×Δφa+(q−1)×Δφb
=(p−1)×(2a−1)×π/N+(q−1)×(2b−1)×π/N
=(p−1)×(2a−1)×π/N+(q−1)×(2a+2Δa−1)×π/N
=(p+q−2)×(2a−1)×π/N+(q−1)×2Δa×π/N
=(p+q−2)×Δφa+(q−1)×2Δa×π/N (1)
【0076】
このように、符号器のp番目の単位FBG74であるApで反射され、かつ、復号器のq番目の単位FBG74であるBqで反射された光パルスは、p+qが等しい場合であっても、時間軸上での位置がずれており、さらに、位相が揃っていないので信号強度が弱くなる。この結果、復号化信号では自己相関ピークが得られず、光信号の再生ができない。
【0077】
(符号の変更方法)
OCDMモジュールでは、温度コントローラ50で設定された設定温度と、温度センサ42で測定された測定温度とが等しくなるようにサーモモジュール36の加熱/冷却が制御される。この温度コントローラ50を用いたサーモモジュール36の制御により、実装プレート40は、設定温度に等しい、一定の温度に保たれる。
【0078】
ここで、実装プレート40は熱伝導率が高いため、実装プレート40の長手方向の温度分布は発生しない。この結果、実装プレート40上に密着固定された光ファイバ70のSSFBG72の部分は、全体が一定の温度になる。
【0079】
また、実装プレート40の熱膨張係数が小さいため、SSFBG72の温度変化について考慮すれば良く、温度変化による実装プレート40自体の伸縮については、無視することができる。
【0080】
SSFBG72の温度変化により、SSFBG72を構成する単位FBG74の実効屈折率neff、及びグレーティングピッチΛが変化する。この結果、各単位FBG74での反射波長が変化する。また、単位チップ73の長さL及びSSFBGが形成された光ファイバ70のコアの屈折率nも変化する。
【0081】
図7を参照して、SSFBGの温度と反射波長の関係について説明する。図7は、SSFBGの温度と反射波長の関係の特性図である。図7では、横軸に温度コントローラでの設定温度Tset(単位:℃)を取って示し、及び、縦軸に設定温度Tsetが25℃のときの反射波長を基準とした反射波長の波長変動量Δλ(単位:pm)を取って示している。設定温度Tsetと波長変動量Δλを一次関数で近似すると、以下の式(2)が得られる。
【0082】
Δλ=12.0×Tset−300.2 (2)
【0083】
温度コントローラ50の設定温度Tsetが1℃変動すると、反射波長λは12.0pm変動する。このことから、符号器及び復号器で0.1℃単位の温度制御を行えば、およそ1pmの分解能で反射波長を一致させることができる。
【0084】
サーモモジュール36によって実装プレート40を加熱する場合の例について、バッファ34及び38による熱応力の緩和を説明する。
【0085】
一般にサーモモジュール36と、実装プレート40や筺体32とは、熱膨張係数が異なるので、温度変化に伴うサーモモジュール36の伸縮量と、実装プレート40あるいは筺体32の伸縮量とが異なる。このため、サーモモジュール36が実装プレート40あるいは筺体と強固に固定されていると、サーモモジュール36を構成するペルチェ素子そのものや、ペルチェ素子が備える電極へ半田付けを行った箇所などに、伸縮量の差異による応力が加わり、サーモモジュール36が破壊されてしまう場合がある。
【0086】
図2を参照して説明した構成では、サーモモジュール36は、バッファ34及び38を介して筺体32及び実装プレート40と固定されている。サーモモジュール36と筺体32あるいは実装プレート40との伸縮量の差異は、バッファ材層80の面方向への伸縮により吸収されるため、応力の発生を抑制できる。この結果、温度変化により発生する熱応力に基づくサーモモジュールの破壊を回避することができる。
【0087】
ここで、バッファ34及び38を熱伝導係数の大きい材質で、薄く形成すれば、バッファの熱抵抗を無視することができる。
【0088】
本発明では、符号は、時間軸上に隣接する光チップパルス間の位相差によって与えられる。SSFBGの温度を変化させることで、隣接するチップパルス間の位相差を変化させ、その結果、符号器あるいは復号器の符号を変更することができる。
【0089】
単位チップ73では、実装プレート40の温度に応じて定まる当該単位チップ73の長さL及び屈折率nと、実装プレート40の温度に応じて定まる単位FBG74における反射中心波長とにより、単位チップ73における位相遅延量が定まる。この各単位チップ73における位相遅延量により、隣接する光チップパルス間の位相差を決定する。
【0090】
符号数16の中の1番目の符号である、符号[16−1]を符号[16−2]に変更する場合の例について説明する。なお、[N−a]は、N個生成される符号の中のa番目の符号を示している。例えば、[16−1]は、16個生成される符号の中の1番目の符号を示す。
【0091】
符号[16−1]では、隣接するチップパルス間の位相差は、0.03125[rad](=(2×a−1)×π/N=π/16=1/32×2π)となる。
【0092】
一方、符号[16−2]では、隣接するチップパルス間の位相差は、0.09375[rad](=3/32×2π)となる。符号[16−1]を符号[16−2]に変更する場合、0.06250[rad](=0.09375[rad]−0.03125[rad])に相当する位相変化を、符号[16−1]を示す符号器に与えれば良い。
【0093】
ここでは、単位チップの長さLと、光ファイバのコアの屈折率nと、反射波長λ0により位相差Δφが符号数Nのa番目の符号[N−a]に設定されているとする。このとき、位相差Δφaは、Δφa=2×L×n/λ0=(2×a−1)×π/Nの関係を満たしている。
【0094】
ここで、実装プレートに温度変化δTを与えて、a番目の符号[N−a]からb番目(bは1以上N以下であり、aとは異なる整数)の符号[N−b]に変換する。この温度変化δTにより、単位チップ73のチップ長さLは、チップ長さ変化量δLだけ変化する。さらに、この温度変化δTにより、屈折率nも屈折率変化量δnだけ変化する。
【0095】
この結果、位相差Δφb(=(2×b−1)×π/N)は、Δφb=2×(L+δL)×(n+δn)/λ0になる。
【0096】
このときの位相差の変化量δ(Δφ)は、以下の式(3)で与えられる。
δ(Δφ)
=Δφb−Δφa
=2×(L+δL)×(n+δn)/λ0−2×L×n/λ0
=2×(L×δn+δL×n+δL×δn)/λ0 (3)
【0097】
以下、SSFBG72として、単位FBG74の長さL1を0.3mm及び位相変調部76の長さL2を1.0mmとした、すなわち、単位チップ73のチップ長さLを1.3mmとした、コアにゲルマニウムを添加したシングルモード光ファイバを用いた場合の、符号の変更の実測結果について説明する。ここでは、符号長Mを32としている。
【0098】
以下の説明では、光ファイバの熱膨張係数を5.5×10−7/℃、コアの屈折率nを1.45、屈折率の温度による変化率を8.6×10−6/℃、反射波長の温度による変化率を10pm/℃、単位FBG74での反射波長を1549.32nmとして説明する。
【0099】
この場合、δLは、5.5×10−7×L×δTで与えられ、δnは、8.6×10−6×δTで与えられる。このδLとδnを上記の式(3)に代入すると、δL×δnの項の寄与は無視することができるので、位相差の変化量δ(Δφ)は、温度変化δTに比例する。このとき、温度変化1℃あたりの、位相変化量は、0.0158[rad]となる。この結果、符号[16−1]の符号器に対して、およそ4℃の温度変化を与えれば、符号を[16−2]に変化させることができる。
【0100】
図8を参照して、符号化信号が、符号[16−5]で符号化されているとき、符号[16−1]の符号器と、符号[16−5]の復号器で復号化した復号化信号の実測結果について説明する。図8(A)〜(D)は、復号化信号の実測結果を示す図であり、横軸に時間(任意単位)で取って示し、縦軸に反射パワー(任意単位)で取って示している。
【0101】
図8(A)は、符号が[16−5]である符号器で符号化して、符号が[16−5]の復号器で復号化したときの復号化信号を示している。この場合、符号化する際の符号と、復号化する際の符号とがともに[16−5]で一致しているので、自己相関ピークが観測される。すなわち、送信側の光パルス信号が、復号化されて再生される。
【0102】
これに対し、図8(B)は、符号が[16−5]である符号器で符号化して、符号が[16−1]の復号器で復号化したときの復号化信号を示している。この場合、符号化する際の符号が[16−5]であり、かつ、復号化する際の符号が[16−1]であり、互いに異なっているので、自己相関ピークが観測されない。すなわち、送信側の光パルス信号が、再生されない。
【0103】
符号[16−1]では、隣接するチップパルス間の位相差は、0.03125[rad]であり、符号[16−5]では、隣接するチップパルス間の位相差は、0.28125[rad](=9/32×2π)となる。符号[16−5]を符号[16−1]に変更する場合、0.25[rad](=0.28125[rad]−0.03125[rad])に相当する位相変化を、符号[16−5]を示す符号器に与えれば良い。
【0104】
この実施形態の符号器では、温度変化ΔTが1℃のときの、位相変化量が0.0157[rad]であるので、符号器の温度変化を約16℃(=0.25[rad]/0.0158[rad/℃])とすればよい。SSFBGの反射波長は温度変化1℃あたり10pmなので、符号器の温度変化により、SSFBGの反射波長は160pm変化する。
【0105】
[16−5]から[16−1]に変化させるためには、符号器の温度を約16℃下げる。このとき、反射波長は160pm短くなる。
【0106】
図8(C)は、符号を[16−1]に変化させた符号器で符号化して、符号が[16−5]の復号器で復号化したときの復号化信号を示している。この場合、符号化する際の符号が[16−1]であり、かつ、復号化する際の符号が[16−5]であり、互いに異なっているので、自己相関ピークが観測されない。すなわち、送信側の光パルス信号が、再生されない。
【0107】
これに対し、図8(D)は、符号が[16−1]である符号器で符号化して、符号が[16−1]の復号器で復号化したときの復号化信号を示している。この場合、符号化する際の符号と、復号化する際の符号とがともに[16−1]で一致しているので、自己相関ピークが観測される。すなわち、送信側の光パルス信号が、復号化されて再生される。
【0108】
図9は、横軸に符号器の波長(単位:pm)で取って示し、縦軸に反射パワー(単位:dBm)で取って示している。図中、記号■は、復号器の符号が[16−5]の場合の反射パワーを示し、及び、記号●は、復号器の符号が[16−1]の場合の反射パワーを示している。
【0109】
初期状態での符号器の符号が[16−5]の場合、復号器の符号が[16−5]の反射パワー(ケースA)は、符号器の波長変動量が0pmのときに最大となり、その値はおよそ−20dBmである。この場合、復号器において、送信側の光パルス信号が充分に再生できる。
【0110】
符号器の波長を短波長側に変化させると、−40pm、−80pm、−120pm、−160pmのときはいずれも、反射パワーが−30dBmよりも小さくなり、符号が一致しているときの反射パワーよりも10dBm以上小さい。この場合、復号器において、送信側の光パルス信号の再生ができない。符号器側の波長に対して−40pm、−80pm、−120pm及び−160pmの波長変動を与えることは、それぞれ符号器の符号を[16−4]、[16−3]、[16−2]及び[16−1]に変更したことに対応する。
【0111】
また、初期状態での符号器の符号が[16−5]の場合、復号器の符号が[16−1]の反射パワー(ケースB)は、波長変動量が、0、−40pm、−80pm、−120pmのときはいずれも、反射パワーが−30dBmよりも小さくなり、符号が一致しているときの反射パワーよりも10dBm以上小さい。この場合、復号器において、送信側の光パルス信号の再生ができない。符号器の波長に0pm、−40pm、−80pm、−120pm及び−160pmの波長変動を与えることは、それぞれ符号器の符号を[16−5]、[16−4]、[16−3]及び[16−2]に変更したことに対応する。
【0112】
符号器の波長をさらに短くして、−160pmとすると、反射パワーは最大となり、その値は−20dBmよりも大きくなる。この場合、復号器において、送信側の光パルス信号が充分に再生できる。この符号器の波長変動量の−160pmは、初期状態で[16−5]の符号器の符号を、[16−1]に変更したことに対応する。
【0113】
以上説明したように、この発明の光符号分割多重モジュール及び符号化方法によれば、符号器あるいは復号器として、複数個の同一構成の単位FBG及び複数個の長さが互いに等しい位相変調部を交互に備えているSSFBGを用いており、SSFBG全体の温度により、符号を設定している。このため、符号の設定に局所加熱が不要となるため、長時間安定して、所望の符号での符号化及び復号化を行うことができる。
【0114】
また、SSFBG全体の温度を変化させることで、容易に符号の変更を行うことができる。
【図面の簡単な説明】
【0115】
【図1】OCDMモジュールの模式図である。
【図2】OCDMモジュール備えるモジュールパッケージを側面から見た概略的断面図である。
【図3】符号器あるいは復号器として用いられるSSFBGの模式図である。
【図4】モジュールパッケージ内に設けられるバッファの概略的断面図である。
【図5】符号化を説明するための模式図である。
【図6】復号化を説明するための模式図である。
【図7】SSFBGの温度と反射波長の関係を示す特性図である。
【図8】復号化信号の波形図である。
【図9】符号器の波長変動量と復号器の反射パワーの関係を示す特性図である。
【符号の説明】
【0116】
10 OCDMモジュール
30 モジュールパッケージ
32 筺体
34、38 バッファ
36 サーモモジュール
40 実装プレート
42 温度センサ
50 温度コントローラ
52 入力部
54 受信部
56 比較部
58 送信部
60 記憶部
70 光ファイバ
72 SSFBG
73 単位チップ
74 単位FBG
76 位相変調部
80 バッファ材層
82、84 粘着層

【特許請求の範囲】
【請求項1】
同一の光ファイバ中に、複数個の同一構成の単位ファイバブラッググレーティングを等間隔に備えるスーパーストラクチャファイバブラッググレーティングと、
該スーパーストラクチャファイバブラッググレーティングが固定される実装プレートと、
該実装プレートを加熱又は冷却するサーモモジュールと、
前記実装プレートの温度を測定する温度センサと、
該温度センサで測定される前記温度に基づいて前記サーモモジュールを制御して、前記実装プレートの温度を調整して、位相変調による符号化又は復号化の際の符号を設定する温度コントローラと
を備えることを特徴とする光符号分割多重モジュール。
【請求項2】
前記スーパーストラクチャファイバブラッググレーティングが符号長Mに対応する個数の単位ファイバブラッググレーティングを備え、
前記スーパーストラクチャファイバブラッググレーティングに入力された光は、前記各単位ファイバブラッググレーティングでそれぞれ反射された、M個(Mは1以上の整数)の光パルスに分岐され、
隣接する単位ファイバブラッググレーティングで反射された光パルス間の位相差が一定であり、該位相差により符号が定まる
ことを特徴とする請求項1に記載の光符号分割多重モジュール。
【請求項3】
前記実装プレートの温度が変化すると、前記位相差が変化する
ことを特徴とする請求項2に記載の光符号分割多重モジュール。
【請求項4】
前記符号が、符号数N(Nは1以上の整数)のa番目(aは1以上N以下の整数)の符号であるとき、
前記位相差ΔφがΔφ=(2a−1)*π/Nで与えられる
ことを特徴とする請求項2又は3に記載の光符号分割多重モジュール。
【請求項5】
同一の光ファイバ中に、複数個の同一構成の単位ファイバブラッググレーティングを等間隔に備えるスーパーストラクチャファイバブラッググレーティングと、該スーパーストラクチャファイバブラッググレーティングが固定される実装プレートと、該実装プレートを加熱又は冷却するサーモモジュールとを備える光符号分割多重モジュールを用いて、光信号を符号化する方法であって、
前記スーパーストラクチャファイバブラッググレーティングに光信号を入力する過程と、
前記光信号を、前記各単位ファイバブラッググレーティングでそれぞれ反射させて、隣接する単位ファイバブラッググレーティングで反射された光パルス間の位相差が一定であるM個の光パルスに分岐して符号化信号を生成する過程と
を備え、
前記位相差により符号を定める
ことを特徴とする光符号分割多重における符号化方法。
【請求項6】
前記実装プレートの温度を変化させることにより、前記位相差を変化させる
ことを特徴とする請求項5に記載の光符号分割多重における符号化方法。
【請求項7】
前記符号が、符号数N(Nは1以上の整数)のa番目(aは1以上N以下の整数)の符号であるとき、
前記位相差ΔφをΔφ=(2a−1)*π/Nで与える
ことを特徴とする請求項5に記載の光符号分割多重における符号化方法。
【請求項8】
各単位ファイバブラッググレーティングの間に設けられた位相変調部と、位相変調部に隣接する前記単位ファイバブラッググレーティングとにより単位チップが構成され、及び
単位チップの長さLと、前記光ファイバのコアの屈折率nと、反射波長λ0により位相差Δφが符号数Nのa番目の符号に設定されているとき、
実装プレートに温度変化ΔTを与えて、前記単位チップをチップ長さ変化量δLだけ変化させるとともに、前記屈折率を屈折率変化量δnだけ変化させることにより、前記位相差をδ(Δφ)=2×(L×δn+δL×n+δL×δn)/λ0だけ変化させて、前記a番目の符号からb番目(bは1以上N以下であり、aとは異なる整数)の符号に変換する
ことを特徴とする請求項7に記載の光符号分割多重における符号化方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate


【公開番号】特開2009−164957(P2009−164957A)
【公開日】平成21年7月23日(2009.7.23)
【国際特許分類】
【出願番号】特願2008−1299(P2008−1299)
【出願日】平成20年1月8日(2008.1.8)
【出願人】(000000295)沖電気工業株式会社 (6,645)
【Fターム(参考)】