説明

回路異常判定装置および回路異常判定方法

【課題】 過熱等の危険性により早急に装置の制御を停止する必要があるような故障と、装置の性能は低下するものの制御を継続することが可能な故障とを特定することができる回路異常判定装置および回路異常判定方法と提供すること。
【解決手段】 電源と、前記電源に接続する電気回路中に配置された負荷と、前記電源と前記負荷との間に位置する第1スイッチング素子と、前記負荷の下流に位置する第2スイッチング素子と、前記負荷と前記第1スイッチング素子との間に設けられ前記電気回路中の電流の状態を検出する電流検出手段と、前記負荷と前記第2スイッチング素子との間に設けられ前記電気回路の電圧の状態を検出する電圧検出手段と、前記電源の電圧を監視する電源電圧監視手段と、前記電流検出手段により検出された電流の状態と前記電圧検出手段により検出された電圧の状態と前記電源電圧監視手段により検出された電圧の状態の監視結果に基づき、前記電気回路の異常部位または種類を判定する異常判定手段と、を設けた。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、電気回路の異常部位または種類を判定する回路異常判定装置および回路異常判定方法に関する。
【背景技術】
【0002】
この種の技術としては、特許文献1に記載の技術が開示されている。
【0003】
この公報では、ヒータの通電時と非通電時における回路中の電流および電圧の状態に応じて故障箇所を特定している。
【特許文献1】特開平11−6812号公報
【発明の開示】
【発明が解決しようとする課題】
【0004】
しかしながら、上記従来技術にあっては、過電流が発生し過熱の虞がある地絡等の故障と、故障した負荷のみが制御不能となる断線等の故障とを特定することができないといった問題があった。
【0005】
本発明は、上記問題に着目してなされたもので、その目的とするところは、過熱等の危険性により早急に装置の制御を停止する必要があるような故障と、装置の性能は低下するものの制御を継続することが可能な故障とを特定することができる回路異常判定装置および回路異常判定方法と提供することにある。
【課題を解決するための手段】
【0006】
上記目的を達成するため、第1の発明においては、電源と、前記電源に接続する電気回路中に配置された負荷と、前記電源と前記負荷との間に位置する第1スイッチング素子と、前記負荷の下流に位置する第2スイッチング素子と、前記負荷と前記第1スイッチング素子との間に設けられ前記電気回路中の電流の状態を検出する電流検出手段と、前記負荷と前記第2スイッチング素子との間に設けられ前記電気回路の電圧の状態を検出する電圧検出手段と、前記電源の電圧を監視する電源電圧監視手段と、前記電流検出手段により検出された電流の状態と前記電圧検出手段により検出された電圧の状態と前記電源電圧監視手段により検出された電圧の状態の監視結果に基づき、前記電気回路の異常部位または種類を判定する異常判定手段と、を設けた。
【0007】
また第2の発明においては、電源と、前記電源に接続する電気回路中に配置された負荷と、前記電源と前記負荷との間に位置する電源リレーと、前記負荷の下流に位置し負荷を駆動するスイッチング素子と、前記電源の電圧を監視する電源電圧監視部と、前記電気回路中の電流の状態を監視する電流監視部と、前記電気回路中の電圧の状態を監視する回路電圧監視部と、前記各監視部の監視状態に基づき、電気回路の異常パターンを判定する異常判断部と、を設けた。
【0008】
また第3の発明においては、電源と、前記電源に接続する電気回路中に配置された負荷と、前記電源と複数の負荷との間に位置する電源リレーと、前記複数の負荷の下流に位置し負荷を駆動するスイッチング素子と、前記電源の電圧を監視する電源電圧監視部と、前記電気回路中の電流の状態を監視する電流監視部と、前記電気回路中の電圧の状態を監視する回路電圧監視部と、前記各監視部の監視状態に基づき、電気回路の異常パターンを判定する異常判断部と、を備えた。
【0009】
また第4の発明においては、 車両の車輪に付属するホイルシリンダと、前記ホイルシリンダ内の圧力を目標ホイルシリンダ圧に制御するコントロールユニットと、前記ホイルシリンダ圧の制御時に前記コントロールユニットにより制御される比例ソレノイドバルブと、車両に搭載された電源と、前記電源に接続された前記比例ソレノイドバルブを駆動するソレノイドバルブ駆動回路と、前記ソレノイド駆動回路中に配置されたコイルと、前記電源と前記コイルとの間に配置された電源リレーと、前記コイルの下流に位置しコイルと駆動するスイッチング素子と、前記電源電圧を監視する電源電圧監視部と、前記電気回路中の電流の状態を監視する電流監視部と、前記電気回路中の電圧の状態を監視する回路電圧監視部と、前記各監視部の監視状態に基づき、電気回路の異常パターンを判定する異常判断部と、を備えた。
【0010】
また第5の発明においては、電源と、前記電源に接続する電気回路中に配置された負荷と、前記電源と前記負荷との間に位置する第1スイッチング素子と、前記負荷の下流に位置する第2スイッチング素子と、を備え、前記負荷と前記第1スイッチング素子との間において、前記第1スイッチング素子および/または前記第2スイッチング素子の駆動により変化する前記電気回路中の電流の状態と、前記負荷と前記第2スイッチング素子との間において、前記第1スイッチング素子および/または前記第2スイッチング素子の駆動により変化する前記電気回路の電圧の状態と、前記電源の電圧と、に基づき前記電気回路の異常部位または種類を判定する方法とした。
【発明の効果】
【0011】
よって、本発明の回路異常判定装置および回路異常判定方法においては、過熱等の発生により早急に装置の制御を停止する必要があるような故障と、装置の性能は低下するものの制御を継続することが可能な故障とを特定することが可能となり、故障の種類に応じた対応を行うことができる。
【発明を実施するための最良の形態】
【0012】
以下、本発明の回路異常判定装置および回路異常判定方法を実現する最良の形態を、実施例1において説明する。
【実施例1】
【0013】
まず、本発明の回路異常判定装置および回路異常判定方法が適用されたブレーキ制御装置1の構成について説明する。このブレーキ制御装置1は、ドライバの踏力によるブレーキ液圧発生とは別に、ブレーキ液圧発生源を有する所謂ブレーキバイワイヤ装置である。
【0014】
[ブレーキ液圧回路の構成]
図1は、実施例1のブレーキ制御装置1のブレーキ液圧回路を示す図である。ブレーキ液圧装置1にはブレーキ液圧源として、ブレーキペダル40に入力される踏力によって液圧を発生させるマスタシリンダ41と、第1のポンプ15bおよび第2のポンプ15dとが設けられている。この第1のポンプ15bは第1のモータ15aによって、第2のポンプは第2のモータ15cによって駆動される。
【0015】
マスタシリンダ41にはリザーバタンク47からブレーキ液が供給される。マスタシリンダ41は、右前(FR)輪ホイルシリンダ43a、左前輪(FL)ホイルシリンダ43cとそれぞれ接続されている。マスタシリンダ41と右前輪ホイルシリンダ43aとの間には常開の第1の遮断弁45eが設けられる。またマスタシリンダ41と左前輪ホイルシリンダ43cとの間には常開の第2の遮断弁45jが設けられている。第1の遮断弁45e、第2の遮断弁45jはそれぞれソレノイド14e,14jによって駆動される。
【0016】
第1のポンプ15bと第2のポンプ15dには液溜り42からブレーキ液が供給される。この液溜り42はリザーバタンク47と接続されており、第1のポンプ15bまたは第2のポンプ15dによって各ホイルシリンダ43おいて1回〜3回程度のブレーキを発生させることができる程度のブレーキ液が貯留される。第1のポンプ15bおよび第2のポンプ15dの吐出側は各ホイルシリンダ43と接続されている。第1のポンプ15bおよび第2のポンプ15dの吐出側と、右前輪ホイルシリンダ43aとの間には常閉の増圧弁45bが、左後(RL)輪ホイルシリンダ43bとの間には常閉の増圧弁45dが、左前輪ホイルシリンダ43cとの間には常閉の増圧弁45gが、右後(RR)輪ホイルシリンダ43dとの間には常閉の増圧弁45iが設けられている。各増圧弁45b,45d,45g,45iはソレノイド14b,14d,14g,14iによって駆動される。
【0017】
第1のポンプ15bと増圧弁45b,45d,45g,45iとの間には、第1のポンプ15bの吐出方向のブレーキ液の流れのみを許容するチェック弁48が設けられている。また第2のポンプ15dと増圧弁45b,45d,45g,45iとの間には、第2のポンプ15dの吐出方向のブレーキ液の流れのみを許容するチェック弁49が設けられている。
【0018】
第2のポンプ15dの吸入側は各ホイルシリンダ43と接続されている。第2のポンプ15dと、右前輪ホイルシリンダ43aとの間には常閉の減圧弁45aが、左後輪ホイルシリンダ43bとの間には常閉の減圧弁45cが、左前輪ホイルシリンダ43cとの間には常閉の減圧弁45fが、右後輪ホイルシリンダ43dとの間には常閉の減圧弁45hが設けられている。各減圧弁45a,45c,45f,45hはソレノイド14a,14c,14f,14hによって駆動される。
【0019】
第1のポンプ15bおよび第2のポンプ15dの吐出側と各増圧弁45b,45d,45g,45iとの間の配管は、第2のポンプ15dの吸入側とリリーフ弁46を介して接続されている。マスタシリンダ41と第1の遮断弁45eとの間の配管は、常閉のストロークシミュレータキャンセル弁16を介して、ブレーキペダル40に対して擬似ストロークを付与するストロークシミュレータ44が接続されている。
【0020】
マスタシリンダ41と第1の遮断弁45eとの間の配管とマスタシリンダ41と第2の遮断弁45jとの間の配管には、それぞれマスタシリンダ41が発生するブレーキ液圧を検出する第1のマスタシリンダ圧センサ21bと第2のマスタシリンダ圧センサ21cが設けられている。各ホイルシリンダ43a,43b,43c,43dには、各ホイルシリンダ圧を検出するホイルシリンダ圧センサ22a,22b,22c,22dが設けられている。マスタシリンダ41には、第1のストロークセンサ21aと第2のストロークセンサ21dが設けられている。
【0021】
[コントロールユニットの構成]
次にブレーキ制御装置1のコントロールユニットの構成を説明する。図2はコントロールユニットの構成図である。次にブレーキ制御装置1のコントロールユニットは、第1のコントロール部2と第2のコントロール部3とから構成される。第1のコントロール部2と第2のコントロール部3とは通信回路18によって相互通信を行う。この通信回路18は、シリアルやパラレル等を採用する制御制動力指令送信やCPU相互異常監視等を行う通信回路である。第1のコントロール部2には電源28から電気が供給され、第2のコントロール部3には電源29から電気が供給されている。電源28,29は、第1のコントロール部2と第2のコントロール部3の共通の電源としても良いし、非共有の電源としても良い。
【0022】
第1のアクチュエータ部4は右前輪減圧弁ソレノイド(FR輪減圧弁SOL)14a、右前輪増圧弁ソレノイド(FR輪増圧弁SOL)14bと、左後輪減圧弁ソレノイド(RL輪減圧弁SOL)14cと、左後輪増圧弁ソレノイド(FR輪減圧弁SOL)14dと、第1の遮断弁ソレノイド(第1の輪減圧弁SOL)14eからなる第1の液圧制御グループと、第1のモータ15aと第1のポンプ15bからなる第1の液圧発生手段である。第2のアクチュエータ部5は左前輪減圧弁ソレノイド(FL輪減圧弁SOL)14f、左前輪増圧弁ソレノイド(FL輪増圧弁SOL)14gと、右後輪減圧弁ソレノイド(RR輪減圧弁SOL)14hと、右後輪増圧弁ソレノイド(RR輪増圧弁SOL)14iと、第2の遮断弁ソレノイド(第2の遮断弁SOL)14jからなる第2の液圧制御グループと、第2のモータ15cと第1のポンプ15dからなる第2の液圧発生手段である。なお、第1のアクチュエータ部4は、第1のコントロール部2と一体型、または別体型とする。同じく第2のアクチュエータ部5は、第2のコントロール部3と一体型または別体型とする。
【0023】
第1のコントロール部2は、主として各ホイルシリンダ圧の制御演算を行う第1のCPU6を有している。この第1のCPU6は後述する各センサからの情報を基に通常ブレーキ制御、ABS制御、VDC制御等の演算を行い、その演算結果を第2のコントロール部3に送信するともに、演算結果に基づき第1アクチュエータ部4の駆動制御を行う。なお第1のCPU6は、第1の発明の異常判定部、第2の発明と第3の発明と第4の発明の異常判定部に相当する。
【0024】
第1のCPU6には、各車輪の車輪速を検出する車輪速センサ20aから入力回路9aを介して車輪速情報と、車両の前後加速度を検出する前後Gセンサ20bから入力回路9bを介して前後加速度情報と、車両のヨーレートを検出するヨーレートセンサ20cから入力回路9cを介してヨーレート情報と、車両の横加速度情報を検出する横Gセンサ20dから入力回路9dを介して横加速度情報と、第1のストロークセンサ21aから入力回路9eを介してストローク量情報と、第1のマスタシリンダ圧センサ(第1のM/CYL圧センサ)21bから入力回路9fを介してマスタシリンダ圧情報と、右前輪のホイルシリンダ圧センサ(FR輪W/CYL圧センサ)22aから入力回路9gを介して右前輪のホイルシリンダ圧情報と、左後輪のホイルシリンダ圧センサ(RL輪W/CYL圧センサ)22bから入力回路9hを介して左後輪のホイルシリンダ圧情報と、左前輪のホイルシリンダ圧センサ(FL輪W/CYL圧センサ)22cから入力回路8aを介して左前輪のホイルシリンダ圧情報と、右後輪のホイルシリンダ圧センサ(RR輪W/CYL圧センサ)22dから入力回路8bを介して右後輪のホイルシリンダ圧情報を入力している。
【0025】
また、第1のCPU6は、操向輪の舵角を検出する舵角センサ23aと、エンジンを制御するエンジンコントロールユニット(エンジンC/U)23bと、各種メータ23cと、自動走行用のレーダ(ACCレーダ)23dと、回生制動ユニット23eとそれぞれ通信回路19を介して相互通信を行っている。
【0026】
第1のCPU6は、右前輪減圧弁ソレノイド14aへ出力回路10aを介して右前輪減圧弁駆動信号と、右前輪増圧弁ソレノイド14bへ出力回路10bを介して右前輪増圧弁駆動信号と、左後輪減圧弁ソレノイド14cへ出力回路10cを介して左後輪減圧弁駆動信号と、左後輪増圧弁ソレノイド14dへ出力回路10dを介して左後輪増圧弁駆動信号と、第1の遮断弁ソレノイド14eへ出力回路10eを介して第1の遮断弁駆動信号と、第1のモータ15aへ出力回路11を介して第1のポンプ駆動信号と、ストロークシミュレータキャンセル弁16へ出力回路12を介してストロークシミュレータキャンセル弁駆動信号を出力する。
【0027】
第2のコントロール部3は、主としてバックアップ制御演算を行う第2のCPU7を有している。この第2のCPU7は第2の液圧グループのホイルシリンダ圧情報の検出と、第1のCPU6の異常監視を行い、第1のCPUが正常であると判断している間は第1のCPU6からの制御指令に基づき第2のアクチュエータ部5の制動演算を行い、演算結果に基づいて第2のアクチュエータ部5の駆動制御を行う。なお第2のCPU7は、第1の発明の異常判定部、第2の発明と第3の発明と第4の発明の異常判定部に相当する。
【0028】
第2のCPU7には、左前輪のホイルシリンダ圧センサ22cから入力回路8aを介して左前輪のホイルシリンダ圧情報と、右後輪のホイルシリンダ圧センサ22dから入力回路8bを介して右後輪のホイルシリンダ圧情報と、第2のマスタシリンダ圧センサ21cから入力回路17aを介してマスタシリンダ圧情報と、第2のストロークセンサ21dから入力回路17bを介してストローク量情報とを入力している。
【0029】
第2のCPU7は、左前輪減圧弁ソレノイド14fへ出力回路10fを介して左前輪減圧弁駆動信号と、左前輪増圧弁ソレノイド14gへ出力回路10gを介して右前輪増圧弁駆動信号と、右後輪減圧弁ソレノイド14hへ出力回路10hを介して右後輪減圧弁駆動信号と、右後輪増圧弁ソレノイド14iへ出力回路10iを介して右後輪増圧弁駆動信号と、第2の遮断弁ソレノイド14jへ出力回路10jを介して第2の遮断弁駆動信号と、第2のモータ15cへ出力回路13を介して第2のポンプ駆動信号を出力する。
【0030】
[ソレノイドバルブの制御回路構成]
実施例1のブレーキ液圧装置においては、第1の液圧制御グループと第2の液圧制御グループとに分けて液圧制御を行っている
図3は第1の液圧制御グループの制御回路構成を示す図である。電源28と第1の液圧制御グループの各ソレノイド14a,14b,14c,14d,14eとの間にフェールセーフリレー(F/Sリレー)26が設けられている。各ソレノイド14a,14b,14c,14d,14eには、ソレノイド14a,14b,14c,14d,14eを駆動する駆動素子30a,30b,30c,30d,30eが設けられている。また、各ソレノイド14a,14b,14c,14d,14eに並列にフリーホイールダイオード(FWD)60a,60b,60c,60d,60eが設けられている。
【0031】
なおフェールセーフリレー26は、第1の発明と第5の発明の第1スイッチング素子、第2の発明と第3の発明と第4の発明の電源リレーに相当する。また駆動素子30a,30b,30c,30d,30eは、第1の発明と第5の発明の第2スイッチング素子、第2の発明と第3の発明と第4の発明のスイッチング素子に相当する。またソレノイド14a,14b,14c,14d,14eは、第1の発明と第2の発明と第3の発明と第5の発明の負荷に、第4の発明のコイルに相当する。
【0032】
フェールセーフリレー26と各ソレノイド14a,14b,14c,14d,14eとの間には、電源電圧検出部80が設けられている。また、電源電圧検出部80と各ソレノイド14a,14b,14c,14d,14eとの間には、それぞれに電流検出部50a,50b,50c,50d,50eが設けられている。また、各ソレノイド14a,14b,14c,14d,14eと各駆動素子30a,30b,30c,30d,30eとの間にはそれぞれに断線検出部70a,70b,70c,70d,70eが設けられている。
【0033】
なお電流検出部50a,50b,50c,50d,50eは、第1の発明の電流検出手段、第2の発明と第3の発明と第4の発明の電流監視部に相当する。また断線検出部70a,70b,70c,70d,70eは、第1の発明の電圧検出手段、第2の発明と第3の発明と第4の発明の回路電圧監視部に相当する。また電源電圧検出部80は、第1の発明の電源電圧監視手段、第2の発明と第3の発明と第4の発明の電源電圧監視部に相当する。
【0034】
第1のCPU6は、電源電圧検出部80から電源値情報をアナログ信号で入力し、A/D変換処理後に制御および異常診断に使用する。また第1のCPU6は、電流検出部50a,50b,50c,50d,50eから電流値情報をアナログ信号または通信信号等で入力し、A/D変換処理後または受信データ処理後に制御および異常診断に使用する。また第1のCPU6は、断線検出部70a,70b,70c,70d,70eから断線検出情報をアナログ信号またはHI/LO信号で入力し、A/D変換処理後またはHI/LO信号に変換または入力信号のそのままの値を異常診断に使用する。
【0035】
フェールセーフリレー26は、第1のCPU監視機能部24によって制御される。第1のCPU6は、第1のCPU監視機能部24に対し、フェールセーフリレー26の通電許可/禁止信号を出力する。第1のCPU6は、初期化処理時に通電許可信号を出力する。一方、所定の診断シーケンスを実行し、フェールセーフリレー26を開放する必要があると判断したときには通電禁止信号を出力する。
【0036】
電源電圧検出部80は電源28の電圧値を検出して、第1のCPU6に電源電圧情報を入力する。第1のCPU6はこの電源情報を第1の液圧グループの各ソレノイド14a,14b,14c,14d,14eへ供給する電圧を掌握し制御演算に反映させる。
電流検出部50a,50b,50c,50d,50eは、第1の液圧制御グループの各ソレノイド14a,14b,14c,14d,14eの通電電流値を検出して、第1のCPU6に電流値情報を入力する。電流検出部50a,50b,50c,50d,50eは、シャント抵抗や差動アンプ等によって構成された電流センサであって電流-電圧変換信号をアナログまたはシリアル通信等によって第1のCPU6に送信する。第1のCPU6は、各ソレノイド14a,14b,14c,14d,14eの通電電流値に応じて駆動信号を演算するフィードバック制御を行う。
【0037】
断線検出部70a,70b,70c,70d,70eは、第1の液圧制御グループの各ソレノイド14a,14b,14c,14d,14eの下流の電圧値を検出して、第1のCPU6に電圧値情報を入力する。第1のCPU6は、断線検出部70a,70b,70c,70d,70eからの電圧値情報がスレッシュホールド電圧以上であればHIレベル、スレッシュホールド電圧未満であればLOレベルと判断する。このスレッシュホールド電圧は、各ソレノイド14a,14b,14c,14d,14eの下流に電圧値が電源28の電圧相当であるのか、グランド電位相当であるのかを判断できれば良く、3[V]程度に設定すれば良い。
【0038】
断線検出部70a,70b,70c,70d,70eは、第1のCPU6のA/D機能で検出するようにし、電源電圧検出部80として使用しても良い。このとき、各ソレノイド14a,14b,14c,14d,14eのうち非制御中であるソレノイド14a,14b,14c,14d,14eに対応する断線検出部70a,70b,70c,70d,70eにより電源電圧を検出するようにする。
【0039】
駆動素子30a,30b,30c,30d,30eは、第1のCPU6からの駆動信号によって第1の液圧グループの各ソレノイド14a,14b,14c,14d,14eの通電流のスイッチング動作を行う。この駆動素子30a,30b,30c,30d,30eは、電界効果トランジスタやパワートランジスタ等の半導体素子から構成される。
フリーホイールダイオード60a,60b,60c,60d,60eは、第1の液圧グループの各ソレノイド14a,14b,14c,14d,14eの誘導エネルギを還流させるものである。
【0040】
図4は第2の液圧制御グループの制御回路構成を示す図である。電源29と第2の液圧制御グループの各ソレノイド14f,14g,14h,14i,14jとの間にフェールセーフリレー(F/Sリレー)27が設けられている。各ソレノイド14f,14g,14h,14i,14jには、ソレノイド14f,14g,14h,14i,14jを駆動する駆動素子30f,30g,30h,30i,30jが設けられている。また、各ソレノイド14f,14g,14h,14i,14jに並列にフリーホイールダイオード(FWD)60f,60g,60h,60i,60jが設けられている。
【0041】
なおフェールセーフリレー27は、第1の発明と第5の発明の第1スイッチング素子、第2の発明と第3の発明と第4の発明の電源リレーに相当する。また駆動素子30f,30g,30h,30i,30jは、第1の発明と第5の発明の第2スイッチング素子、第2の発明と第3の発明と第4の発明のスイッチング素子に相当する。またソレノイド14a,14b,14c,14d,14eは、第1の発明と第2の発明と第3の発明と第5の発明の負荷に、第4の発明のコイルに相当する。
【0042】
フェールセーフリレー27と各ソレノイド14f,14g,14h,14i,14jとの間には、電源電圧検出部81が設けられている。また、電源電圧検出部81と各ソレノイド14f,14g,14h,14i,14jとの間には、それぞれに電流検出部50f,50g,50h,50i,50jが設けられている。また、各ソレノイド14f,14g,14h,14i,14jと各駆動素子30f,30g,30h,30i,30jとの間にはそれぞれに断線検出部70f,70g,70h,70i,70jが設けられている。
【0043】
なお電流検出部50f,50g,50h,50i,50jは、第1の発明の電流検出手段、第2の発明と第3の発明と第4の発明の電流監視部に相当する。また断線検出部70f,70g,70h,70i,70jは、第1の発明の電圧検出手段、第2の発明と第3の発明と第4の発明の回路電圧監視部に相当する。また電源電圧検出部81は、第1の発明の電源電圧監視手段、第2の発明と第3の発明と第4の発明の電源電圧監視部に相当する。
【0044】
第2のCPU7は、電源電圧検出部81から電源値情報をアナログ信号で入力し、A/D変換処理後に制御および異常診断に使用する。また第2のCPU7は、電流検出部50f,50g,50h,50i,50jから電流値情報をアナログ信号または通信信号等で入力し、A/D変換処理後または受信データ処理後に制御および異常診断に使用する。また第2のCPU7は、断線検出部70f,70g,70h,70i,70jから断線検出情報をアナログ信号またはHI/LO信号で入力し、A/D変換処理後またはHI/LO信号に変換または入力信号のそのままの値を異常診断に使用する。
【0045】
フェールセーフリレー27は、第2のCPU監視機能部25によって制御される。第2のCPU7は、第2のCPU監視機能部25に対し、フェールセーフリレー27の通電許可/禁止信号を出力する。第2のCPU7は、初期化処理時に通電許可信号を出力する。一方、所定の診断シーケンスを実行し、フェールセーフリレー27を開放する必要があると判断したときには通電禁止信号を出力する。
電源電圧検出部81は電源29の電圧値を検出して、第2のCPU7に電源電圧情報を入力する。第2のCPU7はこの電源情報を第2の液圧グループの各ソレノイド14f,14g,14h,14i,14jへ供給する電圧を掌握し制御演算に反映させる。
【0046】
電流検出部50f,50g,50h,50i,50jは、第2の液圧制御グループの各ソレノイド14f,14g,14h,14i,14jの通電電流値を検出して、第2のCPU7に電流値情報を入力する。電流検出部50f,50g,50h,50i,50jは、シャント抵抗や差動アンプ等によって構成された電流センサであって電流-電圧変換信号をアナログまたはシリアル通信等によって第2のCPU7に送信する。第2のCPU7は、各ソレノイド14f,14g,14h,14i,14jの通電電流値に応じて駆動信号を演算するフィードバック制御を行う。
【0047】
断線検出部70f,70g,70h,70i,70jは、第2の液圧制御グループの各ソレノイド14f,14g,14h,14i,14jの下流に電圧値を検出して、第2のCPU7に電圧値情報を入力する。第2のCPU7は、断線検出部70f,70g,70h,70i,70jからの電圧値情報がスレッシュホールド電圧以上であればHIレベル、スレッシュホールド電圧未満であればLOレベルと判断する。このスレッシュホールド電圧は、各ソレノイド14f,14g,14h,14i,14jの下流に電圧値が電源29の電圧相当であるのか、グランド電位相当であるのかを判断できれば良く、3[V]程度に設定すれば良い。
【0048】
断線検出部70f,70g,70h,70i,70jは、第2のCPU7のA/D機能で検出するようにし、電源電圧検出部81として使用しても良い。このとき、各ソレノイド14f,14g,14h,14i,14jのうち非制御中であるソレノイド14f,14g,14h,14i,14jに対応する断線検出部70f,70g,70h,70i,70jにより電源電圧を検出するようにする。
【0049】
駆動素子30f,30g,30h,30i,30jは、第2のCPU7からの駆動信号によって第2の液圧グループの各ソレノイド14f,14g,14h,14i,14jの通電流のスイッチング動作を行う。この駆動素子30f,30g,30h,30i,30jは、電界効果トランジスタやパワートランジスタ等の半導体素子から構成される。
フリーホイールダイオード60f,60g,60h,60i,60jは、第2の液圧グループの各ソレノイド14f,14g,14h,14i,14jの誘導エネルギを還流させるものである。
【0050】
[ブレーキバイワイヤの作用]
ブレーキ制御装置1は、通常はブレーキバイワイヤ装置として作用する。すなわち、通常制動時には第1の遮断弁45eと第2の遮断弁45jを閉弁、ストロークシミュレータキャンセル弁16を開弁し、第1のポンプ15bや第2のポンプ15dによって各ホイルシリンダ43へ液圧を供給する(倍力ブレーキ)。ブレーキ制御装置1に異常等が発生した場合には、第1の遮断弁45eと第2の遮断弁45jを開弁、ストロークシミュレータキャンセル弁16を閉弁し、マスタシリンダ41によって左右前輪ホイルシリンダ43a,43cへ液圧を供給する(踏力ブレーキ)。
【0051】
ブレーキ制御装置1では、装置の一部に異常が発生しても可能な限り倍力ブレーキを行うことができるようにしている。例えば、第1のモータ15aおよび第1のポンプ15bと、第2のモータ15cおよび第2のポンプ15dの2つの液圧発生源を有することによって、一方のポンプおよびモータに異常が発生しても他方のポンプおよびモータによって倍力ブレーキを行うことができる。また、各比例ソレノイドバルブ45の一部に異常が発生しても、異常が発生した箇所に該当するホイルシリンダ43以外に対しては倍力ブレーキを行うことができる。なお、左右前輪ホイルシリンダ43a,43cに該当する比例ソレノイドバルブ45に異常が発生した場合には、左右前輪ホイルシリンダ43a,43cには踏力ブレーキを行うことができる。
【0052】
また、地絡等によって過電流が流れ、発熱を生じるような異常が発生した場合には、フェールセーフリレー26,27をオフにして電源28,29からの電力供給を停止し、踏力ブレーキのみを行わざる得ない場合がある。
【0053】
上記のように、装置の一部に異常が発生しても可能な限り倍力ブレーキを行い、また発熱を生じるような異常の場合には踏力ブレーキのみをおこなうようにするためには、異常が発生した箇所や種類を特定する必要がある。
そこで実施例1のブレーキ制御装置1では、電源28,29と、ソレノイド14と、フェールセーフリレー26,27と、駆動素子30と、電流検出部50と、電源電圧検出部80,81と、断線検出部70とを、上述の図3、図4のように配置した。そして、電流検出部50により検出された電流の状態と、断線検出部70により検出された電圧の状態と、電源電圧検出部80,81により検出された電圧の状態の監視結果に基づき、異常部位または種類を判定するようにした。以下、異常検出の処理について詳述する。
【0054】
[故障モードと異常検出結果]
図5はソレノイドバルブの制御回路構成の模式図と、各故障モードに対応した各検出部の検出値結果を示す図である。故障検出はフェールセーフリレー26,27のオン/オフと駆動素子30のオン/オフの組み合せによる以下の3つのタイミングで行う。図中の(1),(2)等は後述する故障モードの種類を示す。
(a)フェールセーフリレー26,27がオフ中(初期化処理時に故障検出を実施)
(b)フェールセーフリレー26,27がオン中かつ駆動素子30がオフ中(初期化処理、制御処理時に故障検出を実施)
(c)フェールセーフリレー26,27がオン中かつ駆動素子30がオン中(初期化処理、制御処理時に故障検出を実施)
【0055】
ここで初期化処理とは、ブレーキバイワイヤ装置の起動条件(ドアロック解除やイグニッションスイッチオン等)が成立すると制御ユニットが起動し、各種の初期設定および作動チェックが実行される処理のことを示す。フェールセーフリレー26,27はこの初期化処理中にオフ状態からオン状態へ遷移する。また制御処理とは、ブレーキ要求が発生していない非制御状態と、ブレーキ要求が発生している制御状態のことを示す。
【0056】
上記の3つのタイミングで検出した電源電圧検出部80,81の検出値Vbatと電流検出部50の検出値Imonと、断線検出部の検出値Vmonの3つの検出値の組み合せから故障モードを特定する。以下、正常時および各故障モードと各検出部の検出結果について説明する。
【0057】
<正常時>
(a)フェールセーフリレー:オフ
Vbat=0[V],Imon=0[A],Vmon=LO
(b)フェールセーフリレー:オン、駆動素子:オフ
Vbat=電源電圧相当,Imon=0[A],Vmon=HI
(c)フェールセーフリレー:オン、駆動素子:オン
Vbat=電源電圧相当,Imon=制御電流,Vmon=パルス
各検出部の検出値が上記の状態のときが規定された状態であって、規定外の状態となる場合は故障が発生していることとなる。
【0058】
<故障モード(1):ソレノイド(SOL)断線>
ソレノイド14の両端のいずれかが半田不良やコネクタ接触不良等の原因によって断線する故障モードである。制御時に該当するソレノイド14への通電が不能をなる。
(a)フェールセーフリレー:オフ
Vbat=0[V],Imon=0[A],Vmon=LO
(b)フェールセーフリレー:オン、駆動素子:オフ
Vbat=電源電圧,Imon=0[A],Vmon=LO
電源電圧が断線検出部70に印加されないため、Vmon=LOとなり規定外となる。
(c)フェールセーフリレー:オン、駆動素子:オン
Vbat=電源電圧相当,Imon=0[A],Vmon=パルス
ソレノイド14へ通電が不能であるため、Imon=0[A]となり規定外となる。
【0059】
<故障モード(2):ソレノイド(SOL)短絡>
ソレノイド14の両端が接触等により著しく抵抗値が減少する故障モードである。制御時に短絡電流(高電流)が流れる。
(a)フェールセーフリレー:オフ
Vbat=0[V],Imon=0[A],Vmon=LO
(b)フェールセーフリレー:オン、駆動素子:オフ
Vbat=電源電圧相当,Imon=0[A],Vmon=HI
(c)フェールセーフリレー:オン、駆動素子:オン
Vbat=電源電圧相当,Imon=高電流,Vmon=異常
短絡電流(高電流)によりImon=高電流となり規定外となる。
【0060】
<故障モード(3):ソレノイド(SOL)上流地絡>
ソレノイド14の上流が車両ハーネスの噛み込みやバスバー配線との接触等によりGNDと接触する故障モードである。常に電源28,29から短絡電流(高電流)が流れる。
(a)フェールセーフリレー:オフ
Vbat=0[V],Imon=0[A],Vmon=LO
(b)フェールセーフリレー:オン、駆動素子:オフ
Vbat=0[v],Imon=高電流,Vmon=LO
(c)フェールセーフリレー:オン、駆動素子:オン
Vbat=0[V],Imon=高電流,Vmon=LO
ソレノイド14の上流のGND短絡によりVbat=0[V]となり規定外となる。また、短絡電流(高電流)によりImon=高電流となり規定外となる。また、ソレノイド14の上流のGND短絡によりVmon=LOとなり規定外となる。
【0061】
<故障モード(4):ソレノイド(SOL)上流天絡>
ソレノイド14の上流が車両のハーネスの噛み込みやバスバー配線との接触等により電源と接触する故障モードである。制御時に天絡先から制御電流が流れ込む可能性がある。 (a)フェールセーフリレー:オフ
Vbat=電源電圧相当,Imon=0[A],Vmon=HI
ソレノイド14の上流の天絡によりVbat=電源電圧相当、Vmon=HIとなり規定外となる。
(b)フェールセーフリレー:オン、駆動素子:オフ
Vbat=電源電圧相当,Imon=0[A],Vmon=HI
(c)フェールセーフリレー:オン、駆動素子:オン
Vbat=電源電圧相当,Imon≠制御電流,Vmon=パルス
電流検出部50には還流電流のみが流れるため、Imon≠制御電流となり規定外となる。
【0062】
<故障モード(5):ソレノイド(SOL)下流地絡>
ソレノイドの下流が車両ハーネスの噛み込みやバスバー配線との接触等によりGNDと接触する故障モードである。常にソレノイド14に通電が行われてしまう。
(a)フェールセーフリレー:オフ
Vbat=0[V],Imon=0[A],Vmon=LO
(b)フェールセーフリレー:オン、駆動素子:オフ
Vbat=電源電圧相当,Imon=高電流,Vmon=LO
(c)フェールセーフリレー:オン、駆動素子:オン
Vbat=電源電圧相当,Imon=高電流,Vmon=LO
制御量に関わらず常にソレノイド14に高電流が流れるため制御電流に対してImon=高電流となり規定外となる。ソレノイド14の下流のGND短絡によりVmon=LOとなり規定外となる。
【0063】
<故障モード(6):ソレノイド(SOL)下流天絡>
ソレノイド14の下流が車両のハーネスの噛み込みやバスバー配線との接触等により電源と接触する故障モードである。制御時に短絡電流(高電流)が流れる。
(a)フェールセーフリレー:オフ
Vbat=電源電圧相当,Imon=0[A],Vmon=HI
ソレノイド14の下流の天絡によりVbat=電源電圧相当、Vmon=HIとなり規定外となる。
(b)フェールセーフリレー:オン、駆動素子:オフ
Vbat=電源電圧相当,Imon=0[A],Vmon=HI
(c)フェールセーフリレー:オン、駆動素子:オン
Vbat=電源電圧相当,Imon=0A,Vmon=HIまたはLO
常にソレノイド14に電流が流れないため、Imon=0[A]となり規定外となる。常に断線検出部に天絡先から電圧が印加され、Vmon=HIとなり規定外となる可能性がある。但し駆動素子30がオンとなることでVmon=LOとなり規定値となることもある。いずれの場合であっても、ソレノイド14は制御不能となる。
【0064】
<故障モード(7):フェールセーフリレーオフ(F/SリレーOFF)固着>
フェールセーフリレー26,27が故障等によりオンにできない故障モードである。全ソレノイド14が制御不能となる。
(a)フェールセーフリレー:オフ
Vbat=0[V],Imon=0[A],Vmon=LO
(b)フェールセーフリレー:オン、駆動素子:オフ
Vbat=0[V],Imon=0[A],Vmon=LO
電源28,29から電圧が印加されないためVbat=0[V],Vmon=LOとなり規定外となる。
(c)フェールセーフリレー:オン、駆動素子:オン
Vbat≠電源電圧相当,Imon=0[A],Vmon=LO
電源28,29から電圧が印加されないため、Vbat≠電源電圧相当,Imon=0[A],Vmon=LOとなり規定外となる。
【0065】
<故障モード(8):フェールセーフリレーオン(F/SリレーON)固着>
フェールセーフリレーが故障等によりオフにできない故障モードである。このとき、正常時と同様の制御が可能である。しかし、2次故障で過電流が発生しても遮断することができず、またシステム停止時に電源28,29からの暗電流が増加し、バッテリあがりを招く可能性がある。
(a)フェールセーフリレー:オフ
Vbat=電源電圧相当,Imon=0[A],Vmon=HI
常に電源28,29から電圧が印加されるため、Vbat=電源電圧相当,Vmon=HIとなり規定外となる。
(b)フェールセーフリレー:オン、駆動素子:オフ
Vbat=電源電圧相当,Imon=0[A],Vmon=HI
(c)フェールセーフリレー:オン、駆動素子:オン
Vbat=電源電圧相当,Imon=制御電流,Vmon=パルス
【0066】
<故障モード(9):駆動素子オフ(駆動素子OFF)固着>
駆動素子30が素子の故障等によってオン動作不能となる故障モードである。このとき、制御時にソレノイド14への通電は不能となる。
(a)フェールセーフリレー:オフ
Vbat=0[V],Imon=0[A],Vmon=LO
(b)フェールセーフリレー:オン、駆動素子:オフ
Vbat=電源電圧相当,Imon=0[A],Vmon=HI
(c)フェールセーフリレー:オン、駆動素子:オン
Vbat=電源電圧相当,Imon=0[A],Vmon=HI
常に駆動素子30をオンにすることができず、ソレノイド14に電流が流れないため、Imon=0[A],Vmon=HIとなり規定外となる。
【0067】
<故障モード(10):駆動素子オン(駆動素子ON)固着>
駆動素子30が素子の故障等によってオフ動作不能となる故障モードである。このとき、常にソレノイド14への通電が行われる。
(a)フェールセーフリレー:オフ
Vbat=0[V],Imon=0[A],Vmon=LO
(b)フェールセーフリレー:オン、駆動素子:オフ
Vbat=電源電圧相当,Imon=高電流,Vmon=LO
(c)フェールセーフリレー:オン、駆動素子:オン
Vbat=電源電圧相当,Imon=高電流,Vmon=LO
常に駆動素子30がオンであるため、制御量に関わらず常に高電流がソレノイド14に流れ、制御電流に対しImon=高電流、Vmon=LOとなり規定外となる。
【0068】
<故障モード(11):電源電圧レベル(Vbatレベル)固着>
電源電圧検出値(Vbat)が入力回路の故障により正常電源電圧を検出不能となる故障モードである。
(a)フェールセーフリレー:オフ
Vbat≠0[V],Imon=0[A],Vmon=LO
(b)フェールセーフリレー:オン、駆動素子:オフ
Vbat≠電源電圧相当,Imon=0[A],Vmon=HI
(c)フェールセーフリレー:オン、駆動素子:オン
Vbat≠電源電圧相当,Imon=制御電流,Vmon=パルス
【0069】
<故障モード(12):電流検出値高電流(Imon高電流)固着>
電流検出値(Imon)が入力回路の故障により正常電源電圧を検出不能となる故障モードである。このとき、電流検出値(Imon)は常に高電流相当の検出値を示す。
(a)フェールセーフリレー:オフ
Vbat=0[V],Imon=高電流,Vmon=LO
(b)フェールセーフリレー:オン、駆動素子:オフ
Vbat=電源電圧相当,Imon=高電流,Vmon=HI
(c)フェールセーフリレー:オン、駆動素子:オン
Vbat=電源電圧相当,Imon=高電流,Vmon=パルス
【0070】
<故障モード(13):電流検出値小中電流(Imon小中電流)固着>
電流検出値(Imon)が入力回路の故障により正常電源電圧を検出不能となる故障モードである。このとき、電流検出値(Imon)は常に制御電流を示さない可能性がある。
(a)フェールセーフリレー:オフ
Vbat=0[V],Imon=小中電流,Vmon=LO
(b)フェールセーフリレー:オン、駆動素子:オフ
Vbat=電源電圧相当,Imon=小中電流,Vmon=HI
(c)フェールセーフリレー:オン、駆動素子:オン
Vbat=電源電圧相当,Imon=小中電流,Vmon=パルス
【0071】
<故障モード(14):断線検出レベル(Vmonレベル)固着>
電圧検出値(Vmon)が入力回路の故障により正常電源電圧を検出不能となる故障モードである。
(a)フェールセーフリレー:オフ
Vbat=0[V],Imon=0[A],Vmon=HIまたはLO
(b)フェールセーフリレー:オン、駆動素子:オフ
Vbat=電源電圧相当,Imon=0[A],Vmon= HIまたはLO
(c)フェールセーフリレー:オン、駆動素子:オン
Vbat=電源電圧相当,Imon=制御電流,Vmon= HIまたはLO
【0072】
<故障モード(15):フリーホイールダイオード(FWD)短絡>
フリーホイールダイオード60が素子故障等により短絡し、フェールセーフリレー26,27下流とソレノイド14下流とが短絡する故障モードである。このとき、制御時に短絡経路から短絡電流(高電流)が流れる。
(a)フェールセーフリレー:オフ
Vbat=0[V],Imon=0[A],Vmon=LO
(b)フェールセーフリレー:オン、駆動素子:オフ
Vbat=電源電圧相当,Imon=0[A],Vmon=HI
(c)フェールセーフリレー:オン、駆動素子:オン
Vbat=電源電圧相当,Imon=0[A],Vmon=HI
常にソレノイド14に電流が流れないためImon=0[v]となり規定外となる。断線検出部70が電源電圧と同電位であるためVmon=HIとなり規定外となる。ただし、駆動素子30がオンのときVmon=LOとなり正常値になることがある。いずれにせよ該当ソレノイド14は制御不能となる。
【0073】
<故障モード(16):フライホイールダイオード(FWD)断線>
フリーホイールダイオード60が素子故障等により断線する故障モードである。このとき、還流電流が流れる経路がなくなりPWM制御時に電流制御性が劣化する。またソレノイド14に蓄えられた逆起エネルギによる逆起電圧の印加により駆動素子30が破損する可能性がある。
(a)フェールセーフリレー:オフ
Vbat=0[V],Imon=0[A],Vmon=LO
(b)フェールセーフリレー:オン、駆動素子:オフ
Vbat=電源電圧相当,Imon=0[A],Vmon=HI
(c)フェールセーフリレー:オン、駆動素子:オン
Vbat=電源電圧相当,Imon≠制御電流,Vmon=パルス
電流検出部には通電流のみ流れるためImon≠制御電流となり規定外となる。
【0074】
次に、上述の故障モードを特定するための処理について説明する。以下、[故障検出タイミング処理]、[フェールセーフリレーがオフのときの故障検出処理]、[フェールセーフリレーがオン、駆動素子がオフのときの故障検出処理]、[フェールセーフリレーがオン、駆動素子がオンのときの故障検出処理]、[故障モード特定後のブレーキ制御処理]に分けて説明する。
【0075】
[故障検出タイミング処理]
図6は故障検出を実施するタイミングを制御する処理の流れを示すフローチャートである。以下、各ステップについて説明する。
ステップS100では、ブレーキ制御装置1の制御ユニットに通電を開始し(パワーオン)、ステップS101へ移行する。
【0076】
ステップS101では、ブレーキ制御装置1の制御ユニットの初期化処理を開始し、ステップS102へ移行する。このとき第1のCPU6は入力回路9、出力回路10,11,12、RAMの初期設定等を行う。
ステップS102では、初期化処理中にフェールセーフリレー(F/Sリレー)26,27をオフにして故障検出処理を実施しステップS103へ移行する。
【0077】
ステップS103では、初期化処理中にフェールセーフリレー26,27をオンにするとともに駆動素子30をオフにして故障検出処理を実施し、ステップS104へ移行する。
ステップS104では、初期化処理中にフェールセーフリレー26,27をオンにするとともに駆動素子30をオンにして故障検出処理を実施し、ステップS105へ移行する。
ステップS105では、初期化を完了してステップS106へ移行する。
ステップS106では、制御処理を開始してステップS107へ移行する。
【0078】
ステップS107では、制御処理中にフェールセーフリレー26,27をオンにするとともに駆動素子30をオフにして故障検出処理を実施し、ステップS108へ移行する。
ステップS108では、制動要求の有無を判断して制動要求が有るときにはステップS109へ移行し、制動力要求が無いときにはステップS107へ移行する。制動要求の有無は第1のCPU6が入力された各種の情報より判断する。
ステップS109では、制動処理を開始してステップS110へ移行する。
【0079】
ステップS110では、制動処理中にフェールセーフリレー26,27をオンにするとともに駆動素子30をオンにして故障検出処理を実施し、ステップS111へ移行する。
ステップS111では、制動要求の有無を判断して制動要求が有るときにはステップS110へ移行し、制動力要求が無いときにはステップS107へ移行する。制動要求の有無は第1のCPU6が入力された各種の情報より判断する。
【0080】
[フェールセーフリレーがオフのときの故障検出処理]
図7は、フェールセーフリレー(F/Sリレー)26,27がオフのときの故障検出処理の流れを示すフローチャートである。以下、各ステップについて説明する。
ステップS200では、フェールセーフリレー26,27をオフにしてステップS201へ移行する。
ステップS201では、駆動素子30をオフにしてステップS202へ移行する。
【0081】
ステップS202では、故障フラグFSCHK1,FSCHK2,FSCHK3の初期化("0"をset)を行いステップS203へ移行する。
ステップS203では、電源電圧検出値(Vbat)が正常判定値"0[V]"であるか否かを判定し、正常値である場合にはステップS205へ移行し、正常値でない場合にはステップS204へ移行する。
【0082】
ステップS204では、故障フラブFSCHK1に"1"をセットして、ステップS205へ移行する。このステップS204において、発生している故障が故障モード(4),(6),(8),(11)のいずれかであると判断する。
ステップS205では、電流検出値(Imon)が正常判定値"0[A]"であるか否かを判定し、正常値である場合にはステップS207へ移行し、正常値でない場合にはステップS206へ移行する。
【0083】
ステップS206では、故障フラブFSCHK2に"1"をセットして、ステップS207へ移行する。このステップS206において、発生している故障が故障モード(12),(13)のいずれかであると判断する。
ステップS207では、断線検出値(Vmon)が正常判定値"LO"であるか否かを判定し、正常値である場合にはステップS209へ移行し、正常値でない場合にはステップS208へ移行する。
【0084】
ステップS208では、故障フラブFSCHK3に"1"をセットして、ステップS209へ移行する。このステップS208において、発生している故障が故障モード(4),(6),(8),(14)のいずれかであると判断する。
ステップS209では、故障フラブFSCHK1に応じた遷移判断を行い、故障フラブFSCHK1≠1のときにはステップS210へ移行し、故障フラブFSCHK1=1のときにはステップS214へ移行する。
【0085】
ステップS210では、故障フラブFSCHK2に応じた遷移判断を行い、故障フラブFSCHK2≠1のときにはステップS211へ移行し、故障フラブFSCHK2=1のときにはステップS218へ移行する。
ステップS211では、故障フラブFSCHK3に応じた遷移判断を行い、故障フラブFSCHK3≠1のときにはステップS212へ移行し、故障フラブFSCHK3=1のときにはステップS217へ移行する。
【0086】
ステップS212では、故障フラブFSCHK1=0,FSCHK2=0,FSCHK3=0であり全ての故障フラグが正常となっているため、正常または故障モード(1),(2),(3),(5),(7),(9),(10),(15), (16)のいずれかであると判断して、ステップS213へ移行する。
ステップS213では、制御を継続する。
ステップS214では、故障フラブFSCHK3に応じた遷移判断を行い、故障フラブFSCHK3≠1のときにはステップS215へ移行し、故障フラブFSCHK3=1のときにはステップS216へ移行する。
【0087】
ステップS215では、故障フラブFSCHK1=1,FSCHK3=0であり故障フラブFSCHK1は異常を示し故障フラブFSCHK3は正常を示しているため電源28,29の異常または故障モード(11)のいずれかであると判断して、ステップS220へ移行する。
ステップS216では、故障フラブFSCHK1=1,FSCHK3=1であり故障フラブFSCHK1,FSCHK3ともに異常を示しているため、故障モード(4),(6),(8)のいずれかであると判断して、ステップS219へ移行する。
【0088】
ステップS217では、故障フラブFSCHK1=0,FSCHK2=0,FSCHK3=1であり故障フラブFSCHK1,FSCHK2がともに正常を示しFSCHK3が異常を示しているため、故障モード(14)であると判断して、ステップS219へ移行する。
ステップS218では、故障フラブFSCHK1=0,FSCHK2=1であり故障フラブFSCHK1が正常を示しFSCHK2が異常を示しているため、故障モード(12),(13)のいずれかであると判断して、ステップS219へ移行する。
ステップS219では、該当するソレノイド(SOL)14の駆動制御を中止する。
ステップS220では、正常な電源電圧をソレノイド14へ供給不能と判断し、フェールセーフリレーをオフ26,27にする。
【0089】
[フェールセーフリレーがオン、駆動素子がオフのときの故障検出処理]
図8は、フェールセーフリレー26,27がオンであるとともに駆動素子30がオフであるときの故障検出処理の流れを示すフローチャートである。以下、各ステップについて説明する。
ステップS300では、故障フラグFSCHK1,FSCHK2,FSCHK3に"0"をセットし、ステップS301へ移行する。
【0090】
ステップS301では、駆動素子30をオフにしてステップS302へ移行する。
ステップS302では、フェールセーフリレー(F/Sリレー)26,27をオンにしてステップS303へ移行する。
ステップS303では、電源電圧検出値(Vbat)が正常判定値"正常値"であるか否かを判定する。"正常値"とは電源電圧相当の値であり、制御ユニットが正常制動可能な電源電圧範囲で規定する。正常値である場合にはステップS305へ移行し、正常値でない場合にはステップS304へ移行する。
【0091】
ステップS304では、故障フラブFSCHK1に"1"をセットして、ステップS305へ移行する。このステップS304において、発生している故障が故障モード(3),(7),(11)のいずれかであると判断する。
ステップS305では、電流検出値(Imon)が正常判定値"0[A]"であるか否かを判定し、正常値である場合にはステップS307へ移行し、正常値でない場合にはステップS306へ移行する。
【0092】
ステップS306では、故障フラブFSCHK2に"1"をセットして、ステップS307へ移行する。このステップS306において、発生している故障が故障モード(3),(5),(10),(12),(13)のいずれかであると判断する。
ステップS307では、断線検出値(Vmon)が正常判定値"HI"であるか否かを判定し、正常値である場合にはステップS309へ移行し、正常値でない場合にはステップS308へ移行する。
【0093】
ステップS308では、故障フラブFSCHK3に"1"をセットして、ステップS309へ移行する。このステップS308において、発生している故障が故障モード(1),(3),(5),(7),(10), (14)のいずれかであると判断する。
ステップS309では、故障フラブFSCHK1に応じた遷移判断を行い、故障フラブFSCHK1≠1のときにはステップS310へ移行し、故障フラブFSCHK1=1のときにはステップS314へ移行する。
【0094】
ステップS310では、故障フラブFSCHK2に応じた遷移判断を行い、故障フラブFSCHK2≠1のときにはステップS311へ移行し、故障フラブFSCHK2=1のときにはステップS319へ移行する。
ステップS311では、故障フラブFSCHK3に応じた遷移判断を行い、故障フラブFSCHK3≠1のときにはステップS312へ移行し、故障フラブFSCHK3=1のときにはステップS322へ移行する。
【0095】
ステップS312では、故障フラブFSCHK1=0,FSCHK2=0,FSCHK3=0であり全ての故障フラグが正常となっているため、正常または故障モード(2),(4),(6),(8),(9),(15),(16)のいずれかであると判断して、ステップS313へ移行する。
ステップS313では、制御を継続する。
ステップS314では、故障フラブFSCHK2に応じた遷移判断を行い、故障フラブFSCHK2≠1のときにはステップS315へ移行し、故障フラブFSCHK2=1のときにはステップS317へ移行する。
【0096】
ステップS315では、故障フラブFSCHK3に応じた遷移判断を行い、故障フラブFSCHK3≠1のときにはステップS316へ移行し、故障フラブFSCHK3=1のときにはステップS318へ移行する。
ステップS316では、故障フラブFSCHK1=1,FSCHK2=0,FSCHK3=0であり故障フラブFSCHK1が異常を示しFSCHK2,FSCHK3がともに正常を示しているため、電源28,29の異常または故障モード(11)のいずれかであると判断して、ステップS324へ移行する。
【0097】
ステップS317では、故障フラブFSCHK1=1,FSCHK2=1であり故障フラブFSCHK1,FSCHK2がともに異常を示しているため、故障モード(3)であると判断して、ステップS324へ移行する。
ステップS318では、故障フラブFSCHK1=1,FSCHK2=0,FSCHK3=1であり故障フラブFSCHK1,FSCHK3がともに異常を示しFSCHK2が正常を示しているため、故障モード(7)であると判断して、ステップS324へ移行する。
【0098】
ステップS319では、故障フラブFSCHK3に応じた遷移判断を行い、故障フラブFSCHK3≠1のときにはステップS320へ移行し、故障フラブFSCHK3=1のときにはステップS321へ移行する。
ステップS320では、故障フラブFSCHK1=0,FSCHK2=1,FSCHK3=0であり故障フラブFSCHK1,FSCHK3がともに正常を示しFSCHK2が異常を示しているため、故障モード(12),(13)であると判断して、ステップS323へ移行する。
【0099】
ステップS321では、故障フラブFSCHK1=0,FSCHK2=1,FSCHK3=1であり故障フラブFSCHK1が正常を示しFSCHK2,FSCHK3がともに異常を示しているため、故障モード(5),(10)であると判断して、ステップS324へ移行する。
ステップS322では、故障フラブFSCHK1=0,FSCHK2=0,FSCHK3=1であり故障フラブFSCHK1,FSCHK2がともに正常を示しFSCHK3が異常を示しているため、故障モード(1),(14)であると判断して、ステップS323へ移行する。
ステップS323では、該当するソレノイド14の駆動制御を中止する。
ステップS324では、正常な電源電圧をソレノイド14へ供給不能と判断し、フェールセーフリレー26,27をオフにする。
【0100】
[フェールセーフリレーがオン、駆動素子がオンのときの故障検出処理]
図9は、フェールセーフリレー26,27がオンであるとともに駆動素子30がオンであるときの故障検出処理の流れを示すフローチャートである。以下、各ステップについて説明する。
ステップS400では、フェールセーフリレー(F/Sリレー)26,27をオンにしてステップS401へ移行する。
【0101】
ステップS401では、故障フラグFSCHK1,FSCHK2,FSCHK3,FSCHK4,FSCHK5に"0"をセットし、ステップS402へ移行する。
ステップS402では、駆動素子30をオフにしてステップS403へ移行する。
ステップS403では、電源電圧検出値(Vbat)が正常判定値"正常値"であるか否かを判定する。"正常値"とは電源電圧相当の値であり、制御ユニットが正常制動可能な電源電圧範囲で規定する。正常値である場合にはステップS405へ移行し、正常値でない場合にはステップS404へ移行する。
【0102】
ステップS404では、故障フラブFSCHK1に"1"をセットして、ステップS405へ移行する。このステップS404において、発生している故障が故障モード(3),(7),(11)のいずれかであると判断する。
ステップS405では、電流検出値(Imon)が正常判定値"制御電流"であるか否かを判定し、正常値である場合にはステップS409へ移行し、正常値でない場合にはステップS406へ移行する。
【0103】
ステップS406では、電流検出値(Imon)が過電流判定値"高電流"であるか否かを判定し、高電流でない場合にはステップS407へ移行し、高電流である場合にはステップS408へ移行する。
ステップS407では、故障フラブFSCHK2に"1"をセットして、ステップS409へ移行する。このステップS407において、発生している故障が故障モード(1),(4),(6),(7),(9), (13),(15),(16)のいずれかであると判断する。
【0104】
ステップS408では、故障フラブFSCHK4に"1"をセットして、ステップS409へ移行する。このステップS408において、発生している故障が故障モード(2),(3),(5),(10),(12)のいずれかであると判断する。
ステップS409では、断線検出値(Vmon)が正常判定値"パルス"であるか否かを判定し、正常値である場合にはステップS413へ移行し、LO固定またはHI固定の場合にはステップS410へ移行する。
【0105】
ステップS410では、断線検出値(Vmon)が"LO"であるか否かを判定し、"LO"でない(つまり"HI"である)場合にはステップS411へ移行し、"HI"である場合にはステップS412へ移行する。
ステップS411では、故障フラブFSCHK3に"1"をセットして、ステップS413へ移行する。このステップS411において、発生している故障が故障モード(2),(6),(9),(14),(15)のいずれかであると判断する。
【0106】
ステップS412では、故障フラブFSCHK5に"1"をセットして、ステップS413へ移行する。このステップS412において、発生している故障が故障モード(1),(3),(4),(6),(7), (10),(14),(15)のいずれかであると判断する。
ステップS413では、故障フラブFSCHK1に応じた遷移判断を行い、故障フラブFSCHK1≠1のときにはステップS414へ移行し、故障フラブFSCHK1=1のときにはステップS419へ移行する。
【0107】
ステップS414では、故障フラブFSCHK4に応じた遷移判断を行い、故障フラブFSCHK4≠1のときにはステップS415へ移行し、故障フラブFSCHK4=1のときにはステップS432へ移行する。
ステップS415では、故障フラブFSCHK2に応じた遷移判断を行い、故障フラブFSCHK2≠1のときにはステップS416へ移行し、故障フラブFSCHK2=1のときにはステップS424へ移行する。
【0108】
ステップS416では、故障フラブFSCHK3に応じた遷移判断を行い、故障フラブFSCHK3≠1のときにはステップS417へ移行し、故障フラブFSCHK3=1のときにはステップS429へ移行する。
ステップS417では、故障フラブFSCHK1=0,FSCHK2=0,FSCHK3=0,FSCHK4=0であり全ての故障フラグが正常となっているため、正常または故障モード(8)のいずれかであると判断して、ステップS418へ移行する。
【0109】
ステップS418では、制御を継続する。
ステップS419では、故障フラブFSCHK4に応じた遷移判断を行い、故障フラブFSCHK4≠1のときにはステップS420へ移行し、故障フラブFSCHK4=1のときにはステップS422へ移行する。
ステップS420では、故障フラブFSCHK2に応じた遷移判断を行い、故障フラブFSCHK2≠1のときにはステップS421へ移行し、故障フラブFSCHK2=1のときにはステップS423へ移行する。
【0110】
ステップS421では、故障フラブFSCHK1=1,FSCHK2=0,FSCHK4=0であり、故障フラブFSCHK1が異常を示しFSCHK2,FSCHK4がともに正常を示しているため、電源28,29の異常または故障モード(11)のいずれかであると判断して、ステップS431へ移行する。
ステップS422では、故障フラブFSCHK1=1,FSCHK4=1であり、故障フラブFSCHK2,FSCHK4がともに異常を示しているため、故障モード(3)のであると判断して、ステップS431へ移行する。
【0111】
ステップS423では、故障フラブFSCHK1=1,FSCHK2=1,FSCHK4=0であり、故障フラブFSCHK1,FSCHK2がともに異常を示しFSCHK4がともに正常を示しているため、故障モード(7)であると判断して、ステップS431へ移行する。
ステップS424では、故障フラブFSCHK3に応じた遷移判断を行い、故障フラブFSCHK3≠1のときにはステップS425へ移行し、故障フラブFSCHK3=1のときにはステップS428へ移行する。
【0112】
ステップS425では、故障フラブFSCHK5に応じた遷移判断を行い、故障フラブFSCHK5≠1のときにはステップS426へ移行し、故障フラブFSCHK5=1のときにはステップS427へ移行する。
ステップS426では、故障フラブFSCHK1=0,FSCHK2=1,FSCHK3=0,FSCHK4=0,FSCHK5=0であり、故障フラブFSCHK1,FSCHK3,FSCHK4,FSCHK5が全て正常を示し、FSCHK2が異常を示しているため、故障モード(4),(13),(16)のいずれかであると判断して、ステップS430へ移行する。
【0113】
ステップS427では、故障フラブFSCHK1=0,FSCHK2=1,FSCHK3=0,FSCHK4=0,FSCHK5=1であり、故障フラブFSCHK1,FSCHK3,FSCHK4が全て正常を示し、FSCHK2,FSCHK5がともに異常を示しているため、故障モード(6),(9),(15)のいずれかであると判断して、ステップS430へ移行する。
ステップS428では、故障フラブFSCHK1=0,FSCHK2=1,FSCHK3=1,FSCHK4=0であり、故障フラブFSCHK1,FSCHK4がともに正常を示し、FSCHK2, FSCHK3がともに異常を示しているため、故障モード(1),(6),(7),(15)のいずれかであると判断して、ステップS430へ移行する。
【0114】
ステップS429では、故障フラブFSCHK1=0,FSCHK2=0,FSCHK3=1,FSCHK4=0であり、故障フラブFSCHK1,FSCHK2,FSCHK4が全て正常を示し、FSCHK3が異常を示しているため、故障モード(14)であると判断して、ステップS418へ移行する。
ステップS430では、該当するソレノイド(SOL)14の駆動制御を停止する。
ステップS431では、正常な電源電圧をソレノイド14へ供給不能と判断し、フェールセーフリレー(F/Sリレー)26,27をオフにする。
【0115】
[故障モード特定後のブレーキ制御処理]
図10は故障モード特定後のブレーキ制御処理の流れを示すフローチャートである。以下、各ステップについて説明する。以下では、右前輪減圧弁ソレノイド14a、右前輪増圧弁ソレノイド14b、左後輪減圧弁ソレノイド14c、左後輪増圧弁ソレノイド14d、第1の遮断弁ソレノイド14eからなる第1の液圧制御グループについてのみ説明する。左前輪減圧弁ソレノイド14f、左前輪増圧弁ソレノイド14g、右後輪減圧弁ソレノイド14h、右後輪増圧弁ソレノイド14i、第2の遮断弁ソレノイド14jからなる第2の液圧制御グループも同様に処理することができる。
【0116】
ステップS500では、図6〜図9において説明した故障検出を実施し、ステップS501へ移行する。
ステップS501では、故障を検出したか否かを判定し、故障を検出したときにはステップS503へ移行し、故障を検出しなかった場合にはステップS502へ移行する。故障を検出したとは、図7のステップS219、図8のステップS323、図9のステップS430において該当するソレノイド14の制御を停止した場合、または図7のステップS220、図8のステップS324、図9のステップS431においてフェールセーフリレー26,27オフにした場合を示す。
【0117】
ステップS502では、右前輪減圧弁ソレノイド14a、右前輪増圧弁ソレノイド14b、左後輪減圧弁ソレノイド14c、左後輪増圧弁ソレノイド14d(FL/RL輪増・減圧弁SOL)、第1の遮断弁ソレノイド(第1の遮断弁SOL)14eの制御を継続し、ステップS520へ移行する。
ステップS503では、図7のステップS220、図8のステップS324、図9のステップS431のフェールセーフリレー26,27オフにする処理に到達したか否かを判断し、フェールセーフリレー26,27オフにする処理に到達した場合にはステップS518へ移行し、フェールセーフリレー26,27オフにする処理に到達していない場合にはステップS504へ移行する。
【0118】
ステップS504では、図7のステップS219、図8のステップS323、図9のステップS430において第1の遮断弁ソレノイド14e(第1の遮断弁SOL系統)が故障したか否かを判断し、第1の遮断弁ソレノイド14eの制御を停止した場合にはステップS515へ移行し、第1の遮断弁ソレノイド14eの制御を停止しなかった場合にはステップS505へ移行する。
ステップS505では、図7のステップS219、図8のステップS323、図9のステップS430において右前輪増圧弁ソレノイド14b(FR輪増圧弁SOL系統)が故障したか否かを判断し、右前輪増圧弁ソレノイド14bの制御を停止した場合にはステップS514へ移行し、右前輪増圧弁ソレノイド14bの制御を停止しなかった場合にはステップS506へ移行する。
【0119】
ステップS506では、図7のステップS219、図8のステップS323、図9のステップS430において右前輪減圧弁ソレノイド14a(FR輪減圧弁SOL系統)が故障したか否かを判断し、右前輪減圧弁ソレノイド14a(の制御を停止した場合にはステップS512へ移行し、右前輪減圧弁ソレノイド14aの制御を停止しなかった場合にはステップS507へ移行する。
ステップS507では、図7のステップS219、図8のステップS323、図9のステップS430において左後輪増圧弁ソレノイド14d(RL輪増圧弁SOL)が故障したか否かを判断し、左後輪増圧弁ソレノイド14dの制御を停止した場合にはステップS511へ移行し、左後輪増圧弁ソレノイド14dの制御を停止しなかった場合にはステップS508へ移行する。
【0120】
ステップS508では、ステップS504〜S507の判断で故障したソレノイド14を検出することができなかったため、残った左後輪減圧弁ソレノイド14c(RL輪減圧弁SOL)が故障したと判断する。
ステップS509では、左後輪増圧弁ソレノイド(RL輪増圧弁SOL)14dの制御を停止し、ステップS510へ移行する。
ステップS510では、右前輪減圧弁ソレノイド14a、右前輪増圧弁ソレノイド14b(FR輪増・減圧弁SOL)、第1の遮断弁ソレノイド(第1の遮断弁SOL)14eの制御を継続し、左後輪減圧弁ソレノイド14c、左後輪増圧弁ソレノイド14d(RL輪増・減圧弁SOL)の制御を停止してステップS521へ移行する。
【0121】
ステップS511では、左後輪減圧弁ソレノイド(RL輪減圧弁SOL)14cの制御を停止し、ステップS510へ移行する。
ステップS512では、右前輪増圧弁ソレノイド(FR輪増圧弁SOL)14bの制御を停止し、ステップS517へ移行する。
ステップS513では、左後輪減圧弁ソレノイド14c、左後輪増圧弁ソレノイド14d(RL輪増・減圧弁SOL)の制御を継続し、右前輪減圧弁ソレノイド14a、右前輪増圧弁ソレノイド14b(FR輪増・減圧弁SOL)、第1の遮断弁ソレノイド(第1の遮断弁SOL)14eの制御を停止してステップS522へ移行する。
【0122】
ステップS514では、右前輪減圧弁ソレノイド(FR輪減圧弁SOL)14dの制御を停止して、ステップS517へ移行する。
ステップS515では、右前輪増圧弁ソレノイド(FR輪増圧弁SOL)14bの制御を停止して、ステップS516へ移行する、
ステップS516では、右前輪減圧弁ソレノイド(FR輪減圧弁SOL)14aの制御を停止して、ステップS513へ移行する。
【0123】
ステップS517では、第1の遮断弁ソレノイド14eの制御を停止して、ステップS513へ移行する。
ステップS518では、フェールセーフリレー(F/Sリレー)26,27を開放して、ステップS519へ移行する。
ステップS519では、右前輪減圧弁ソレノイド14a、右前輪増圧弁ソレノイド14b、左後輪減圧弁ソレノイド14c、左後輪増圧弁ソレノイド14d(FR/RL輪増・減圧弁SOL)、第1の遮断弁ソレノイド(第1の遮断弁SOL)14eの制御を停止し、ステップS523へ移行する。
【0124】
ステップS520では、右前(FR)輪、左前(RL)輪、右後(RR)輪、左後(RL)輪の4輪に対して倍力ブレーキ制御を継続する。
ステップS521では、右前(FR)輪、左前(FL)輪、右後(RR)輪の3輪に対して倍力ブレーキ制御を継続する。
ステップS522では、左前(FL)輪、右後(RR)輪、左後(RL)輪の3輪に対して倍力ブレーキ制御を継続する。また、右前(FR)輪に対して踏力ブレーキを可能にする。
ステップS523では、左前(FL)輪、右後(RR)輪の2輪に対して倍力ブレーキ制御を継続する。また、右前(FR)輪に対して踏力ブレーキを可能にする。
【0125】
[実施例1の効果]
(1)電源28,29と、電源28,29に接続する電気回路中に配置したソレノイド14と、電源28,29とソレノイド14との間に位置するフェールセーフリレー26,27と、ソレノイド14の下流に位置する駆動素子30と、ソレノイド14とフェールセーフリレー26,27との間に設けられ電気回路中の電流の状態を検出する電流検出部50と、ソレノイド14と駆動素子30との間に設け電気回路の電圧の状態を検出する断線検出部70と、電源の電圧を監視する電源電圧検出部80,81と、電流検出部50が検出する電流の状態と断線検出部70が検出する電圧の状態と電源電圧検出部80,81が検出する電圧の状態の監視結果に基づき、電気回路の異常部位または種類を判定するCPU6,7とを設けた。
【0126】
そのため、過熱等の発生により早急に装置の制御を停止する必要があるような故障と、装置の性能は低下するものの制御を継続することが可能な故障とを特定することが可能となり、故障の種類に応じた対応を行うことができる。
【0127】
(2)電源28,29と、電源28,29に接続する電気回路中に配置したソレノイド14と、電源28,29とソレノイド14との間に位置するフェールセーフリレー26,27と、ソレノイド14の下流に位置しソレノイド14を駆動する駆動素子30と、電源28,29の電圧を監視する電源電圧検出部80,81と、電気回路中の電流の状態を監視する電流検出部50と、電気回路中の電圧の状態を監視する断線検出部70と、各監視部の監視状態に基づき、電気回路の異常パターンを判定するCPU6,7とを設けた。
【0128】
そのため、過熱等の発生により早急に装置の制御を停止する必要があるような故障と、装置の性能は低下するものの制御を継続することが可能な故障とを特定することが可能となり、故障の種類に応じた対応を行うことができる。
【0129】
(3)電源28,29と、電源28,29に接続する電気回路中に配置されたソレノイド14と、電源28,29と複数のソレノイド14との間に位置するフェールセーフリレー26,27と、複数のソレノイド14の下流に位置しソレノイド14を駆動する駆動素子30と、電源28,29の電圧を監視する電源電圧検出部80,81と、電気回路中の電流の状態を監視する電流検出部50と、電気回路中の電圧の状態を監視する断線検出部70と、各監視部の監視状態に基づき、電気回路の異常パターンを判定するCPU6,7とを備えた。
【0130】
そのため、過熱等の発生により早急に装置の制御を停止する必要があるような故障と、装置の性能は低下するものの制御を継続することが可能な故障とを特定することが可能となり、故障の種類に応じた対応を行うことができる。
【0131】
(4)車両の車輪に付属するホイルシリンダ43と、ホイルシリンダ43内の圧力を目標ホイルシリンダ圧に制御するCPU6,7と、ホイルシリンダ圧の制御時にCPU6,7により制御される比例ソレノイドバルブ45と、車両に搭載された電源28,29と、電源28,29に接続された比例ソレノイドバルブ45を駆動するコントロール部2,3と、コントロール部2,3中に配置されたソレノイド14と、電源28,29とソレノイド14との間に配置されたフェールセーフリレー26,27と、ソレノイド14の下流に位置しコイルと駆動する駆動素子30と、電源28,29電圧を監視する電源電圧検出部80,81と、電気回路中の電流の状態を監視する電流検出部50と、電気回路中の電圧の状態を監視する断線検出部70と、各監視部の監視状態に基づき、電気回路の異常パターンを判定するCPU6,7とを備えた。
【0132】
そのため、バイワイヤのブレーキ制御装置において、過熱等の発生により早急に装置の制御を停止する必要があるような故障と、装置の性能は低下するものの制御を継続することが可能な故障とを特定することが可能となる。そのため、故障時に一律にブレーキバイワイヤ制御を中止することなく、故障の種類に応じてブレーキバイワイヤ制御を継続することができる。
【0133】
(5)電源28,29と、電源28,29に接続する電気回路中に配置したソレノイド14と、電源28,29とソレノイド14との間に位置するフェールセーフリレー26,27と、ソレノイド14の下流に位置する駆動素子30とを備え、ソレノイド14とフェールセーフリレー26,27との間において、フェールセーフリレー26,27および駆動素子30の駆動により変化する電気回路中の電流の状態と、ソレノイド14と駆動素子30との間において、フェールセーフリレー26,27および駆動素子30の駆動により変化する電気回路の電圧の状態と、電源の電圧とに基づき電気回路の異常部位または種類を判定するようにした。
【0134】
そのため、過熱等の発生により早急に装置の制御を停止する必要があるような故障と、装置の性能は低下するものの制御を継続することが可能な故障とを特定することが可能となり、故障の種類に応じた対応を行うことができる。
【0135】
[他の実施例]
以上、本願発明を実施するための最良の形態を、実施例1に基づいて説明してきたが、各発明の具体的な構成は各実施例に限定されるものではなく、発明の要旨を逸脱しない範囲の設計変更等があっても、本発明に含まれる。
更に、上記実施例から把握しうる請求項以外の技術的思想について、以下にその効果と共に記載する。
【0136】
(イ)請求項2に記載の回路異常判定装置において、
前記異常判定部が電気回路の地絡または過電流と判定した場合、前記電源リレーをオフにすることを特徴とする回路異常判定装置。
そのため、電気回路の地絡または過電流によって過熱等が発生する場合には、電源リレーをオフにして、電気回路への電力供給を停止し、過熱等の発生を防止することができる。
【0137】
(ロ)請求項2に記載の回路異常判定装置において、
前記電源電圧監視部は前記電源リレーと前記負荷との間に配置され、
前記電流監視部は前記電源電圧監視部と前記負荷との間に配置され、
前記回路電圧監視部は前記負荷と前記スイッチング素子との間に配置されることを特徴とする回路異常判定装置。
【0138】
そのため、電源電圧監視部によって負荷の上流の電圧を、回路電圧監視部によって負荷の下流の電圧を、電流監視部によって負荷に流れる電流をそれぞれ検出することが可能となり、負荷の上流、下流、負荷自体のどの箇所に異常が発生しているかを特定することができる。
【0139】
(ハ)請求項2に記載の回路異常判定装置において、
前記電源電圧監視部は前記電源リレーと前記負荷との間に配置され、
前記電流監視部は前記負荷と前記スイッチング素子との間に配置され、
前記回路電圧監視部は前記電流監視部と前記スイッチング素子との間に配置されることを特徴とする回路異常判定装置。
【0140】
そのため、電源電圧監視部によって、負荷の上流の電圧を、回路電圧監視部によって負荷の下流の電圧を、電流監視部によって負荷に流れる電流をそれぞれ検出することが可能となり、負荷の上流、下流、負荷自体のどの箇所に異常が発生しているかを特定することができる。
【0141】
(ニ)請求項2に記載の回路異常判定装置において、
前記電源電圧監視部に替えて、前記回路電圧監視部によって前記電源の電圧の状態と前記電気回路中の電圧の状態とを監視すること特徴とする回路異常判定装置。
そのため、電源電圧監視部を設ける必要ないため、部品点数を抑制することができる。
【0142】
(ホ)請求項3に記載の回路異常判定装置において、
前記電源リレーは複数の負荷に対して共通であることを特徴とする回路異常判定装置。
そのため、部品点数の抑制、コストの低減、ユニットサイズの縮小といった効果を得ることができる。
【0143】
(へ)上記(ホ)に記載の回路異常判定装置において、
前記異常判定部が電気回路の地絡または過電流と判定した場合、前記電源リレーをオフにすることを特徴とする回路異常判定装置。
そのため、電気回路の地絡または過電流によって過熱等が発生する場合には、電源リレーをオフにして、電気回路への電力供給を停止し、過熱等の発生を防止することができる。
【0144】
(ト)上記(ホ)に記載の回路異常判定装置において、
前記電源電圧監視部は前記電源リレーと前記負荷との間に配置され、
前記電流監視部は前記電源電圧監視部と前記負荷との間に配置され、
前記回路電圧監視部は前記負荷と前記スイッチング素子との間に配置されることを特徴とする回路異常判定装置。
【0145】
そのため、電源電圧監視部によって負荷の上流の電圧を、回路電圧監視部によって負荷の下流の電圧を、電流監視部によって負荷に流れる電流をそれぞれ検出することが可能となり、負荷の上流、下流、負荷自体のどの箇所に異常が発生しているかを特定することができる。
【0146】
(チ)上記(ホ)に記載の回路異常判定装置において、
前記電源電圧監視部は前記電源リレーと前記負荷との間に配置され、
前記電流監視部は前記負荷と前記スイッチング素子との間に配置され、
前記回路電圧監視部は前記電流監視部と前記スイッチング素子との間に配置されることを特徴とする回路異常判定装置。
【0147】
そのため、電源電圧監視部によって、負荷の上流の電圧を、回路電圧監視部によって負荷の下流の電圧を、電流監視部によって負荷に流れる電流をそれぞれ検出することが可能となり、負荷の上流、下流、負荷自体のどの箇所に異常が発生しているかを特定することができる。
【0148】
(リ)請求項4に記載の回路異常判定装置において、
前記異常判定部が電気回路の地絡または過電流と判定した場合、前記電源リレーをオフにすることを特徴とする回路異常判定装置。
そのため、電気回路の地絡または過電流によって過熱等が発生する場合には、電源リレーをオフにして、電気回路への電力供給を停止し、過熱等の発生を防止することができる。
【0149】
(ヌ)請求項4に記載の回路異常判定装置において、
前記電源電圧監視部は前記電源リレーと前記コイルとの間に配置され、
前記電流監視部は前記電源電圧監視部と前記コイルとの間に配置され、
前記回路電圧監視部は前記コイルと前記スイッチング素子との間に配置されることを特徴とする回路異常判定装置。
【0150】
そのため、電源電圧監視部によって負荷の上流の電圧を、回路電圧監視部によって負荷の下流の電圧を、電流監視部によって負荷に流れる電流をそれぞれ検出することが可能となり、負荷の上流、下流、負荷自体のどの箇所に異常が発生しているかを特定することができる。
【0151】
(ル)請求項4に記載の回路異常判定装置において、
前記電源電圧監視部は前記電源リレーと前記コイルとの間に配置され、
前記電流監視部は前記コイルと前記スイッチング素子との間に配置され、
前記回路電圧監視部は前記電流監視部と前記スイッチング素子との間に配置されることを特徴とする回路異常判定装置。
【0152】
そのため、電源電圧監視部によって、負荷の上流の電圧を、回路電圧監視部によって負荷の下流の電圧を、電流監視部によって負荷に流れる電流をそれぞれ検出することが可能となり、負荷の上流、下流、負荷自体のどの箇所に異常が発生しているかを特定することができる。
【0153】
(ヲ)請求項5の回路異常判定方法において、
前記電気回路の地絡または過電流と判定した場合、前記電源リレーをオフにすることを特徴とする回路異常判定方法。
そのため、電気回路の地絡または過電流によって過熱等が発生する場合には、電源リレーをオフにして、電気回路への電力供給を停止し、過熱等の発生を防止することができる。
【図面の簡単な説明】
【0154】
【図1】実施例1のブレーキ制御装置のブレーキ液圧回路を示す図である。
【図2】実施例1のコントロールユニットの構成図である。
【図3】実施例1の第1の液圧制御グループの制御回路構成を示す図である。
【図4】実施例1の第2の液圧制御グループの制御回路構成を示す図である。
【図5】実施例1のソレノイドバルブの制御回路構成の模式図と、各故障モードに対応した各検出部の検出値結果を示す図である。
【図6】実施例1の故障検出を実施するタイミングを制御する処理の流れを示すフローチャートである。
【図7】実施例1のフェールセーフリレーがオフのときの故障検出処理の流れを示すフローチャートである。
【図8】実施例1のフェールセーフリレーがオンであるとともに駆動素子30がオフであるときの故障検出処理の流れを示すフローチャートである。
【図9】実施例1のフェールセーフリレーがオンであるとともに駆動素子がオンであるときの故障検出処理の流れを示すフローチャートである。
【図10】実施例1の故障モード特定後のブレーキ制御処理の流れを示すフローチャートである。
【符号の説明】
【0155】
2,3 コントロール部
14 ソレノイド
22 ホイルシリンダ圧センサ
26,27 フェールセーフリレー
28,29 電源
30 駆動素子
40 ブレーキペダル
41 マスタシリンダ
43 ホイルシリンダ
45 比例ソレノイドバルブ
50 電流検出部
70 断線検出部
80,81 電源電圧検出部

【特許請求の範囲】
【請求項1】
電源と、
前記電源に接続する電気回路中に配置された負荷と、
前記電源と前記負荷との間に位置する第1スイッチング素子と、
前記負荷の下流に位置する第2スイッチング素子と、
前記負荷と前記第1スイッチング素子との間に設けられ前記電気回路中の電流の状態を検出する電流検出手段と、
前記負荷と前記第2スイッチング素子との間に設けられ前記電気回路の電圧の状態を検出する電圧検出手段と、
前記電源の電圧を監視する電源電圧監視手段と、
前記電流検出手段により検出された電流の状態と前記電圧検出手段により検出された電圧の状態と前記電源電圧監視手段により検出された電圧の状態の監視結果に基づき、前記電気回路の異常部位または種類を判定する異常判定手段と、
を設けたことを特徴とする回路異常判定装置。
【請求項2】
電源と、
前記電源に接続する電気回路中に配置された負荷と、
前記電源と前記負荷との間に位置する電源リレーと、
前記負荷の下流に位置し負荷を駆動するスイッチング素子と、
前記電源の電圧を監視する電源電圧監視部と、
前記電気回路中の電流の状態を監視する電流監視部と、
前記電気回路中の電圧の状態を監視する回路電圧監視部と、
前記各監視部の監視状態に基づき、電気回路の異常パターンを判定する異常判断部と、
を設けたことを特徴とする回路異常判定装置。
【請求項3】
電源と、
前記電源に接続する電気回路中に配置された負荷と、
前記電源と複数の負荷との間に位置する電源リレーと、
前記複数の負荷の下流に位置し負荷を駆動するスイッチング素子と、
前記電源の電圧を監視する電源電圧監視部と、
前記電気回路中の電流の状態を監視する電流監視部と、
前記電気回路中の電圧の状態を監視する回路電圧監視部と、
前記各監視部の監視状態に基づき、電気回路の異常パターンを判定する異常判断部と、
を備えたことを特徴とする回路異常判定装置。
【請求項4】
車両の車輪に付属するホイルシリンダと、
前記ホイルシリンダ内の圧力を目標ホイルシリンダ圧に制御するコントロールユニットと、
前記ホイルシリンダ圧の制御時に前記コントロールユニットにより制御される比例ソレノイドバルブと、
車両に搭載された電源と、
前記電源に接続された前記比例ソレノイドバルブを駆動するソレノイドバルブ駆動回路と、
前記ソレノイド駆動回路中に配置されたコイルと、
前記電源と前記コイルとの間に配置された電源リレーと、
前記コイルの下流に位置しコイルと駆動するスイッチング素子と、
前記電源電圧を監視する電源電圧監視部と、
前記電気回路中の電流の状態を監視する電流監視部と、
前記電気回路中の電圧の状態を監視する回路電圧監視部と、
前記各監視部の監視状態に基づき、電気回路の異常パターンを判定する異常判断部と、
を備えたことを特徴とする回路異常判定装置。
【請求項5】
電源と、
前記電源に接続する電気回路中に配置された負荷と、
前記電源と前記負荷との間に位置する第1スイッチング素子と、
前記負荷の下流に位置する第2スイッチング素子と、
を備え、
前記負荷と前記第1スイッチング素子との間において、前記第1スイッチング素子および/または前記第2スイッチング素子の駆動により変化する前記電気回路中の電流の状態と、
前記負荷と前記第2スイッチング素子との間において、前記第1スイッチング素子および/または前記第2スイッチング素子の駆動により変化する前記電気回路の電圧の状態と、
前記電源の電圧と、に基づき前記電気回路の異常部位または種類を判定する回路異常判定方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate


【公開番号】特開2008−232871(P2008−232871A)
【公開日】平成20年10月2日(2008.10.2)
【国際特許分類】
【出願番号】特願2007−73851(P2007−73851)
【出願日】平成19年3月22日(2007.3.22)
【出願人】(000005108)株式会社日立製作所 (27,607)
【Fターム(参考)】