説明

多層光ディスクに対しデータを記録し、消去し、かつ読み出すための装置

本発明は、3次元光メモリ装置に関するものであり、容量の大きな情報ファイルをコンパクトな担体に記録することを必要とする電算処理全般に利用することができる。また、本発明は、例えば独立したビデオ観測システムにおいて、ビデオデータを記録し、消去し、読み出すために用いることができる。本発明に係る装置は、光ディスクの位置決めシステムと、異なる2波長の放射源と、放射源に光学的に結合される合焦システムと、合焦システムの位置決めを行う位置決め手段と、合焦システムにスペクトルスプリッタを介して光学的に結合される光センサと、異なる2波長の放射源とスペクトルスプリッタとの間に配置される調整可能なスペクトル選択器とを備える。合焦システムは、所定の波長にて長手方向の色収差が発生するようになっている。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、3次元(3D)光メモリ装置に関するものであり、より具体的には、多層光記録媒体に対しデータを記録し、消去し、かつ、読み出すために用いられる装置に関するものである。本発明に係る装置は、容量の大きな情報ファイルをコンパクトな担体に記録することを必要とする電算処理全般に利用することができる。また、本発明に係る装置は、例えば独立したビデオ観測システムに、ビデオデータを記録し、読み出すために用いることができる。
【背景技術】
【0002】
レーザー放射を用いて、3D媒体(特に多層光ディスク)に、情報を記録する効果的なシステムを設計する者が直面する最も重要な技術的問題の一つは、下記の問題である。すなわち、情報の格納に起因する上記記録媒体の光学的特性の変化が空間的に最も局所化するように、上記レーザービームを上記3D媒体内の記録エリアに位置決めするという問題である。上記の場合における光学的特性の変化が意味するものは、上記媒体における屈折率、吸収率、散乱係数、その他の光学的特性(例えば蛍光性)の変化である。1ビットのデータを記録することで占有される空間(ピクセル)を最小化し、その結果、データ記録密度を増加し1媒体のデータ記録容量を増加する必要がある。ピクセルのラテラル方向の寸法の最小値は、記録用放射の波長の約半分の値に制限される。これは回折理論から直接導かれ、従って基本的な物理的制限である。短波長の光の放射と、該放射を上記記録媒体内に合焦させる、大きな開口数と補正された球面収差とを有する短焦点の光学系とを利用してデータを記録することで、高容量高密度の記録情報を得ることができる。
【0003】
当該技術分野において、情報の記録および読出しのための3D装置が知られている(Kawata Y., Nakano M., Lee S-C. Three-dimensional Optical data storage using three-dimensional optics. - Optical Engineering, vol.40(10),p.2247-2254)。この論文には、共焦点顕微鏡法の原理に基づき、情報を記録し、消去し、かつ読み出すための様々な(1光子および2光子の)媒体と様々な種類の装置とが記載されている。上記装置による情報の記録は、記録用波長を用いる放射を上記材料内に合焦し、上記材料に照射することで上記材料の屈折率を変化させることによって行われる。それから、上記記録されたデータの読出しは、上記記録用放射の波長とは異なる波長を有する読出し用光線の位相ひずみの値によって、上記変化後の屈折率を有する領域を登録することにより行われる。上記論文の著者は、上記に示した方法と装置との欠点を下記のように指摘している。すなわち、1光子媒体を用いる場合、層間のクロストークが大きい。一方、2光子媒体の使用は、より強力で波長の短い記録用レーザーパルスを必要とし、レーザー光源の小型化が不可能になる。さらに、位相ひずみの計測方法は極めて繊細であるため、データを記録する媒体は、材料の光学的均一性と光学的表面品質とが極めて高いであることが要求される。
【0004】
また、当該技術分野において、3D基材(典型的にはポリマー)内に維持される、フォトクロミック材料(典型的にはスピロベンゾピラン)内に、データを記録し、消去し、読み出すための装置も知られている(米国特許第5268862号、3次元光学メモリ、1993年12月7日公開)。上記装置は、レーザー放射源と、上記レーザービームの光学的位置決めおよび合焦のためのシステムとを含む。記録用材料は、スピロピランとメロシアニンという2つの安定な形態を有する。第1の形態から他の形態への転換は、532nmの波長で発生する2光子吸収により実行される。上記記録用媒体に、相互に直交する2つの方向から、上記特定波長を有する合焦された2つのレーザービームが照射される。上記方法において、2つのレーザービームが3D空間にて相互作用する領域の空間的な位置決めが実現され、上記フォトクロミック材料の第1形態から他の形態への変換は、上記ビームの焦点領域が交差する場所でのみ発生する。上記フォトクロミック材料の他方の形態は、1064nmの波長の光が照射される時に蛍光を示す。上記材料が照射されると、上記蛍光を利用して情報を読み出すことができる。上記媒体を、全体的または部分的に加熱することで、つまり、2.12μmの波長を有する光を照射することで、3D材料に記録された情報は消去できる。本装置の欠点は、前述の装置の欠点とほぼ同様である。記録用材料の或る形態から他の形態への変換の過程が2光子の過程である限り、非常に強いピーク出力を有する放射源を用いる必要がある。上記光線は、潜在的には、ラテラル方向の寸法が数分の1マイクロメートルの領域に焦点を合わせることができる。しかし、上記材料のボリューム内に直交する2つのビームの焦点領域の交差ポイントを位置決めする必要から、上記所与の装置が1ビットの情報を記録するのに要するボリュームの減少の程度は、1マイクロメートルのオーダーおよび10マイクロメートルのオーダーに制限される。さらに、上記媒体の光学的均一性の程度と、上記フォトクロミック材料を含むボリュームを規定する表面品質とは非常に高い必要がある。ポリマーを結合用基材として用いる場合、3Dフォトクロミック材料の継続的製造という条件の下で、要求される光学的品質を取得することは極めて問題が多い。
【0005】
また、当該技術分野において、多層記録媒体に光学的情報を記録し、読み出すための装置(米国特許第7345967号、光ピックアップユニット、2008年3月18日公開)も知られている。上記装置は、放射源と、ビームスプリッタと、制御された球面収差補正器と、対物レンズと、該対物レンズと上記ビームスプリッタを介して光学的に結合した光センサ(受光器)とを含み、上記各デバイスは全て、上記ビームの方向に連続して配置されている。上記所与の装置は、或る波長の放射によって、情報を記録し、読み出す。上記装置の動作モードの選択は、放射記録用媒体に向けての放射の出力を変化させることによって行われる。上記装置の主要な欠点は、記録された情報を読出し中に喪失する危険性が不可避であることにある。上記従来技術の装置の上記危険性を軽減するため、情報読出し中は放射源の出力を、利用する信号がノイズのレベルを若干だけ超える、許容し得る最小値に下げることが提案されている。
【0006】
情報読出し中に情報を喪失するという問題は、光と物質との相互作用が1光子構造である材料が上記3D記録用媒体として使用される場合、特に深刻である。上記媒体の光密度の変化を利用して情報を読み出すために要求される実際の光束において、情報は5〜10の読出周期で消去される。上記所与の問題を解決するため、上記フォトクロミック材料の光吸収境界に位置する波長の放射を用いて情報を読み出す方法を提案する著者もいる(Satoshi Kawata, Yoshimasa Kawata Three-dimensional optical data storage using photochromic materials. -Chem. Rev. 2000, 100, 1777-1788、を参照)。上記方法の場合、ピクセルのボリュームは、実際には、10倍に或いは100倍にも増加する。さらに、特に1光子媒体を用いる場合、記録された情報を保持する層の間の軽微なクロストークを全ての著者が指摘する。
【0007】
以上を考慮すると、この場合に最も正当と認められる選択肢は、しきい値2光子媒体を用いた情報の記録/消去を含むものであると思料する。上記しきい値2光子媒体では、光の強度が或るしきい値に達した時にのみ、情報は記録され、消去される。しかしながら、そのような媒体は、情報の読出しと消去とに非常に強い放射出力を必要とするけれども、現時点では、小型化された装置でそのような出力を備える現実的な実施形態は不可能である。
【0008】
現実的な実施形態という観点から、3D媒体の情報を読出し/消去するための最も単純なシステムは、波長の異なる2つの放射源と、球面収差補正ユニットと、光放射の受光器とを備えた装置によって示される。上記2つの放射源は、上記3D媒体内の焦点領域の位置を制御する手段を有する合焦システムに光学的に結合されている。上記光放射は、上記3D媒体に記録された情報を読み出す間に上記3D媒体が発するものである(米国特許第7436750号、Optical storage with ultrahigh storage capacity、2008年10月14日公開)。この装置において、情報が記録される間には、交互に並んだ透明材料層およびフォトクロミック材料層によって構成される記録媒体にて波長λ1の放射が合焦される。上記放射が照射されると、選択された記録層の上記フォトクロミック材料は、光学的特性が変化して、波長λ2の放射が照射されると、波長λ3の蛍光を発するという特性を発揮する。情報を読み出す場合、波長λ2の放射が上記記録媒体に合焦される。このとき、波長λ1の光が事前に照射され数ビットの情報を含むピクセルという制限内で、上記フォトクロミック材料は波長λ3の蛍光を発する。上記波長λ3の蛍光は、光センサ(受光器)によって登録される。上記システムは、他のシステムのどれよりも、本発明に係る装置の技術的本質を例示しており、従って、本発明の原型として受け入れられる。
【0009】
上記原型の主要な欠点は、記録される情報の密度の低さにあり、その原因はフォトクロミック材料によって構成される層の間のクロストークである。該クロストークの発生の原因は、下記の事実による。すなわち、フォトクロミック材料の深い位置の信号層に情報が記録されるとき、波長λ1の放射は上層にあるフォトクロミック層を通過し、従って、情報が記録される間に、上記上層のフォトクロミック層で、上記信号層で発生するのと同じ過程を誘導することが不可避であるという事実である。上記フォトクロミック層間のクロストークを減少させるために、上記層の数を減らす、或いは、上記層間にある透明材料から成る層の厚みを増やすことが求められる。上記問題の種々の解決方法はいずれも最適ではなく、その結果、或るデータ媒体に記録され得るデータの最大容量を制限するか、多層光ディスクの厚みを増やし、つまり記録密度を減少させることになる。上記原型の実施例において、層間のクロストークを抑制するのに用いられる方法が2つ存在する。第1の方法は、記録用放射源として、信号フォトクロミック層にて2光子データ記録過程を開始する強力なレーザーを用いるものである。他の方法は、蛍光を登録するための光学的連結体を有し、該光学的連結体は色収差補整要素と、短焦点対物レンズと、数マイクロメートルの開口ダイヤグラムとを含み、上記要素は全て連続して配置され、その結果、上記蛍光の放射を登録するための共焦点連結体を形成するものである。該登録用共焦点連結体を利用すると、有用な蛍光信号の値を著しく減少させる。従って、上記原型では蛍光検出器として光電子増倍管を利用することが提案されている。一方で、上記原型に記載された実施形態では、層間のクロストークによる深刻な問題の存在を裏付けている。他方で、最新の技術では、上記原型の高コストと複雑な設計との理由により、多層光ディスクに基づく市販の情報記録装置の生産において、上記原型の利用が除外されている。
【発明の概要】
【0010】
本発明が解決しようとする課題は、多層光ディスクに記録されるデータ密度を増加すると同時に、装置の設計を単純化することにある。
【0011】
上記課題を解決するために達成すべき技術的成果は、上記多層光ディスクへの情報の記録時に当該多層光ディスクのフォトクロミック層間のクロストークを減少させ、かつ、記録された情報をその後の読み出し期間中に喪失する可能性を減少させることにある。
【0012】
本発明において、上記技術的成果を達成するために用いられる装置は、多層光ディスクに情報の記録/消去/読出しを行う下記の装置であって、光ディスクの位置決めシステムと、2つの異なる波長を用いる放射源であって、合焦手段が設けられた合焦システムと光学的に結合されている放射源と、上記合焦システムに、スペクトルスプリッタを介して、光学的に結合されている光センサ(受光器)と、上記放射源と、合焦システムの位置決め手段と、光センサと電気的に接続されている制御・データ処理ユニットとを備えており、さらに、調整可能なスペクトル選択器を含んでおり、該スペクトル選択器の出力において、上記2つの光線の強さの所要比を、上記2つの波長のそれぞれについて設定することができ、上記選択器は、上記放射源と、スペクトルスプリッタとの間に配置され、かつ、上記制御・データ処理ユニットに電気的に接続される一方、上記合焦システムは、示される波長の色収差が適所で発生するようになっている。
【0013】
本発明の本質は下記の点にある。すなわち、本発明に係る上記装置では、色収差が適所で発生するようになっている合焦システムは、上記2波長の焦点面が離間して間隔Sとなるように、上記2波長で発せられた光線の上記多層光ディスク内への位置決めと合焦とを可能にする。本発明に係る装置は、フォトクロミック材料層と透明材料層とを交互に含む多層光ディスクへの、情報の記録/消去/読出しについて意図されている。例えば、透明材料として、波長λ1・λ2の光線の光学的通過が最大となるポリマーと、上記フォトクロミック材料として、ポリマー基材に配置され、波長λ1・λ2の放射が照射されると光学的特性を変化できるフルギドとを用いるのが適当であろう。より具体的には、該フルギドは、初期状態で波長λ1の光が照射されると同時にに、波長λ2の光が照射されると、広いスペクトル範囲(便宜上λ3と示す)で蛍光性を発揮する。一方、変化後の状態で波長λ2の光が照射されると、上記フルギドは蛍光し、初期状態に戻ることができ、その間に、上記過程において上記の蛍光特性を喪失する。多層光ディスクにおけるフォトクロミック材料の個々の層の厚さは、1〜数マイクロメートルであり、上記透明材料の個々の厚さδは、数マイクロメートルから10マイクロメートルのオーダーである。上記合焦システムにおける適所の色収差の値Sは、δ/2に等しくなるように選択することが適切であろう。
【0014】
波長λ1・λ2で発せられる光の焦点領域が空間的に離れているのは、上記合焦システムにおける或る適所の色収差が原因であり、以下のことを可能にする。すなわち、上記光ディスクの深くに位置するフォトクロミック層への情報の記録と消去と読出しの時、上記物質と2波長放射との相互作用を含む特別な状況が実現され、読出し期間中の、上層に位置するフォトクロミック材料におけるクロストークと情報の消去との影響は最小になる。上記状況は、上記多層光ディスクを以下の2周波数での放射を同時に照射させることにより実行される。すなわち、上記スペクトル成分の強さの比は、上記スペクトル成分の波長の比に等しい。例えば、データ記録中、波長λ1の放射の吸収と、上記フォトクロミック材料の変化後の状態への遷移とは、信号フォトクロミック層においてだけではなく、記録用ビームの伝わる他の層でも発生しうる。これは、ゴーストレコードに帰結する。波長λ2の適切な強さの光線は、発生した上記ゴーストレコードが消えずに記録がなされている上記層中の、上記フォトクロミック材料の初期状態への回帰を促す。波長λ1の光と波長λ2の光とが、上記2つのスペクトル成分の波長比に等しい、上記2つのスペクトル成分の強さの比で、同時に放射される場合、上記フォトクロミック材料は初期状態のままであり、光力学的な平衡を保ち続ける。波長λ1の放射と波長λ2の放射という2つのスペクトル成分の強さは、調整可能なスペクトル選択器を用いて、経路を個別に変化させることによって、制御され得る。
【0015】
本発明の本質は、関連図面を参照することで、最良に理解することができる。
【図面の簡単な説明】
【0016】
【図1】本発明に係る装置を示す図である。
【図2】フォトクロミック材料について、初期状態(実線)と変化後の状態(破線)との吸収スペクトル特性を示す図である。
【図3】多層光ディスク内の、波長λ1の光線(実線)と、波長λ2の光線(破線)との交差を示す詳細図であり、同図には、透明材料の厚さδと、色収差Sとが示されている。
【図4】データの記録モードでの、多層光ディスクでの、波長λ1の光線(実線)と波長λ2の光線(破線)との交差を示す概要図(a)と、上記図に対応し、上記区域での波長λ1の光線と波長λ2の光線との比を示すグラフ(b)とである。
【図5】データの読出しまたは消去モードでの、多層光ディスクでの、波長λ1の光線(実線)と波長λ2の光線(破線)との交差を示す概要図(a)と、上記図に対応し、上記区域での波長λ1の光線と波長λ2の光線との比を示すグラフ(b)とである。
【発明を実施するための形態】
【0017】
図1には、多層光ディスク1と、光ディスク位置決めシステム2と、異なる二つの波長λ1と波長λ2とを有する放射源3と、波長λ1と波長λ2との色収差が適所で発生する合焦システム4と、合焦システム4の位置決めのための手段5と、波長λ3の蛍光放射を登録できるようになされた光センサ6と、波長λ1と波長λ2との放射を反射し、波長λ3の放射を透過することのできるスペクトルスプリッタ7と、波長λ1と波長λ2との放射の経路を個別に制御できる調整可能なスペクトル選択器8とが示されている。さらに、同図には、放射源3と、合焦システム4の位置決め手段5と、調整可能なスペクトル選択器8と、光センサ6とに電気的に結合された、制御・データ処理ユニット9を示す。
【0018】
図2から理解し得るように、初期状態(実線)と変化後の状態(破線)とで、フォトクロミック材料の吸収スペクトルは顕著に異なる。初期状態では、上記フォトクロミック材料は紫外線領域で吸収力の最大値を示す。上記吸収線の短波長ピークに相当する、波長λ1で照射される時、上記フォトクロミック材料は、上記初期状態から上記変化後の状態へと遷移する。上記変化後の状態では、吸収スペクトルは変化し、吸収線の短波長ピークは下降し、逆に可視帯域の中央に位置する長波長ピークが上昇する。変化後の状態では、上記フォトクロミック材料は、吸収の上記長波長ピークに相当する波長λ2で照射される時、蛍光性を発揮する。蛍光中、上記フォトクロミック材料は部分的に初期状態に戻る。多層光ディスク1へのデータ記録は、波長λ1の光を照射することによって実現される。多層光ディスクが、波長λ1と波長λ2とで同時に照射される時、上記波長での2つの放射の強さの比が、波長の比に等しい場合、上記フォトクロミック材料は状態が変化しない。
【0019】
図3は、フォトクロミック材料層10と、透明材料層11と、波長λ1の放射(実線)の焦点領域および波長λ2の放射(破線)の焦点領域との詳細図である。色収差を有する光学系において、放射スペクトルの長波帯の焦点平面は、短波帯の焦点平面よりも、直前の光学要素からより遠い位置にある。本発明に係る装置において、波長λ1の放射の焦点平面と、波長λ2の放射の焦点平面との距離Sは、多層光ディスク1の透明層11の厚さδの半分以下にすることが望ましい。
【0020】
図4と図5とは、多層光ディスク1の内部で波長λ1の放射線(実線)と波長λ2の放射線(破線)との交差を示す概要図であり、それぞれ、データの記録モード(図4a)と、データの読出しまたは消去モード(図5a)とにおける図である。データの記録モードにおいて、波長λ1の記録用放射線は、フォトクロミック材料層10へと位置決めされ、合焦されている(図3も参照)。一方、波長λ2の読出し/消去用放射線は、合焦システム4における色収差の存在により、下流側に隣接する透明層11の厚みの中央へ近似的に位置決めされ、合焦されている。
【0021】
データの読出し/消去モードにおいて、波長λ2の読出し/消去用放射線は、フォトクロミック材料層10へと位置決めされ、合焦されている。逆に、波長λ1の記録用放射線は、上流側に隣接する透明層11の厚みの中央へ近似的に位置決めされ、合焦されている。
【0022】
図4bと図5bとに示されるグラフから理解し得るように、波長λ1と波長λ2とを有する放射のスペクトル成分のビーム範囲は、光ディスク1の深さ全域にわたって、ほぼ等しい。両者が著しく異なるのは、情報を記録し、または読み出し、または消去するために用いられる、上記フォトクロミック材料層のごく周辺に、両者が存在する時だけである。もし、多層光ディスクに波長λ1の放射と波長λ2の放射とが、上記2つの波長の比と上記2つの放射の強さの比とが等しくなることを確保された上で、同時に照射されるならば、上記フォトクロミック材料層のピクセル内に含まれる情報は、上記信号フォトクロミック材料から読み出すときに、変化することはないであろう。
【0023】
本発明に係る装置の最良の実施形態を示す例では、下記のように、交互に並んだ透明材料層とフォトクロミック材料層とから成る多層光ディスク1を利用することを提案する。すなわち、上記透明材料は例えばポリカーボネートであり、各上記透明材料層の厚みは約100マイクロメートルである。上記フォトクロミック材料は、例えば、フォトクロミックフルギド化合物、スピロピランとメロシアニンという2つの安定な構造を有するスピロベンゾピランを備えるポリカーボネートであり、各上記フォトクロミック材料層の厚みは約5マイクロメートルである。2つの波長λ1・λ2を有する放射源3として提案されるものは、NdYVO4の結晶に基づく固体レーザーであり、放射が第2高調波(λ2=0.532μm)と第3高調波(λ1=0.355μm)とに変換される。調整可能なスペクトル選択器8として提案されるものは、波長λ1の放射線の経路と波長λ2の放射線の経路とを分離する入力スペクトルスプリッタと、波長λ1の光の光学的経路と波長λ2の光の光学的経路とのそれぞれにおいて設定される、個々に制御可能な2つの電気光学変調器と、波長λ1の光と波長λ2の光とが上記制御可能な電気光学変調器を通過した後の波長λ1の光線の経路と波長λ2の光線の経路とを統合する出力スペクトルスプリッタとを含む光学ユニットである。合焦システム4としては、大きな開口数のレンズモジュールと、波長λ1と波長λ2との事前設定された色収差が適所で確実に発生させる球面収差の制御および監視の手段とを用いることが提案される。合焦システム4の位置決め手段5は、制御可能な電磁サスペンションの形態で作成されることが提案され、該制御可能な電磁サスペンションは、情報の記録と読出しと消去とに用いられる信号フォトクロミック層または多層光ディスク1を選択するために、合焦システム4における1または複数の光学要素を、光軸に沿って長手方向に確実に変位させるものである。ダイクロイックミラーがスペクトルスプリッタ7として利用されることが提案される。
【0024】
多層光ディスク1は、位置決めシステム2を利用して、情報を記録し、または消去し、または読み出すのに要求されるであろう位置に位置決めされる。放射源3から放出される、波長λ1と波長λ2とを有する光は、調整可能なスペクトル選択器8を通過する。調整可能なスペクトル選択器8の出力において、波長λ1と波長λ2とを有する上記光線の強さの所要の比が事前設定される。さらに、上記光はスペクトルスプリッタ7を介して、合焦システム4へ向けられる。合焦システム4の位置は、位置決め手段5を利用して設定される。上記位置決め手段5は、波長λ1と波長λ2とを有する上記光線の焦点位置を、多層光ディスク1の内部に位置決めし、発生する球面収差を補正するように合焦システム4を調整する。情報の記録、または消去、または読出しは、調整可能なスペクトル選択器8を用いて、各波長の放射の強さを変化させることにより実施される。情報が記録される時、波長λ1の放射出力は最大であり、波長λ2の放射出力は最小である。情報が消去される時、波長λ1の放射出力は最大であり、波長λ2の放射出力は最小である。情報が読み出される時、波長λ2の放射に対する波長λ1の放射の出力比は、λ1/λ2に等しく、0.2〜0.7の範囲内である。記録された情報の読出しは、波長λ3の蛍光放射を登録することで実行される。上記蛍光放射は、最初に波長λ1で照射されていたフォトクロミック材料信号層10のピクセルにおいて波長λ2を有する放射により誘導される。上記ピクセルの発する蛍光放射の一部は、合焦システム4の開口に入り、そこから、スペクトルスプリッタ7を通過して、光センサ6の入力に到達する。
【0025】
本発明の、前述の原型との重要な相違点は、下記の点にある。すなわち、放射源3が生成する上記波長を有する上記光の経路を個々に制御できる調整可能なスペクトル選択器8を利用する一方で、上記合焦システムは、上記波長の事前設定された色収差が適所で発生するようになっている点である。本発明の以前に設定された課題は、下記の事実によって解決される。すなわち、事前に記録されたデータの読出し中、多層光ディスク1のフォトクロミック材料の情報層の中で2つの過程が、つまり、上記読出用光線による上記情報の消去と、上記記録用光線による情報の記録とが、発生するという事実である。同時に、これら2つの光線の強さにおける特定の比率により、上記光ディスクのフォトクロミック層の光学的状態の安定性が確保される。
【0026】
本発明に係る装置は、上記原型よりも著しく有効である。この理由は、多層光ディスク1の情報層を形成し得るフォトクロミック材料(特に1光子フォトクロム)の選択肢が広がり、上記ディスク材料の表面品質と均一性との要求は厳格ではないからである。
【0027】
本発明に係る装置は、既存のDVDドライブに用いられる層毎の記録/消去/読出の原理に基づくことが強調されるべきである。従って、本発明の実施例は、上記既存のドライブシステムの設計変更を必要とせず、改良のみで済む。肯定的な効果は、単色の放射源を、異なる波長を用いる放射源または複数の放射源の組合せに変更し、さらに調整可能なスペクトル選択器と、事前設定された色収差を適所に発生する合焦システムとを追加することにより、達成することができる。

【特許請求の範囲】
【請求項1】
多層光ディスクに対し情報の記録/消去/読出しを行うための装置であって、光ディスクの位置決めシステムと、波長の異なる2つの放射源であって、位置決め手段が設けられた合焦システムと光学的に結合されている放射源と、上記合焦システムに、スペクトルスプリッタを介して、光学的に結合されている光センサと、上記放射源、上記合焦システムの位置決め手段、および上記光センサと電気的に接続されている制御・データ処理ユニットとを備えており、上記装置は、調整可能なスペクトル選択器を備えており、該スペクトル選択器の出力において、上記2つの光線の所要の強さの比を、上記2つの波長のそれぞれについて設定することができ、かつ、上記選択器は、上記放射源と、上記スペクトルスプリッタとの間に配置され、かつ、上記制御・データ処理ユニットに電気的に接続される一方、上記合焦システムは、指示波長の色収差が適所で発生するようになっている装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4a)】
image rotate

【図4b)】
image rotate

【図5a)】
image rotate

【図5b)】
image rotate


【公表番号】特表2013−506227(P2013−506227A)
【公表日】平成25年2月21日(2013.2.21)
【国際特許分類】
【出願番号】特願2012−530836(P2012−530836)
【出願日】平成22年9月9日(2010.9.9)
【国際出願番号】PCT/RU2010/000508
【国際公開番号】WO2011/037491
【国際公開日】平成23年3月31日(2011.3.31)
【出願人】(512077930)エバーホスト インベストメンツ リミテッド (3)
【氏名又は名称原語表記】Everhost Investments Limited
【住所又は居所原語表記】Egypt Street 12 P.C.,1097 Nicosia,Cyprus
【出願人】(512077848)
【氏名又は名称原語表記】KIYKO,Vadim Veniaminovich
【住所又は居所原語表記】der.Kohdaevo,75 Chekhovsky r−n,Moskovskaya obl.142302,Russia
【Fターム(参考)】