説明

多重管の欠陥検査方法及び装置

【課題】多重管が真っ直ぐであるか否かに係らず、その内管に生じた欠陥の位置を大掛かりな装置を用いずに短時間で正確に測定できるようにする。
【解決手段】二重管1の内管2内に放射された電波Txは軸線方向に伝播し、内管2に生じた欠陥Dを通り抜けて、外管3の内部の空間5を通って二重管1の一端に電波Rxとして戻る。電波を放射した時点から、戻ってきた時点迄の時間差(電波の往復伝播時間)をτ、二重管1の一端から欠陥D迄の距離をL、内管2及び外管3内の電波の平均伝播速度をVとすると、τ=2L/Vであり、この式をLについて解くと、L=V・τ/2となるので、電波の往復伝播時間を測定することにより、欠陥Dの位置を求めることができる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、外管内に内管が少なくとも一重に配置された多重管の欠陥検査方法及び装置に関し、詳細には、内管の欠陥位置を特定可能な欠陥検査方法及び装置に関する。
【背景技術】
【0002】
地域冷暖房プラントで生成した冷水・温水・蒸気等の熱媒を地中に埋設された地域導管を通して一定地域内の建物群に供給し、冷房・暖房・給湯等を行う地域冷暖房システムは、省エネルギー効果、環境保全効果、安全性の向上等様々なメリットのあるシステムである。地域冷暖房システムの地域導管は、それぞれ鋼管からなる内管と外管とを有し、その間に保温材及び空隙(エアスペース)を介在させた構造を有する二重管が使用されている。
【0003】
この二重管の内管にピンホール等の欠陥が生じると、そこから熱媒が漏洩するため、熱エネルギーの輸送効率が低下してしまう。従って、二重管の内管に欠陥が生じた場合は、その位置を特定して掘削を行い、補修或いは交換を行う必要がある。
【0004】
従来、このような地中に埋設された二重管の欠陥位置を特定する方法として、内管と外管とにより形成された空間を検査区間において遮蔽すると共に、この遮蔽した空間内の空気をパージした後にヘリウムガス等の検査用ガスを圧入し、同時に内管内にブロア等により空気を送り込んで空気の流れを形成し、その上で、内管内に検査用ガス検知器の吸入ノズル又はセンサを挿入して検査区間内を移動させ、検査用ガスを検出するようにしたものがある(特許文献1参照)。この方法によれば、内管にピンホール等があると、そこから検査用ガスが内管内に漏洩してくるので、検査用ガス検知器で検知される。そして、検査用ガス濃度に変化があった位置を漏洩箇所と特定し、そのときの吸入ノズル又はセンサの挿入距離を求めることによって、位置を特定することができる。
【0005】
また、埋設された二重管の欠陥位置を特定する別の方法として、内管内の水を完全に抜いた後に内管内にマイクロホンを挿入して検査区間内を移動させつつ、内管と外管とにより形成された空間内に圧縮空気を送り込むようにしたものがある(非特許文献1参照)。この方法によれば、内管にピンホール等があると、そこから圧縮空気が内管内に漏洩するときに音が発生するので、マイクロホンで検知される。そして、漏洩音が最大になった位置を漏洩箇所と特定し、そのときのマイクロホンの挿入距離を求めることによって、位置を特定することができる。
【特許文献1】特開平10−281915号
【非特許文献1】「地域冷暖房技術研修会テキスト」、P.2-120〜2-121(社団法人日本地域冷暖房協会、2000年10月)
【発明の開示】
【発明が解決しようとする課題】
【0006】
しかしながら、上記二つの方法は、何れも位置を特定するためにガスセンサやマイクロホンを内管内で移動させることが必要であるため、測定に時間がかかり、かつ測定前の準備作業(測定部の配管上部にある土の掘削等)に時間と費用を要する。また、二重管にエルボ等があることで屈曲している場合には、その屈曲数が多ければ測定ができないという問題がある。さらに、ガスセンサやマイクロホンを移動させる装置、ガスボンベ或いはコンプレッサが必要であるため、装置が大掛かりとなる。
【0007】
本発明は、このような問題を解決するためになされたもので、その目的は、外管内に内管が少なくとも一重に配置された多重管が真っ直ぐであるか否かに係らず、その内管に生じた欠陥の位置を大掛かりな装置を用いずに短時間で正確に測定できるようにすることである。
【課題を解決するための手段】
【0008】
請求項1の発明は、外管内に内管が少なくとも一重に配置された多重管の欠陥検査方法であって、前記内管のうち検査する管を検査対象管として選択し、前記検査対象管の一端から、前記検査対象管の内表面又は外表面に接した空間内に電波を放射し、前記検査対象管の欠陥を通過し、前記検査対象管の外表面又は内表面に接した空間を通って戻ってきた電波を検出し、前記電波を放射した時点と検出した時点との時間差を測定し、前記時間差と前記電波の伝搬速度とに基づいて前記検査対象管の欠陥の位置を特定する。
請求項2の発明は、外管内に内管が少なくとも一重に配置された多重管の欠陥検査装置であって、前記内管から選択された検査対象管の内表面又は外表面に接した空間内に電波を放射する送信アンテナを有する送信装置と、前記検査対象管の外表面又は内表面に接した空間に配置可能な受信アンテナを有する受信装置と、前記送信装置が電波を放射した時点と、前記受信装置が電波を受信した時点との時間差と前記電波の伝搬速度とに基づいて、前記検査対象管の欠陥の位置を演算する処理装置とを備えたことを特徴とする。
請求項3の発明は、請求項2記載の多重管の欠陥検査装置において、前記受信アンテナには、前記検査対象管の外表面又は内表面に接した空間の周方向に対し、該空間の半径に対応する曲面が形成されていることを特徴とする。
請求項4の発明は、請求項2又は3記載の多重管の欠陥検査装置において、前記送信装置が前記検査対象管の内表面又は外表面に接した空間に電磁気的に密閉され、送受信同期用のケーブルのみが前記多重管外に導出されていることを特徴とする。
【発明の効果】
【0009】
本発明によれば、多重管が真っ直ぐであるか否かに係らず、その内管に生じた欠陥の位置を大掛かりな装置を用いずに短時間で正確に測定できる。
【発明を実施するための最良の形態】
【0010】
以下、本発明の実施形態について図面を参照して説明する。
まず、図1を参照しながら本発明の実施形態における欠陥位置の特定の対象である二重管の構造を説明する。この図のAは二重管の軸線方向(長手方向)の断面図であり、Bは軸線に垂直な方向の断面図である。
【0011】
本実施形態の二重管1は、内管2及び外管3を備えている。内管2、外管3は共に鋼製であり、内管2の外周面は珪酸カルシウムからなる保温材4で覆われている。外管3の内周面と保温材4の外周面との間には空間(エアスペース)5があり、内管2の内部には空間6がある。内管2の両端は、隣り合う二重管と接合するために、外管3の端から突出している。なお、図示は省略したが、外管3の外周面にはアスファルト塗覆層、ポリエチレン被覆層等が形成されている。また、内管2と外管3との間隔を保持するスペーサが軸線方向の複数個所に配置されている。
【0012】
次に図2を参照しながら、二重管1の欠陥位置を特定する原理を説明する。この図のAは二重管1の一端(この図では左端)から内管2の内部の空間6に放射した電波Txが軸線方向に伝播し、内管6に生じた欠陥Dを通り抜けて、その一部が外管3の内部の空間5を通って二重管1の一端に電波Rxとして戻る様子を示している。また、この図のBは、電波Tx及びRxのタイミング図である。
【0013】
図2A及びBに示すように、電波を放射した時点から、電波が戻ってきた時点迄の時間差(電波の往復伝播時間)をτ、二重管1の一端から欠陥D迄の距離をL、内管2及び外管3内の電波の平均伝播速度をVとすると、
τ=2L/V・・・式[1]
であり、この式[1]をLについて解くと、
L=V・τ/2・・・式[2]
となる。
【0014】
ここで、Vは内管2、外管3のそれぞれの材質、径、及び肉厚から算出することができ、τは電波を内管2内に放射した時点から戻ってきた電波を検出した時点迄の時間差を測定することにより求めることができる。なお、図2において、内管2の欠陥Dの位置において、保温材4にも孔が開いているが、内管2内に蒸気を通した場合、内管2に生じた直径1mm程度の欠陥Dから噴出した蒸気により、欠陥Dの付近の保温材4が吹き飛ばされてしまうことを実験により確認している。また、内管2と外管3との間隔を保持するスペーサと、発生応力を支える鋼板があるが、何れも隙間がある構造のため(図示せず)、空間5内の電波の伝播を遮断することはない。
【0015】
次に上述した原理に基づいて二重管1の欠陥位置を特定する装置(以下、欠陥位置特定装置と言う)について説明する。図3はこの欠陥位置測定装置の構成を説明するための図であって、Aはこの欠陥位置測定装置を二重管1の一端付近の断面と共に示しており、図3Bは欠陥位置測定装置のアンテナの配置を二重管1の軸線に垂直な方向の断面と共に示している。
【0016】
図3Aに示すように、本実施形態の欠陥位置測定装置は、送信装置本体11と、その先端に取り付けられた送信アンテナ15とからなる送信装置と、受信装置本体12と、受信アンテナ16と、それらを接続するケーブル18とからなる受信装置と、受信装置本体12にケーブル19で接続された処理装置13と、処理装置13にケーブル20で接続された出力装置14とからなる。送信装置本体11はその基端が、内管2の端を塞ぐ金属製の蓋15の内側に固定されることで、内管2内に配置されている。また、送信装置本体11と受信装置本体12とは、送信装置本体11の基端から蓋15の小孔を通して、受信装置本体12に至るケーブル17により接続されている。ここで、送信装置本体11を内管2内に収容して金属製の蓋15で塞ぎ、受信装置本体12に対しタイミング信号(後述する掃引信号)を供給するためのケーブル17を露出させるだけにすることで、送信アンテナ15から放射された電波が直接受信アンテナ16に到達することを抑制している。受信アンテナ16を収容した空間5にも同様な蓋を設けてもよい。また、受信装置本体12、処理装置13、出力装置14等を外管3に孔のない蓋で密閉して、外乱(ノイズ)を最小限にとどめる構造であってもよい。
【0017】
送信アンテナ15から内管2内に放射する電波は例えば3GHzであり、送信アンテナ15はビバルディアンテナである。受信アンテナ16は、外管3の内周面と保温材4の外周面との間の空間5に配置されており、送信アンテナ15と同様、ビバルディアンテナを用い、受信感度を向上させるため、図3Bに示すように、二重管1の周方向に4個配置し、それらの出力を受信装置本体12にて合成するように構成されている。また、受信アンテナ16は、空間5の径に応じた円弧状の断面を持つように構成されている。つまり、受信アンテナ16の曲率半径は空間5の半径にほぼ一致しているか、或いは必ずしも一致していなくても、空間5に収まる値になるように対応していればよい。また、受信アンテナ16が平板状であっても、内管2を多角形状に取り囲み、空間5に収まるように配置されて対応していてもよい。ここで、受信アンテナ16を可撓性を有する基板を用いて構成することにより、二重管1の呼び径に応じて、受信アンテナ16の曲率を可変にすることが好ましい。
【0018】
図4は送信装置、受信装置、及び処理装置の電気的構成を示すブロック図である。説明を簡単にするため、図2Bではパルス状の電波を送信してから戻ってくるまでの時間差により欠陥位置を特定するものとしたが、ここでは可変周波数の連続波(FM−CWレーダ)を用いている。
【0019】
送信装置本体11は、周期Tの三角波電圧を生成する掃引信号発生回路21と、掃引信号発生回路21の出力電圧が供給され、その電圧に応じて、周期Tで周波数が三角波状に変化する高周波を発生するVCO(電圧制御発振回路)22と、VCO22の出力を増幅してアンテナ15に供給する電力増幅回路23と、各回路に電力を供給する電池24とを備えている。また、受信装置本体12は、4つの受信アンテナ16で受信された電波を合成し、増幅する受信回路31と、掃引信号発生回路21からケーブル17を介して供給される周期Tの三角波電圧に応じて、周期Tで周波数が三角波状に変化する高周波を発生するVCO32と、受信回路31の出力信号とVCO32の出力信号とを混合し、そのビート成分を取り出す混合回路33とからなる。ここで、VCO22の出力信号とVCO32の出力信号の波形は同一である。処理装置13は、混合回路33で取り出されたビート成分をフーリエ変換して周波数スペクトルを求め、ビート周波数を検出するフーリエ変換回路34と、フーリエ変換回路34にて検出されたビート周波数に基づいて、電波が送信アンテナ15から送信された時点と、受信アンテナ16で受信された時点との時間差τを算出する時間差算出回路35と、その時間差τから、式[2]より欠陥迄の距離Lを算出する距離算出回路36とを備えている。出力装置14は、距離算出回路36の算出結果を出力(表示・印刷)する。ここで、処理装置13はコンピュータのソフトウェアで構成されている。
【0020】
以上の構成を有する欠陥位置測定装置を用いて、二重管1の欠陥位置を特定するときは、測定区間を決定し、その測定区間内の二重管1内の熱媒を除去した後に、測定区間の一端の二重管1に送信装置、受信装置、処理装置、及び出力装置をセットとする。ここで、測定区間は、地中に埋設されている二重管1の所定距離(例、100m)毎に配置されているマンホールの位置の二箇所の間とし、その二箇所にて二重管1を切断し、そのうち一箇所にて欠陥位置測定装置をセットし、他の一箇所では、内管2内を伝播した電波が空間5に入って送信側へ戻らないようにするため、金属製の蓋で内管2の端を塞ぐ。
【0021】
各装置を図3に示すようにセットした後に、送信アンテナ15から図5に実線で示す送信電波Txを内管1内に放射する。内管2に欠陥が存在すると、図2に示すように、送信電波Txは欠陥D及びその外周側の保温材4に開いた孔を通って空間5に入り、そこから空間5内を通って受信アンテナ16で受信される。受信装置本体12では、受信電波Rxに対応する信号が受信回路31から混合回路33に供給される。混合回路33は、送信電波Txに対応する信号である掃引信号も供給されており、送信電波Txに対応する信号と受信電波Rxに対応する信号とのビート成分fbを取り出して、処理装置13のフーリエ変換回路34に供給する。フーリエ変換回路34はビート成分の周波数スペクトルを求め、ビート成分の周波数を時間差算出回路35へ出力し、時間差算出回路35はそのビート周波数を用いて時間差τを算出する。
【0022】
ここで、時間差算出回路35が時間差τの算出に用いる演算式について説明する。図5に示すように、周波数掃引幅をB、掃引周期をT、ビート周波数をfb、伝搬遅延時間を τとすると、
fb=B・τ/T・・・式[3]
が成立する。時間差算出回路35は、この式[3]をτについて解いた下記の式[4]により時間差τを算出し、その結果を距離算出回路36へ出力する。
τ=fb・T/B・・・式[4]
【0023】
距離算出回路36は、前記式[2]により、欠陥D迄の距離Lを算出する。出力装置14は、距離算出回路36により算出された欠陥D迄の距離を表示又は印刷する。このとき、単に距離を表示するだけでなく、二重管1の埋設位置を示す地図上に欠陥Dの位置を表示するように構成してもよい。
【0024】
なお、図4の処理装置13では、時間差算出回路35により時間差τを算出し、距離算出回路36が時間差τを用いて距離Lを算出しているが、式[3]と式[2]とから、
L=fb・T・V/2B・・・式[5]
となることを利用して、時間差算出回路35と距離算出回路36とに分けず、形式上時間差τを算出することなく距離Lを算出してもよい。
【0025】
また、前記実施形態では、1本の内管と保温材とを有する二重管の欠陥の位置を特定する場合について説明したが、本発明は、複数本の内管が並列に配置された二重管、及び保温材を有しない二重管についても同様に適用できる。さらに、図1の外管3の内周面と内管2の外周面との間、又は内管2内の空間6の少なくとも一方に、1本の管又は並列に配置された複数本の管が設けられた多重管に対しても、同様にして外管3以外の管の欠陥位置の特定が可能である。
【0026】
また、前記実施形態では、送信電波の周波数を周期Tで直線状に変化(チャープ変調)させているが、送信電波の周波数を周期Tで階段状に変化させたり、送信電波を符号位相変調したりすることもできる。また、ビート成分のパルス圧縮を行ってもよい。さらに、送信電波の周波数は3GHzより高くても低くてもよく、24GHz適度迄高くすればホーンアンテナを用いることができる。また、受信装置本体12、処理装置13、及び出力装置14を一体に構成してもよい。さらに、内管2の外側に送信アンテナ15を配置し、内側に受信アンテナ16を配置しても、つまり両アンテナの位置を前記実施形態と入れ替えてもよい。
【図面の簡単な説明】
【0027】
【図1】本発明の実施形態における二重管の構造を示す図である。
【図2】本発明の実施形態における二重管の欠陥位置を特定する原理を説明するための図である。
【図3】本発明の実施形態における二重管の欠陥位置を特定する装置の構成を説明するための図である。
【図4】本発明の実施形態における送信装置、並びに受信及び処理装置の電気的構成を示すブロック図である。
【図5】本発明の実施形態における周波数掃引幅、掃引周期、ビート周波数、及び伝搬遅延時間の関係を示す図である。
【符号の説明】
【0028】
1・・・二重管、2・・・内管、3・・・外管、5・・・空間、11・・・送信装置本体、12・・・受信装置本体、13・・・処理装置、14・・・出力装置、15・・・送信アンテナ、16・・・受信アンテナ。

【特許請求の範囲】
【請求項1】
外管内に内管が少なくとも一重に配置された多重管の欠陥検査方法であって、
前記内管のうち検査する管を検査対象管として選択し、前記検査対象管の一端から、前記検査対象管の内表面又は外表面に接した空間内に電波を放射し、前記検査対象管の欠陥を通過し、前記検査対象管の外表面又は内表面に接した空間を通って戻ってきた電波を検出し、前記電波を放射した時点と検出した時点との時間差を測定し、前記時間差と前記電波の伝搬速度とに基づいて前記検査対象管の欠陥の位置を特定することを特徴とする多重管の欠陥検査方法。
【請求項2】
外管内に内管が少なくとも一重に配置された多重管の欠陥検査装置であって、
前記内管から選択された検査対象管の内表面又は外表面に接した空間内に電波を放射する送信アンテナを有する送信装置と、前記検査対象管の外表面又は内表面に接した空間に配置可能な受信アンテナを有する受信装置と、前記送信装置が電波を放射した時点と、前記受信装置が電波を受信した時点との時間差と前記電波の伝搬速度とに基づいて、前記検査対象管の欠陥の位置を演算する処理装置とを備えたことを特徴とする多重管の欠陥検査装置。
【請求項3】
前記受信アンテナには、前記検査対象管の外表面又は内表面に接した空間の周方向に対し、該空間の半径に対応する曲面が形成されていることを特徴とする請求項2記載の多重管の欠陥検査装置。
【請求項4】
前記送信装置が前記検査対象管の内表面又は外表面に接した空間に電磁気的に密閉され、送受信同期用のケーブルのみが前記多重管外に導出されていることを特徴とする請求項2又は3記載の多重管の欠陥検査装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate


【公開番号】特開2007−205794(P2007−205794A)
【公開日】平成19年8月16日(2007.8.16)
【国際特許分類】
【出願番号】特願2006−23276(P2006−23276)
【出願日】平成18年1月31日(2006.1.31)
【出願人】(000001052)株式会社クボタ (4,415)
【出願人】(592004714)
【出願人】(506035463)
【Fターム(参考)】