説明

微少量液体測定装置

【課題】微少量液体試料の光学的分析を可能としつつ、より簡潔な構成で且つ製品歩留まりを良くすることができる微少量液体測定装置を提供する。
【解決手段】本発明の微少量液体測定装置は、光源と、光源から出射された光を導光する第1光ファイバと、第1光ファイバの他端接続される円筒形状の液体コアファイバと、液体コアファイバの他端に接合される第2光ファイバと、第2光ファイバの他端に接続される光学処理手段とが同一光軸上に接続されており、予め液体コアファイバ内に液体試料が注入された状態で光源から出射された光を照射すると、この光が液体試料を通過し終端に設けられた光学処理手段で成分分析処理される。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、微少量の液体試料を測定するための微少量液体測定装置に関する。
【背景技術】
【0002】
近年、1μl以下の液体試料を光学的に分析、測定することができる液体試料測定装置の需要が増加している。需要の背景には、蛋白質やデオキシシボ核酸(DNA)などの試料が通常少量の水性試料の状態であることが起因しており、このような微少量液体試料を測定するために図14、図15に示すような種々の測定装置が提案されている。
【0003】
図14に示す測定装置(光伝播装置)100は、分光光度計容器として作用する剛性の導波管101と、光ファイバ102と、光源103と、光分析器104を備え、光源103と光分析器104が光カプラ107及び光ファイバ108,109を介して接続されている。
【0004】
光ファイバ102はガイド105に保持されており、ガイド105はバレル110に対して軸方向に移動可能に配置されている。プッシャーアーム106はガイド105に沿って往復移動可能であり、この移動により導波管101の開放端111から液体試料の吸入・排出を行う。
【0005】
実際に測定を行う場合は、開放端111を液体試料に差込み、プッシャーアーム106を引いて光ファイバ101内に液体試料を吸入して光源103から紫外光、可視光又は赤外光を出力し、これを液体試料に照射させて、液体試料で反射した反射光を光分析器104で受光して分析する。
【0006】
この測定装置100によれば、光源から出力された光が導波管101のコア領域内を伝搬することで照射光と液体試料との相互作用量を大きくすることができるので、液体試料に溶解した溶質を光学的に分析する吸光、比色又は蛍光などの液体分析の達成可能感度を向上させることができるというものである。
【0007】
なお、このような測定装置100において開放端111を図15(a)〜(d)の拡大横断面図に示すように、様々な形式に改良して測定精度を向上させる提案がなされている。図15(a)は液体試料112を一定位置まで吸入した状態で測定する構成を示したものである。(b)は液体試料を吸入した後にミラー113で開放端111を封止して、固定金具114でミラー113を光ファイバ101に固定したものである。また(c)は液体試料112を吸入した後に開放端111を水銀滴115に挿入して開放端111の端部を封止し、水銀滴を反射鏡として利用して測定する構成を示したものである。更に(d)は予め開放端111をミラー113で封止しておき光ファイバ101の側面に設けた液体試料用の吸い込み穴116から液体試料112を吸入させて測定する構成を示したものである。
【特許文献1】特開平7−218422号公報
【発明の開示】
【発明が解決しようとする課題】
【0008】
ところで上記特許文献1記載の測定装置によれば、測定機器の構成として液体試料112を吸入するためのガイド105、プッシャーアーム106、バレル110などの吸入機構、保持機構及び保護機構が必要不可欠であり、これ以上の装置小型化は難しいという問題がある。
【0009】
また上記部品が必要不可欠であることから部品コストや製造コストの削減には限度があり、歩留まりを良くすることが難しいという問題がある。
【0010】
本発明は、上記問題を鑑みてなされたものであり、その目的は、1μl以下の微少量液体試料の光学的分析を可能としつつ、より簡潔な構成で且つ製品歩留まりを良くすることができる微少量液体測定装置を提供することにある。
【課題を解決するための手段】
【0011】
上記課題を解決するために、請求項1記載の本発明は、微少量の液体試料が充填される所定長さの円筒状のキャピラリーと、円筒状のキャピラリーの両端に嵌挿される一対の光ファイバと、を備え、一対の光ファイバの一方の端面から円筒状のキャピラリーに充填された液体試料に測定光を入射し、液体試料を透過した光を他方の光ファイバで受光して光学処理手段に送り、液体試料の成分濃度を測定することを要旨とする。
請求項2記載の本発明は、請求項1記載の微少量液体測定装置であって、円筒状のキャピラリーは、この円筒状キャピラリーの側面に液体試料を充填及び/または排出するための開口部を備えていることを要旨とする。
【0012】
請求項3記載の本発明は、請求項1又は2記載の微少量液体測定装置であって、 円筒状キャピラリーの長軸方向に対して垂直な方向からこの円筒状キャピラリーに励起光を出射して、この円筒状キャピラリー内に充填された液体試料の成分を励起させるための励起光出力手段を備え、励起光出力手段によって励起された光を一対の光ファイバで受光して光学処理手段に送り、液体試料の成分濃度を測定することを要旨とする。
【発明の効果】
【0013】
本発明によれば、1μl以下の微少量液体試料の光学的分析を可能としつつ、従来装置に比べて簡潔な構成で微少量液体測定装置を製造することができるので、結果として部品コスト及び製造コストの歩留まりを良くすることができる。
【発明を実施するための最良の形態】
【0014】
以下、本発明を実施するための最良の形態を図面を参照して説明する。
【0015】
図1は、本発明に係る微少量液体測定装置の全体構成図であり、図2は、微少量液体測定装置の測定経路に設けられる液体コアファイバ1の拡大透視図である。また図3は、液体コアファイバ1のより具体的な構成を示す図である。
【0016】
図1に示すように、この微少量液体測定装置は、光源13と、光源13から出射された光を導光する第1光ファイバ10と、第1光ファイバ10と同一光軸上に嵌合される円筒形状の液体コアファイバ1と、液体コアファイバ1の他端に嵌合される第2光ファイバ11と、第2光ファイバ11の他端に接続される分光器14で少なくとも構成されている。
【0017】
ここで光源13は、測定する液体試料の特性により適宜選択されるものであり、可視光又は近赤外を出力する光源を用いる。本実施の形態においては具体的に白色LEDを用いるが、ハロゲンランプ、広帯域レーザー、蛍光などであっても良い。
【0018】
第1及び第2光ファイバ10及び11としては、石英系光ファイバやプラスチップ光ファイバなどが挙げられるが、本実施の形態においては可搬性や曲げ耐久性の高いプラスチッククラッド石英コアファイバを用いる。
【0019】
液体コアファイバ1は、図2に示すように円筒形状の導管12であり、この導管12に液体試料が注入された後、この導管12の両端を封止するように光ファイバのクラッド10b及び11bを挿入することにより構成されている。この封止部分は接着剤で固着さえても良いし、加熱して加熱溶着させても良い。接着剤で固着させる場合はコア端面に接着剤が付着しないように注意を払う必要がある。
【0020】
本実施の形態においては導管12としてテフロン(登録商標)チューブを用いている。ここで円筒形状のチューブは光ファイバのクラッドと見立て、チューブの中空部はコアと見立てて用い。具体的に本実施の形態で用いたテフロン(登録商標)チューブは、内径450μm、外径950μmのものを用いた。ここで実施の形態においては導管12としてテフロン(登録商標)チューブを用いたが、これに限らず低屈折率を有する円筒形状のものであれば他の材質のものを用いてもよい。例えば屈折率が1.33以下のフルオロカーボンも好適である。また導管12として大口径を有するファイバを適用すると液体試料の注入が容易となり取扱いをより向上させることができるという利点がある。
【0021】
一方、第1及び第2光ファイバ10及び11として用いるプラスチッククラッド石英コアファイバとしては、そのジャケット径が730μm、クラッド径が430μm、コア径が400μmのものを用いる。
【0022】
分光器14は、光源13から出力されて液体試料を透過した光の波長をスペクトル分析する機能を備えているものを用いる。この分光器14は、分光機能の他にデータ蓄積機能、データ解析機能(プログラム)、解析結果表示機能(ディスプレイ)などを備えている。本実施の形態においては、透過光を検出する受光素子として測定波長範囲が350〜1050nmのCCDリニアセンサーと、このセンサーで検出した光を0.3〜10.0nmの波長分解能(この分解能は開口径に依存する)で処理することができる解析機能を備えたパーソナルコンピュータ(PC)を用いている。
【0023】
次に図3を参照して液体コアファイバ1の組み立て手順を説明する。
【0024】
まず2本の光ファイバ(第1及び第2光ファイバ10及び11)を用意し、それぞれの一方の端から被覆10a及び11aを一定長除去してクラッド10b及び11bを露出させる。そして導管12の一端を液体試料に浸漬させ、毛細管現象を利用して液体試料を導管12内に導き、液体試料が充填されたところで先に加工したクラッド10b及び11bを導管12の両端に挿入することで封止する。このとき導管12の内径は450μm、第1及び第2光ファイバのクラッド径は430μm、その差は直径でいうと10μmであるためクラッド10b及び11bと導管12の間から不要な液体試料が染み出るとともに両部品が密着性よく嵌合する。以上の手順により液体コアファイバ1が形成される。
【0025】
次に液体コアファイバ1の変形例を図4及び図5に示す。この液体コアファイバ1は、前述の図3の液体コアファイバ1に対して、導管12の側面に液体試料を注入するための注入用開口12aと、導管12内の空気を外部に排出するための排出用開口12bを備える点に特徴がある。
【0026】
この注入用開口12aと排出用開口12bが設けられる位置は、クラッド10b、11bの挿入により各開口が封止されない位置に設けられている。この両開口12a、12bの間隔は気泡を混入させずに液体試料を注入することができる程度に離間させることが望ましい。なお、図中において注入用開口12aと排出用開口12bは、両方とも導管12の上側面に開口されているが、どちらか一方のみを下側面に開口させてもよい。またこのとき開口する開口径は直径数μm程度とする。これにより液体試料を後から注入することができると共に、注入した液体試料は開口から液漏れすることがない。
【0027】
そして図5に示すように上記構成を有する液体コアファイバ1の一方の端から光を入射させて液体コアファイバ1に注入されている液体試料に光を通過させ、このファイバ1の他端から出射された光を分光光度計又はフォトダイオード(Photo Diode:PD)で受光して液体試料に吸収された後の光の吸光度を測定することで液体試料に含まれる成分等を分析することができる。
【0028】
上記液体コアファイバ1の構成を備えていれば上述した分析方法に限らず、図6に示すような分析方法も実施可能である。すなわち特定波長を吸収すると蛍光を発する液体試料を予め導管12に注入しておく。また第1及び第2光ファイバ10及び11の端には予め光カプラ15等の光結合部品に融着接続させておく。そしてこの光結合部品の他端には分光器14に接続する。このような構成において導管12の外側面から液体試料に対して励起光を照射すると、液体試料から蛍光が発せられて、この蛍光が第1及び第2光ファイバ内を伝搬して、これが分光器14に到達することで蛍光スペクトル解析することができる。
【0029】
次に図7を参照して、図5の構成を備える微少量液体測定装置を用いて液体試料の吸光度測定を行った場合の実験結果を説明する。この測定グラフにおいて横軸は波長(nm)を示し、縦軸は吸収強度を示している。ここでグラフ(1)はリファレンスとして導管12に水を注入して光強度測定した場合の測定結果であり、グラフ(2)はローダミン(0.005mmol)を導管12に注入して光強度測定を行った場合の測定結果である。同図に示すようにローダミンは水よりも光を吸収するので吸収強度は水よりも低い。
【0030】
このような特性を有するローダミンの透過率(グラフ(1))と吸光率(グラフ(2))を算出した。その結果を図8に示す。グラフ(1)によれば波長550nm付近でローダミンの透過率が最も低くなった。これに対応するように吸光率が最も高くなり、ローダミン特有の波長特性が正しく測定できたことが示された。
【0031】
次に液体コアファイバ長(すなわち導管長)に対する強度依存性を測定した。その結果を図9に示す。このグラフにおいて横軸は液体コアファイバ長を示し、縦軸は光の強度を示している。また光源として白色LEDを用いている。その結果、470nm波長帯強度(◆印)と570nm波長帯強度(■印)のいずれも液体コアファイバ長が長くなるにつれ強度が低下する特性があることが示された。例えば570nm波長帯強度において液体コアファイバ長が1cmのときに対して、液体コアファイバ長を5cmになると約80%程度に低下する。また470nm波長帯強度においても同様に液体コアファイバ長が1cmのときに対して、液体コアファイバ長を5cmになると80%程度に低下する。従って液体コアファイバ長は短ければ短いほど良いことが示された。なお、短ければ良いと言っても、本発明は液体コアファイバの両端から光ファイバ10,11のクラッドを挿入嵌合させるため、液体コアファイバ長は、このクラッドの露出長に依存する。従ってクラッドを覆う被覆を如何に短く除去できるかによるが、現時点では露出長は1〜2mm程度が限界のため液体コアファイバ長は少なくとも0.5cm以上であることが望ましい。なお、液体コアファイバ長が1cmのとき液体試料の容量は1.59μlである。
【0032】
次に、濃度の異なるローダミン溶液を用意し、液体コアファイバ長に対する強度依存性を測定した。その結果を図10に示す。このグラフにおいて横軸は液体コアファイバ長を示し、縦軸は光の強度を示している。本実験では、ローダミン0.001mmol(◆印)、ローダミン0.005mmol(■印)、ローダミン0.02mmol(△印)、水(×印)を用意し、液体コアファイバ1の長さを0.5〜5cmの範囲で変化させ、それぞれの長さにおける強度を測定した。
【0033】
その結果、図9で示された特性と同様に液体コアファイバ長が長いほど強度が低下することが確認された。またローダミン溶液の濃度が高くなるほど受光強度が低下することも確認された。
【0034】
ここで上記結果をもとに透過率を算出した結果を図11に示す。同図に示すように、液体コアファイバ長が長くなるほど透過率が低下している。これはローダミン濃度が高くなるほど照射光がローダミンに吸収されて透過率が低下することが理由と考えられる。
【0035】
次に図12を参照して、前述した図6の装置において液体試料に照射する励起光の位置を変化させたときに蛍光スペクトルがどのように変化するかを測定した結果を示す。
【0036】
本実験においてローダミン溶液の濃度は0.02mmolのものを用いた。そしてこのローダミン溶液を充填したテフロン(登録商標)チューブの側面に対して垂直方向からLED(ピーク波長525nm:緑色)の励起光(スポット径1cm)を照射し、発生した蛍光スペクトルを分光器14で測定した。ここでグラフ(1)は、テフロン(登録商標)チューブの左端の端面から0cmに励起光を照射した場合の結果であり、グラフ(2)は端面から1cm、グラフ(3)は端面から2cm、グラフ(4)は端面から3cm、グラフ(5)は端面から5cm、グラフ(6)は端面から8cmの位置にそれぞれ励起光を照射した場合の各結果である。
【0037】
この結果、525nmの励起光も僅かに認められるが、600nm帯の強い蛍光スペクトルが観測された。またローダミン溶液がフィルターの役割をするので端面から離れるにつれて励起光の影響を受けないことがグラフから良く観察された。
【0038】
また端面からの距離を5cmに固定し、LEDのスポット径を1,3,5cmと変化させた場合の強度を測定した。その結果を図13に示す。同グラフより、スポット径が大きくなるにつれて蛍光強度が小さくなった。これはLEDを徐々に離して設置してスポット径を大きくしているので、これに依存して照射密度が低下していると推測される。
【0039】
以上の結果から、本発明によれば、図1及び図6に示したような非常に簡単な構成で微少量の液体試料を測定することができることが示された。具体的には液体コアファイバ長が1cmのとき1.59μlの測定を実現したため、0.5cmにした場合は1μl以下の測定が実現可能である。
【0040】
また図9〜図11に示したように液体コアファイバ長をできる限り短くすると高強度の測定結果が得られることからコアファイバ長は可能な限り短いことが肝要であることが示された。
【0041】
更に、上記の通り簡単な構成で且つ特殊加工を必要としないため部品コスト及び製造コストを抑制することができることから、歩留まりを良くすることができる。
【図面の簡単な説明】
【0042】
【図1】本発明の実施の形態に係る微少量液体測定装置の全体構成図である。
【図2】本発明の実施の形態に係る微少量液体測定装置の測定経路に設けられる液体コアファイバ1の拡大透視図である。
【図3】液体コアファイバ1のより具体的な構成を説明するための図である。
【図4】液体コアファイバ1の変形例を示す図である。
【図5】図4の液体コアファイバ1(変形例)を用いた測定方法を説明するための図である。
【図6】図4の液体コアファイバ1(変形例)を用いた他の測定方法を説明するための図である。
【図7】液体試料(ローダミン)の吸光度測定の結果を示すグラフである。
【図8】図7の結果に基づいて算出した液体試料(ローダミン)の透過率と吸収率の結果を示すグラフである。
【図9】液体コアファイバ長に対する強度変化を測定した結果を示すグラフである。
【図10】液体試料(ローダミン)の濃度を変化させたときの液体コアファイバ長に対する強度変化を測定した結果を示すグラフである。
【図11】図10の結果に基づいて算出した液体試料(ローダミン)の透過率の結果を示すグラフである。
【図12】図6の測定方法を用い、励起光の照射位置を変化に対する強度変化を測定した結果を示すグラフである。
【図13】図6の測定方法を用い、励起光のスポット径の変化に対する強度変化を測定した結果を示すグラフである。
【図14】従来の微少量液体測定装置の構成を示す図である。
【図15】従来の微少量液体測定装置の開放端の各種構成を示す図である。
【符号の説明】
【0043】
1…液体コアファイバ
10…第1光ファイバ
11…第2光ファイバ
12…導管
12a…注入用開口
12b…排出用開口
13…光源
14…分光器
15…光カプラ
100…測定装置
101…光ファイバ
101…導波管
102…光ファイバ
103…光源
104…光分析器
105…ガイド
106…プッシャーアーム
107…光カプラ
108,109…光ファイバ
110…バレル
111…開放端
112…液体試料
113…ミラー
114…固定金具
115…水銀滴
116…穴

【特許請求の範囲】
【請求項1】
微少量の液体試料が充填される所定長さの円筒状のキャピラリーと、
前記円筒状のキャピラリーの両端に嵌挿される一対の光ファイバと、
を備え、
前記一対の光ファイバの一方の端面から前記円筒状のキャピラリーに充填された前記液体試料に測定光を入射し、前記液体試料を透過した光を他方の光ファイバで受光して光学処理手段に送り、前記液体試料の成分濃度を測定することを特徴とする微少量液体測定装置。
【請求項2】
前記円筒状のキャピラリーは、
当該円筒状キャピラリーの側面に前記液体試料を充填及び/または排出するための開口部を備えていることを特徴とする請求項1記載の微少量液体測定装置。
【請求項3】
前記円筒状キャピラリーの長軸方向に対して垂直な方向から当該円筒状キャピラリーに励起光を出射して、当該円筒状キャピラリー内に充填された液体試料の成分を励起させるための励起光出力手段を備え、
前記励起光出力手段によって励起された光を前記一対の光ファイバで受光して光学処理手段に送り、前記液体試料の成分濃度を測定することを特徴とする請求項1又は2記載の微少量液体測定装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate


【公開番号】特開2008−116313(P2008−116313A)
【公開日】平成20年5月22日(2008.5.22)
【国際特許分類】
【出願番号】特願2006−299563(P2006−299563)
【出願日】平成18年11月2日(2006.11.2)
【出願人】(000147350)株式会社精工技研 (154)
【Fターム(参考)】