説明

断面データ取得方法、システム、及び断面検査方法

【課題】測定対象物の任意断面に相当する三次元データの任意断面データを、座標位置合わせ等を行うことなく簡易に取得できるようにする。
【解決手段】基準平面11P上に測定対象物12aを載置し、測定対象物12aを挟んで少なくとも3つのマーカー13aを配置する。次に、マーカー13aの三次元座標値に対して位置合わせが可能なように、測定対象物12aの三次元データを取得する。そして、3つのマーカー13aの三次元座標値に基づいて第1の平面π0を求め、3つのマーカーのうち、2つのマーカー131,132を通り、第1の平面π0に垂直な第2の平面π1を決定する。しかる後、第2の平面π1を決定づける平面方程式と三次元データとの交点から、前記三次元データの断面データを取得する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、対象物の三次元形状に関するデータである三次元データから、任意の断面データを取得するための方法、システム、及びこれを用いた断面検査方法に関する。
【背景技術】
【0002】
測定対象物の三次元データは、例えば光切断法とも呼ばれる光投影法が採用された、非接触型の三次元デジタイザにより求めることができる。これは、測定対象物にスリット状の検出光を投光し、その反射光を受光して得られた撮像データに基づいて、その測定対象物の三次元データを取得するものである(例えば特許文献1参照)。
【0003】
三次元デジタイザは、測定対象物の設計検証や品質検査等のためにしばしば用いられる。例えば、測定対象物の断面形状が設計通りに仕上げられているかを検査する用途に用いられる。この場合、三次元デジタイザにより取得された三次元データの任意の断面データが取得される。従来、かかる断面データの取得に際しては、三次元デジタイザによる三次元データを、測定対象物の三次元設計データ(例えば三次元CADデータ)に座標移動させる方法が取られている。例えば、前記CADデータに基づく形状に、測定した三次元データに基づく形状をベストフィットさせる処理を行って当該三次元データをCAD座標系に移動させた上で、三次元CADデータ上の任意の座標位置で断面を切ることにより断面データが取得されていた。
【特許文献1】特開2005−321278号公報
【発明の開示】
【発明が解決しようとする課題】
【0004】
従来の断面データ取得方法では、測定に係る三次元データに、その断面に関する明示的な情報が含まれていないことに起因して、CADデータのような三次元設計データとの座標位置合わせの作業が必要となる。このため、任意の断面データを取得するまでの処理が煩雑になるという不都合があった。
【0005】
本発明の目的は、測定対象物の任意断面に相当する三次元データの任意断面データを、座標位置合わせ等を行うことなく簡易に取得することができる断面データ取得方法、システム、及びこれを用いた断面検査方法を提供することにある。
【課題を解決するための手段】
【0006】
本発明の請求項1に係る断面データ取得方法は、基準平面上に測定対象物を載置し、前記基準平面上に、前記測定対象物を挟んで少なくとも3つのマーカーを配置するステップと、前記マーカーの三次元座標値に対して位置合わせが可能なように、前記基準平面上に載置された前記測定対象物の三次元データを取得するステップと、前記少なくとも3つのマーカーの三次元座標値に基づいて、第1の平面π0を求めるステップと、前記少なくとも3つのマーカーのうち、2つのマーカーを通り、前記第1の平面π0に垂直な第2の平面π1を決定するステップと、前記第2の平面π1を決定づける平面データと前記三次元データとの交点から、前記三次元データの断面データを取得するステップとを含むことを特徴とする。
【0007】
上記各ステップを含む方法によれば、基準平面上に配置された少なくとも3つのマーカーの三次元座標値を利用して第1の平面π0を求め、さらに、2つのマーカーを通り、前記第1の平面π0に垂直な第2の平面π1を求める手法が採用されている。この第2の平面π1は、前記2つのマーカーにより座標位置が把握されている平面である。つまり、第2の平面π1が測定対象物を縦断している場合、その断面は位置関係が明示的なものとなる。一方、測定対象物の三次元データは、前記マーカーの三次元座標値に対して位置合わせが可能に取得されている。従って、第2の平面π1を決定づける平面データ(例えば平面方程式)と測定対象物の三次元データとの交点から前記三次元データの断面データを取得することで、測定対象物において位置情報が明示化された断面データを取得することができる。
【0008】
また、本発明の請求項2に係る断面データ取得方法は、基準平面上に測定対象物を載置し、前記基準平面上に、前記測定対象物を挟んで4つ以上のマーカーを配置するステップと、前記マーカーの三次元座標値に対して位置合わせが可能なように、前記基準平面上に載置された前記測定対象物の三次元データを取得するステップと、前記4つ以上のマーカーから、その短絡線が前記測定対象物を横断する第1のマーカー及び第2のマーカーと、これらマーカーとは異なる第3のマーカーとの少なくとも3つのマーカーを選択するステップと、前記少なくとも3つのマーカーの三次元座標値を求めるステップと、前記少なくとも3つのマーカーの三次元座標値に基づいて、第1の平面π0を求めるステップと、前記第1のマーカー及び第2のマーカーを通り、前記第1の平面π0に垂直な第2の平面π1を決定するステップと、前記第2の平面π1を決定づける平面データと前記三次元データとの交点から、前記三次元データの断面データを取得するステップとを含むことを特徴とする。
【0009】
上記各ステップを含む方法によれば、基準平面上に、測定対象物を挟んで配置された4つ以上のマーカーから、少なくとも3つのマーカーを選択するステップが含まれる。そして、選択された少なくとも3つのマーカーの三次元座標値を利用して第1の平面π0を求め、さらに、2つのマーカーを通り、前記第1の平面π0に垂直な第2の平面π1を求める手法が採用されている。この第2の平面π1は、前記2つのマーカーにより座標位置が把握されている平面である。つまり、第2の平面π1が測定対象物を縦断している場合、その断面は位置関係が明示的なものとなる。このような第2の平面π1は、マーカーを適宜選択することで複数得ることができる。一方、測定対象物の三次元データは、前記マーカーの三次元座標値に対して位置合わせが可能に取得されている。従って、第2の平面π1を決定づける平面データ(例えば平面方程式)と測定対象物の三次元データとの交点から前記三次元データの断面データを取得することで、測定対象物において位置情報が明示化された断面データを1個若しくは複数個だけ取得することができる。
【0010】
上記いずれかの方法において、前記第2の平面π1を決定づける平面データが平面方程式で定められるデータであり、前記三次元データがポリゴンメッシュデータであって、前記断面データは、前記平面方程式とポリゴンメッシュとの交点を結ぶポリラインとして取得することが望ましい(請求項3)。この方法によれば、第2の平面π1を決定づける平面方程式と、測定対象物の三次元形状を決定づけるポリゴンメッシュデータとの交点を求めるという、比較的演算が容易な手法で断面データが取得されるようになる。
【0011】
上記いずれかの方法において、測定対象物の三次元データは、前記測定対象物に所定の検出光を投光手段と、その反射光を受光する撮像手段とを備える測定手段を用い、前記検出光の投受光により得られた撮像データに基づき、光投影法により求められるようにすることができる(請求項4)。この方法によれば、いわゆる非接触型の三次元デジタイザのような測定手段を用いて、測定対象物の三次元データが取得されるようになる。
【0012】
また、上記いずれかの方法において、前記マーカーとして、ポイント位置が特定可能な平面状マーカーが用いられ、前記マーカーの三次元座標値は、写真測量により求められることが望ましい(請求項5)。この方法によれば、例えばポイント位置が特定可能な円(中心点)、三角形(重心)、四角形(対角線の交点)のような平面状マーカーを、例えばデジタルカメラ等で撮像することで実現される写真測量にて、マーカーの三次元座標値が取得されるようになる。
【0013】
また、前記マーカーとして、球面を備える球マーカーが用いられ、前記測定手段により、前記球マーカーが配置された前記基準平面を含めて前記検出光の投受光を行い、これにより得られた撮像データに基づき前記球マーカーの三次元座標値を求めるように構成することもできる(請求項6)。この方法によれば、球マーカーを用いることにより、写真測量を行うことなく、例えば上記の三次元デジタイザのような測定手段により球マーカーの三次元座標値を求めることが可能となる。
【0014】
上記いずれかの方法において、前記マーカーとして、各マーカーの個体識別を可能とする識別パターンが付与されたマーカーが用いられることが望ましい(請求項7)。この方法によれば、各マーカーの個体識別が可能となるので、マーカーの特定が容易となり、例えばマーカーの選択ステップの容易化を図ることができる。
【0015】
また、球マーカーを用いる場合には、その球マーカーとして、前記球面の球径が異なる2種以上の球マーカーを用いられることが望ましい(請求項8)。この方法によれば、球マーカーの個体識別を、そのサイズに基づいて行うことができる。
【0016】
本発明の請求項9に係る断面データ取得システムは、測定対象物の三次元データを取得する測定手段と、基準平面上に測定対象物を載置し、前記基準平面上に、前記測定対象物を挟んで少なくとも3つのマーカーが配置された状態において、これらマーカーの三次元座標値を求める座標値検出手段と、前記測定手段により取得された三次元データを、前記マーカーの三次元座標値に対して位置合わせする統合手段と、前記3つのマーカーの三次元座標値に基づいて第1の平面π0を求めると共に、前記少なくとも3つのマーカーのうち、2つのマーカーを通り、前記第1の平面π0に垂直な第2の平面π1を求める平面抽出手段と、前記第2の平面π1を決定づける平面データと前記三次元データとの交点から、前記三次元データの断面データを求める断面演算手段とを備えることを特徴とする。
【0017】
この構成によれば、座標値検出手段により、基準平面上に配置された少なくとも3つのマーカーの三次元座標値が求められる。また、平面抽出手段により、3つのマーカーの三次元座標値を利用して、第1の平面π0及び第2の平面π1が求められる。この第2の平面π1は、2つのマーカーにより座標位置が把握されている平面である。つまり、第2の平面π1が測定対象物を縦断している場合、その断面は位置関係が明示的なものとなる。一方、測定対象物の三次元データは、統合手段により前記マーカーの三次元座標値に対して位置合わせされる。従って、断面演算手段により求められる断面データ、すなわち第2の平面π1を決定づける平面データと測定対象物の三次元データとの交点から求められる前記三次元データの断面データは、測定対象物において位置情報が明示化された断面データとなる。
【0018】
また、本発明の請求項10に係る断面データ取得システムは、測定対象物の三次元データを取得する測定手段と、基準平面上に測定対象物を載置し、前記基準平面上に、前記測定対象物を挟んで配置された4つ以上のマーカーから、その短絡線が前記測定対象物を横断する第1のマーカー及び第2のマーカーと、これらマーカーとは異なる第3のマーカーとの少なくとも3つのマーカーを選択する選択手段と、前記少なくとも3つのマーカーの三次元座標値を求める座標値検出手段と、前記測定手段により取得された三次元データを、前記マーカーの三次元座標値に対して位置合わせする統合手段と、前記3つのマーカーの三次元座標値に基づいて第1の平面π0を求めると共に、前記少なくとも3つのマーカーのうち、2つのマーカーを通り、前記第1の平面π0に垂直な第2の平面π1を求める平面抽出手段と、前記第2の平面π1を決定づける平面データと前記三次元データとの交点から、前記三次元データの断面データを求める断面演算手段とを備えることを特徴とする。
【0019】
この構成によれば、選択手段により、基準平面上に配置された4つ以上のマーカーから、少なくとも3つのマーカーが選択される。また、座標値検出手段により、基準平面上に配置された少なくとも3つのマーカーの三次元座標値が求められる。そして、平面抽出手段により、3つのマーカーの三次元座標値を利用して、第1の平面π0及び第2の平面π1が求められる。この第2の平面π1は、2つのマーカーにより座標位置が把握されている平面である。つまり、第2の平面π1が測定対象物を縦断している場合、その断面は位置関係が明示的なものとなる。このような第2の平面π1は、選択手段においてマーカーを適宜選択することで複数得ることができる。一方、測定対象物の三次元データは、統合手段により前記マーカーの三次元座標値に対して位置合わせされる。従って、断面演算手段により求められる断面データ、すなわち第2の平面π1を決定づける1若しくは複数の平面データと測定対象物の三次元データとの交点から求められる前記三次元データの断面データは、測定対象物において位置情報が明示化された断面データとなる。
【0020】
上記いずれかのシステムにおいて、前記座標値検出手段は、前記基準平面上に配置されたマーカーを含んだ画像を撮像する撮像手段と、前記画像に基づき写真測量に関する演算を行う写真測量演算手段とを含む構成とすることができる(請求項11)。この構成によれば、撮像手段により撮像される画像に基づいた写真測量にて、マーカーの三次元座標値を取得できるようになる。
【0021】
上記いずれかのシステムにおいて、前記測定手段は、前記測定対象物に所定の検出光を投光手段と、その反射光を受光する撮像手段と、前記検出光の投受光により得られた撮像データに基づき、光投影法を用いて三次元データを求めるデータ処理手段とを備える三次元形状測定装置からなることが望ましい(請求項12)。この構成によれば、いわゆる非接触型の三次元デジタイザのような測定手段を用いて、測定対象物の三次元データが取得されるようになる。
【0022】
この場合、前記三次元形状測定装置は、前記座標値検出手段を兼ねるものであり、球面を備える球マーカーが配置された前記基準平面を含めて前記検出光の投受光を行い、これにより得られた撮像データに基づき前記球マーカーの三次元座標値を求める座標値検出部を備えることが望ましい(請求項13)。この構成によれば、写真測量を行うことなく、例えば三次元デジタイザのような測定手段により球マーカーの三次元座標値を求めることが可能となる。
【0023】
本発明の請求項14に係る断面検査方法は、基準平面上に所定の基準位置を提供する基準ブロックと検査対象物とを離間して固定するステップと、前記基準平面上に、前記基準ブロック及び検査対象物を挟んで少なくとも3つのマーカーを配置するステップと、前記マーカーの三次元座標値に対して位置合わせが可能なように、前記基準平面上に固定された前記基準ブロック及び測定対象物の三次元データを取得するステップと、前記少なくとも3つのマーカーの三次元座標値に基づいて、第1の平面π0を求めるステップと、前記少なくとも3つのマーカーのうち、2つのマーカーを通り、前記第1の平面π0に垂直な第2の平面π1を決定するステップと、前記第2の平面π1を決定づける平面データと前記三次元データとの交点から、前記三次元データの断面データを取得するステップと、前記断面データから導出された検査対象物と基準ブロックの基準位置との位置関係が、予め定められた公差の範囲内であるか否かを判定するステップとを含むことを特徴とする。
【0024】
また、本発明の請求項15に係る断面検査方法は、基準平面上に所定の基準位置を提供する基準ブロックと検査対象物とを離間して固定するステップと、前記基準平面上に、前記基準ブロック及び検査対象物を挟んで4つ以上のマーカーを配置するステップと、前記マーカーの三次元座標値に対して位置合わせが可能なように、前記基準平面上に固定された前記基準ブロック及び測定対象物の三次元データを取得するステップと、前記4つ以上のマーカーから、その短絡線が前記測定対象物を横断する第1のマーカー及び第2のマーカーと、これらマーカーとは異なる第3のマーカーとの少なくとも3つのマーカーを選択するステップと、前記少なくとも3つのマーカーの三次元座標値を求めるステップと、前記少なくとも3つのマーカーの三次元座標値に基づいて、第1の平面π0を求めるステップと、前記第1のマーカー及び第2のマーカーを通り、前記第1の平面π0に垂直な第2の平面π1を決定するステップと、前記第2の平面π1を決定づける平面データと前記三次元データとの交点から、前記三次元データの断面データを取得するステップと、前記断面データから導出された検査対象物と基準ブロックの基準位置との位置関係が、予め定められた公差の範囲内であるか否かを判定するステップとを含むことを特徴とする。
【0025】
これらの検査方法によれば、断面位置が明示された状態で、検査対象物及び基準ブロックの断面データを取得できる。従って、マーカーの配置位置を所望の箇所とすることで、検査対象物の基準ブロック(基準位置)に対するズレ量を正確に把握することができる。
【0026】
上記いずれかの検査方法において、前記基準ブロックが、前記検査対象物に対する高さ比較の基準となる第1基準位置、及び/又は、前記検査対象物に対する隙間測定の基準となる第2基準位置を含むことが望ましい(請求項16)。この検査方法によれば、第1基準位置に基づき検査対象物の仕上がりが段差公差の範囲内にあるか否か、また第2基準位置に基づき隙間公差の範囲内にあるか否かを判定することができる。
【発明の効果】
【0027】
本発明によれば、基準平面上に配置された少なくとも3つのマーカーの三次元座標値に基づく第1の平面π0から導出される第2の平面π1は、2つのマーカーにより座標位置が把握されている平面であることから、第2の平面π1が測定対象物を縦断している場合、その断面は位置関係が明示的なものとなる。このため、第2の平面π1を決定づける平面データと測定対象物の三次元データとの交点から求められる三次元データの断面データは、位置情報が明示化された断面データとなる。従って、測定対象物の任意断面に相当する三次元データの任意断面データを、座標位置合わせ等を行うことなく所定の演算手法を用いて自動的に取得することができる。また、この方法を、測定対象物の基準ブロック(基準位置)に対するズレ量検知に適用すれば、例えば測定対象物の隙間段差検査を自動化することが可能となる。
【発明を実施するための最良の形態】
【0028】
以下、図面に基づいて本発明の実施形態につき詳細に説明する。
図1は、本発明に係る断面データの取得方法を説明するための模式図である。ここでは、平坦な基準平面11Pを提供する固定ゲージ11の前記基準平面11P上に、飲料容器の形態を備える測定対象物12aが載置固定され、この測定対象物12aについての任意断面データを取得する例を示している。
【0029】
先ず、基準平面11Pの上に、測定対象物12aが位置決め固定される。また、基準平面11Pには、3つのマーカー13aが配置される。マーカー13aは、例えば円形の平面状シールからなる。ここでは、測定対象物12aを挟んで配置された第1マーカー131及び第2マーカー132と、これらマーカーを結ぶ線を底辺とする三角形の頂点位置に配置された第3マーカー133とが配置されている例を示している。
【0030】
その後、第1〜第3マーカー131〜133の三次元座標値に対して位置合わせが可能なように、測定対象物12aの三次元データが取得される。かかる三次元データは、例えば非接触型の三次元デジタイザにより求めることができる。なお、マーカーの三次元座標値は、例えば写真測量の手法を用いて求めることができる。この場合、三次元デジタイザにより、測定対象物12aだけでなく基準平面11P上のマーカー13aを含めて測定しておくことで、マーカー13aの三次元座標値への三次元データの位置合わせが可能となる。また、測定対象物12aにも別のマーカーを貼付しておき、このマーカーを写真測量の対象とすると共に三次元デジタイザの測定対象としておけば、上記マーカー13aを必ずしも三次元デジタイザの測定対象とせずとも、マーカー13aの三次元座標値への三次元データの位置合わせが可能となる。或いは、写真測量等を行わずとも、マーカー13aとして立体的な球マーカーを用いれば、マーカー13aの三次元座標値と測定対象物12aの三次元データとの位置合わせが可能となる。これらの点については、後記の実施形態で詳述する。
【0031】
3つのマーカー13aは、基準平面11Pを利用して1つの平面を求めるために用いられる。すなわち、次のステップとして第1〜第3マーカー131〜133の各三次元座標値に基づいて、第1の平面π0が求められる。基準平面11Pは、第1の平面π0を定めるために3つのマーカー13aの貼付基台を提供するものであり、必ずしも平面でなくとも良い。
【0032】
一方、第1マーカー131及び第2マーカー132は、測定対象物12aにおいて断面を求めるべき断面線上に配置される。そして、さらに次のステップとして、この断面位置を定める第1マーカー131及び第2マーカー132を通り、第1の平面π0に垂直な面をなす第2の平面π1が決定される。この第2の平面π1は、測定対象物12aの所望箇所について断面を成す面であって、しかも三次元座標値が定かな第1マーカー131及び第2マーカー132に基づいているため、位置関係が把握されている平面である。なお、測定対象物12aの三次元データを求めるステップは、平面π0、π1を求めるステップの後、或いはその中間に行うようにしても良い。
【0033】
しかる後、第2の平面π1を決定づける平面データと測定対象物12aの三次元データとの交点から、第1マーカー131及び第2マーカー132(の中心)の短絡線上における測定対象物12a(三次元データ)の断面データが取得される。ここで、前記平面データは、例えば第2の平面π1を決定づける平面方程式として保持することができる。また前記三次元データは、ポリゴンメッシュデータとして保持することができる。この場合、断面データは、前記平面方程式とポリゴンメッシュデータとの交点を結ぶポリラインとして取得される。
【0034】
このような断面データの取得方法によれば、基準平面上に配置された3つのマーカー13aの三次元座標値を利用して第1の平面π0を求め、さらに、第1マーカー131及び第2マーカー132を通り、第1の平面π0に垂直な第2の平面π1を求める手法が採用されている。この第2の平面π1は、第1マーカー131及び第2マーカー132により座標位置が把握されている平面であるので、測定対象物12aにおける断面位置が明示的なものとなる。一方、測定対象物12aの三次元データは、マーカー13aの三次元座標値に対して位置合わせが可能に取得されている。従って、例えば第2の平面π1を決定づける平面方程式と測定対象物12aのポリゴンメッシュデータとの交点から断面データを取得することで、位置情報が明示化された測定対象物12aの断面データを取得することができる。
【0035】
図2は、本発明に係る断面データの取得方法の、他の実施形態を説明するための模式図である。ここでは、固定ゲージ11の前記基準平面11P上に、円柱状の測定対象物12bが載置固定され、この測定対象物12bについての任意断面データを取得する例を示している。
【0036】
先ず、基準平面11Pの上に、測定対象物12bが位置決め固定される。また、基準平面11Pには、円形の平面状シールからなる6つのマーカー13bが配置される。ここでは、測定対象物12bを挟んで配置された第1マーカー134及び第2マーカー135、第3マーカー136及び第4マーカー137、並びに第5マーカー138及び第6マーカー139が配置されている例を示している。
【0037】
その後、先に説明した実施形態と同様にして、マーカー13bの三次元座標値に対して位置合わせが可能なように、測定対象物12bの三次元データが取得される。これに続き、前記6つのマーカー13bから、その短絡線が測定対象物12bを横断する2つのマーカーと、これらマーカーとは異なる1つ以上のマーカーが選択される。例えば測定対象物12bを横断する2つのマーカーとして、第1マーカー134及び第2マーカー135が選択され、これらマーカーとは異なるマーカーとして第4マーカー137及び第5マーカー138が選択される。ここでは、第1マーカー134及び第2マーカー135が断面を定めるマーカーである。
【0038】
これらのマーカーは、基準平面11Pを利用して1つの平面を求めるために用いられる。すなわち、次のステップとして第1、第2、第4、第5マーカー134、135、137、138の各三次元座標値に基づいて、第1の平面π0が求められる。次いで、第1マーカー134及び第2マーカー135を通り、第1の平面π0に垂直な面をなす第2の平面π11が決定される。以下、断面を定めるマーカーとして第3マーカー136及び第4マーカー137が選択されて第3の平面π12が決定され、また断面を定めるマーカーとして第5マーカー138及び第6マーカー139が選択されて第4の平面π13が決定される。
【0039】
しかる後、第2の平面π1を決定づける平面データと測定対象物12bの三次元データとの交点から、第1マーカー134及び第2マーカー135(の中心)の短絡線上における測定対象物12b(三次元データ)の断面データが取得される。上記と同様に断面データ、例えば第2の平面π1を決定づける平面方程式と、測定対象物12bのポリゴンメッシュデータとの交点を結ぶポリラインとして取得される。同様にして、第3の平面π12を決定づける平面方程式と測定対象物12bのポリゴンメッシュデータとの交点、第4の平面π13を決定づける平面方程式と測定対象物12bのポリゴンメッシュデータとの交点を求めることで、各々のマーカーの短絡線上における断面データがそれぞれ取得されるものである。
【0040】
このような断面データの取得方法によれば、基準平面上に配置された6つのマーカーから、少なくとも3つのマーカーを選択するステップが含まれる。そして、選択された少なくとも3つのマーカーの三次元座標値を利用して第1の平面π0を求め、さらに、2つのマーカーを通り、前記第1の平面π0に垂直な第2の平面π11、第3の平面π12及び第4の平面π13を求める手法が採用されている。この第2〜第4の平面π11〜π13は、第1マーカー134〜第6マーカー139により各々座標位置が把握されている平面であるので、測定対象物12bにおける断面位置が明示的なものとなる。一方、測定対象物12bの三次元データは、マーカー13bの三次元座標値に対して位置合わせが可能に取得されている。従って、例えば第2の第2〜第4の平面π11〜π13を決定づける平面方程式と測定対象物12bのポリゴンメッシュデータとの交点から断面データを取得することで、位置情報が明示化された測定対象物12bの断面データを複数個取得することができる。
【0041】
次に、上記で説明した断面データの取得方法を実現するための断面データ取得システムについて説明する。図3は、本発明に係る断面データ取得システムSの一実施形態を示す構成図である。この断面データ取得システムSは、測定ステージ10上の測定対象物12(ここでは自動車のドア部分を例示している)についての断面データを取得するためのものであって、非接触型の三次元デジタイザ20(三次元形状測定装置)と、デジタルカメラ30(撮像手段)と、パーソナルコンピュータ40とを含んで構成されている。
【0042】
測定ステージ10は、基準平面11Pを提供する固定ゲージ11と、基準平面11Pの上に載置固定される測定対象物12と、測定対象物12を挟んで配置されるマーカー13とを有している。マーカー13としては、形状的特徴に基づきポイント位置が特定可能な平面状マーカーが用いられる。ポイント位置は、例えば円マーカーの場合は中心点であり、三角形マーカーの場合は重心であり、四角形マーカーの場合は対角線の交点である。このようなポイント位置が、マーカーの三次元座標値を求めるポイントとなる。また、マーカー13には、各マーカーの個体識別を可能とする識別パターンが付与されていることが望ましい。このようなマーカーを用いれば、マーカーを画像情報からパターン識別することが可能となり、例えばマーカーの選択ステップの容易化を図ることができる。
【0043】
三次元デジタイザ20は、光切断法と呼ばれる方式を用いて測定対象物12の三次元データを求めるものである。この三次元デジタイザ20は、所定の発光手段と受光手段とを含む光学ユニットが内蔵された略直方体形状のハウジングに、投光窓を備えた投光部21と、受光窓を備えた受光部22とが設けられてなる。投光部21は、受光部22の上側の、基線長に応じた所定距離だけ離れた位置に設けられている。
【0044】
図4は、三次元デジタイザ20による投受光動作を示す説明図である。投光部21からは、水平方向に拡がるレーザビームであるスリット光21Eが射出される。このスリット光21Eは、水平方向に放射角度φで拡がり(扇形)、垂直方向に幅Wを有する平面状の光である。スリット光21Eは、測定対象物12に向けて照射される。スリット光21Eは測定対象物12の表面で反射し、その反射光22Rの一部が受光部22に入射するようになっている。
【0045】
図5は、三次元デジタイザ20の基本的な内部構成を示す模式図、図6は、三次元デジタイザ20による三次元計測方法の原理を示す説明図である。図5に示すように、投光部21(投光手段)は、光源となるレーザ光を発生するレーザ光源211と、前記レーザ光を投光窓に導く投光光学系212と、面回転するガルバノミラー213とを含んでいる。また受光部22は、反射光22Rが入射される受光レンズ221と、該受光レンズ221の光路上に配置されるCCD(Charge Coupled Device)等からなる撮像素子222(撮像手段)とを含んでいる。
【0046】
投光部21からは、測定対象物120に向けて所定のガルバノ回転角でガルバノミラー213を回転させつつ、順次スリット光21E−1、21E−2、21E−3が投光される。かかる投光は、測定対象物120の全域を走査するように行われる。このときの反射光は、受光レンズ221を介して撮像素子222で受光される。撮像素子222で受光される画像222Dは、測定対象物120の立体形状に応じたスリット像120E−1、120E−2、120E−3を含むものとなる。そして、スリット光21E−1、21E−2、21E−3の投光角と、撮像素子222の受光エリアにおけるスリット像120E−1、120E−2、120E−3の位置とから、三次元デジタイザ20に内蔵されているデータ処理手段により、三次元デジタイザ20から測定対象物120までの距離が三角測量の原理で算出される。
【0047】
図6に基づき測定原理を説明する。先ず、投光点からのレーザ光Fの投光角θは、ガルバノミラー213のガルバノ回転角から求められる。レーザ光Fがある測定面120A上の点P1で反射され、その反射光R1が受光部22に入射したとすると、撮像素子222の受光面で検出される反射光R1の像位置yiから、反射光R1の受光角φが算出される。そして、投光点と受光点との間の基線長Lと投光角θ、受光角φより、測定物面上の点P1までの距離Z1が求められる。これは、別の測定面120B上の点P2で反射された反射光R2でも同様であり、この場合は、距離Z2が求められる。
【0048】
図3に戻って、デジタルカメラ30は、写真測量を行うためのデジタル画像を取得するためのものである。このデジタルカメラ30は、一眼レフレックス型のデジタルカメラが好適に用いられる。デジタルカメラ30により、基準平面11Pの上に載置固定された測定対象物12と、マーカー13と、図略のスケールバー(図11参照)とを含んだ画像が複数枚撮像される。
【0049】
パーソナルコンピュータ40は、三次元デジタイザ20により取得された三次元形状の測定データ、デジタルカメラ30により取得された画像データを取り込んで、測定対象物12についての断面データを求めるための各種演算を行う。
【0050】
図7は、パーソナルコンピュータ40の概略構成を示すブロック図である。パーソナルコンピュータ40には、前記三次元形状の測定データ及び画像データを取得するために、三次元デジタイザ20及びデジタルカメラ30との通信を可能とするためのインターフェイス41、前記三次元形状の測定データ及び画像データ、さらに演算処理や制御処理などのデータを一時的に格納するRAM(Random Access Memory)42、種々の制御プログラム等を記憶するROM(Read Only Memory)43、各種の動作を制御するCPU(Central Processing Unit)44及び液晶ディスプレイ等からなる表示部45が備えられている。
【0051】
図8は、CPU44の機能構成を示す機能ブロック図である。CPU44は、ROM43に格納された制御プログラムを実行することにより、写真測量処理部441(座標値検出手段)、三次元形状演算部442、平面抽出部443(平面抽出手段)、マーカー選択部444(選択手段)、統合処理部445(統合手段)、断面演算部446(断面演算手段)及び表示制御部447を具備するように機能する。
【0052】
写真測量処理部441は、デジタルカメラ30により視線方向を変えて複数枚取得された測定対象物12、マーカー13及びスケールバーについてのデジタル画像データを解析する。具体的には写真測量処理部441は、画像データからマーカー13を認識し、視差を利用した写真測量の一般的手法に基づいて、マーカー13の中心位置(全円の中心位置)の三次元座標値を求める演算を行う。
【0053】
三次元形状演算部442は、三次元デジタイザ20により取得された測定対象物12についての測定データ(三次元形状の測定データ(x,y,z))に基づいて、測定対象物12の三次元形状を表わす三次元データを求める演算を行う。例えば三次元形状演算部442は、三次元形状の測定データ(x,y,z)に基づいて、測定対象物12のポリゴンモデル(ポリゴンメッシュ)を生成する。
【0054】
平面抽出部443は、写真測量処理部441により求められた各マーカー13の三次元座標値のうち、3つ以上のマーカー13の三次元座標値を使用して、先に図1、図2で説明したような第1の平面π0を求める演算を行う。ここでは、マーカー13は固定ゲージ11の基準平面11Pに貼付されているので、第1の平面π0は基準平面11Pに沿う面となる。さらに平面抽出部443は、第1の平面π0の抽出に用いられた3つ以上のマーカーのうち2つのマーカーを通り、第1の平面π0に垂直な第2の平面π1を求める演算を行う。なお、第1の平面π0及び第2の平面π1は、例えば平面方程式として求められる。
【0055】
マーカー選択部444は、マーカー13が多数(4つ以上)存在する場合において、第1の平面π0及び第2の平面π1を定める少なくとも3つのマーカーを選択指定する動作を行う。3つのマーカーとしては、その短絡線が測定対象物12を横断する第1のマーカー及び第2のマーカー(第2の平面π1を定めるマーカー)と、これらマーカーとは異なる第3のマーカーとが選択される。マーカー選択部444によるマーカー選択動作は、ユーザからの手動指定を受け付けるものであっても良いが、予め識別パターンが付与されているマーカー13を使用し、その識別パターンを照合して、ユーザが選択により意図されたマーカー13を自動選択させるようにすることが望ましい。
【0056】
統合処理部445は、三次元形状演算部442により求められた三次元データを、写真測量処理部441により求められたマーカー13の三次元座標値に対して位置合わせする処理を行う。この統合位置合わせは、測定対象物12の表面に所定のマーカーを貼付しておき、三次元デジタイザ20による測定で導出された前記マーカーの三次元座標値を、デジタルカメラ30による写真測量で求められた前記マーカーの三次元座標値に座標変換する方法を用いて行うことができる。
【0057】
断面演算部446は、第2の平面π1を決定づける平面方程式と前記三次元データを構成するポリゴンメッシュのポリゴンエッジとの交点を求める演算を行う。そして、求められた交点をポリラインで結ぶことで、第2の平面π1により切断された箇所における測定対象物12の断面データを求める。
【0058】
表示制御部447は、断面演算部446により求められた断面データを、適宜な画像情報として表示部45(図7)へ表示させるためのデータ処理を行う。なお、取得された断面データに基づき所定の検査判定処理(例えば段差隙間検査)が行われる場合は、図略の検査判定処理部に当該断面データが送信される。
【0059】
以上の通り構成された断面データ取得システムSを、自動車のアウターボディを構成するプレス部品の段差隙間検査(断面検査の一例)に適用する場合の検査手順並びに動作について説明する。図9は、段差隙間検査方法の第1実施形態に係る工程フローを示すフローチャートである。以下、図9のフローチャートに示すステップ#11〜#18の順に従い、各ステップの詳細、並びにそのときの断面データ取得システムSの動作について順次説明する。
【0060】
[ステップ#11]
まず図10に示すように、測定ステージ60を構成する固定ゲージ61の基準平面上61P上に、測定対象物51が固定される。ここでは測定対象物51は、自動車の前輪付近のアウターボディを構成するプレス部品を例示している。固定ゲージ61の基準平面上61P上には、予め所定の基準位置を提供する帯状の基準ブロック62(段差隙間検査のための治具)が支柱63を用いて複数立設されている。
【0061】
基準ブロック62は、測定対象物51の周囲を取り囲むように、精度よく隙間検査並びに高さ検査が行いうる間隔が取れる位置に各々立設されている。基準ブロック62には、測定対象物51に対する高さ比較の基準となる第1基準位置と、測定対象物51に対する隙間測定の基準となる第2基準位置とが備えられている(図17に基づき後記で説明する)。測定対象物51は、このような複数の基準ブロック62で囲まれた空間内に、その外周縁部が基準ブロック62の内周側の縁部と離間した状態で据え付け固定される。
【0062】
[ステップ#12]
次に、図11に示すように、基準平面上61P、測定対象物51及び基準ブロック62の表面に、写真測量用のマーカーが貼付される。本実施形態では、前記マーカーとして、所定個数のコードマーカー71(特許請求の範囲における「マーカー」に相当する)と無地マーカー72とが用いられている例を示している。コードマーカー71は、薄い円板状の基材の表面に、個体識別が可能な識別パターンが各々印刷されてなる。コードマーカー71(711〜717)は、基準平面上61Pに、測定対象物51及び基準ブロック62を挟むように、測定対象物51についての段差隙間検査の検査位置S1〜S4にワンペアずつ配置される。すなわち、検査位置S1には測定対象物51及び基準ブロック62を挟んで一対のコードマーカー711、712が貼付されており、このコードマーカー711、712(の中心)同士を結ぶ短絡線が、測定対象物51について断面データが取得される切断線となる。他の検査位置S2〜S4にも同様に、各々コードマーカー713、715、717のペア(これらについては、ペアの他方は図には表れていない)が配置される。なお、コードマーカー711〜717のペアの対応付けは、段差隙間検査の位置等に応じて、予めオペレータにより行われる。
【0063】
無地マーカー72は、単色の薄い円板状のマーカー(識別パターンが付されているものを用いても良い)である。無地マーカー72は、基準平面上61P上だけでなく、測定対象物51の表面及び基準ブロック62の表面に、適宜な間隔を置いて所要枚数だけ貼付される。さらに、写真測量における測定領域全体の縮尺を決定するために、スケールバー52が固定ゲージ61の傍らに配置される。スケールバー52は、その両端にコードマーカーを備え、そのコードマーカーの中心点間距離が予め値付けされたものが用いられる。
【0064】
[ステップ#13]
図11に示したようなセッティングが完了したら、デジタルカメラ30により測定対象物51の撮影が行われる。この撮影は、基準平面上61P、測定対象物51及び基準ブロック62に貼付された全てのコードマーカー71及び無地マーカー72、さらにスケールバー52を含むように行われ、様々な位置、姿勢において複数枚のデジタル画像が取得される。撮影されたデジタル画像は、上述の写真測量処理部441(図8)へ送信され、コードマーカー71及び無地マーカー72の所在が画像処理により認識されると共に、これらマーカーの全円中心位置が視差を利用した写真測量の一般的手法に基づいて各々求められる。求められた位置情報は、各々のマーカーの三次元座標値としてRAM42(図7)に格納される。
【0065】
[ステップ#14]
続いて、コードマーカー71(711〜717)の三次元座標値を用いて、平面抽出部443により測定対象物51の断面を成す平面である第2の平面π1を求める演算が行われる。図12を参照して、この演算の手法を説明する。先ず、最初の検査位置S1を決定づけるコードマーカー711、712及び他のコードマーカー713〜717の一部又は全部(マーカー選択部444により選択されているマーカー)の三次元座標値を用いて、これらの座標を含む第1の平面π0が最小自乗近似法により求められる。つまり、第1の平面π0に最も近似する平面方程式のパラメータが求められる。
【0066】
そして、図12に示すように、コードマーカー711、712を通り、前記第1の平面π0に垂直な第2の平面π1が求められる。つまり、コードマーカー711、712の三次元座標値を含み第1の平面π0と直交する第2の平面π1の平面方程式のパラメータが求められる。同様にして、コードマーカー713とそのペアを含む第3の平面、コードマーカー715とそのペアを含む第4の平面及びコードマーカー717とそのペアを含む第5の平面についての平面方程式のパラメータが求められる。これら平面方程式のパラメータは、RAM42に格納される。
【0067】
[ステップ#15]
次に、三次元デジタイザ20により、測定対象物51及び基準ブロック62の三次元形状が測定される。通常、三次元デジタイザ20の測定エリアはさほど広くなく、測定対象物51が自動車のプレス部品のように大型のものである場合は、測定エリアを漸次シフトさせて複数回の測定を行い、測定対象物51の全域をカバーする。
【0068】
図13は、三次元デジタイザ20による測定態様を示す斜視図である。図示するように、測定にあたり三次元デジタイザ20は三脚23に取り付けられ、1つの測定エリアについての測定が完了したら、所定角度だけ首振りさせて次の測定エリアについての測定を行うという手法が取られる。各々の測定エリアは、互いに重複する部分を有するように設定される。
【0069】
図14は、三次元デジタイザ20による1回の測定範囲である測定エリアC1を示した平面図である。図14に示すように、測定エリアC1は、少なくとも3つ以上の無地マーカー72が含まれるように設定される。これは、次のステップ#16で3つのマーカーを頂点とする三角形の特徴比較で、写真測量座標値との位置統合を行うからである。三次元デジタイザ20は、先に図5、図6に示した測定原理に基づいて、測定エリアC1内の分解能に応じた各ポイントの三次元形状の測定データ(x,y,z)を取得する。この測定データは三次元形状演算部442へ送信される。三次元形状演算部442により、この三次元形状の測定データ(x,y,z)に基づいて三次元座標値が求められ、さらに測定対象物51及び基準ブロック62のポリゴンメッシュ(三次元データ)が生成される。これにより、無地マーカー72の中心点の三次元座標値も明示されるようになる。
【0070】
[ステップ#16]
続いて、統合処理部445により、三次元デジタイザ20による測定データを、写真測量により求められた無地マーカー72の三次元座標値を目標にして位置合わせすることで、座標値がマッチングされた統合データが生成される。統合処理部445により実行される処理の概要は次の通りである。先ず、三次元デジタイザ20による測定データにおいて、測定エリアC1内に存在する複数の無地マーカー72の中から3つの無地マーカー72が選択される。ここで選択される無地マーカー72は、可及的に真円度が高いもの、或いは円の直径が無地マーカー72の設計値により近いものである。すなわち、三次元デジタイザ20に正対した状態で測定された無地マーカー72が選択される。これは、無地マーカー72の中心点を求める演算が一層正確に行えるようにするためである。
【0071】
そして、選択された3つの無地マーカー72の中心点座標をつなぎ、三角形(A)が作成される。図14に示す例では、測定対象物51に貼付された無地マーカー72aと、基準ブロック62に貼付された2つの無地マーカー72b,72cが選択され、これらマーカーの中心点をつなぐ三角形T1が作成されている例を示している。
【0072】
次に、写真測量により検出された複数の無地マーカー72から3つの無地マーカー72が選択され、この3つの無地マーカー72の中心点座標をつないで三角形(B)が作成される。ここでは、写真測量で三次元座標値が求められた全ての無地マーカー72から3つを組み合わせて作成可能な三角形(B1)、(B2)、(B3)・・・が作成される。そして、これらの三角形群の中から、上記三角形(A)と最も合同に近い三角形(Bn)が求められる。この合同判定は、例えば三角形(A)に対して三角形(B1)、(B2)、(B3)・・・を重ね合わせた状態で、3つの頂点間の距離が最小となるように最小自乗近似を行う演算を順次行い、求められた3つの頂点間距離の和が最小となる三角形を三角形群の中から選び出すという手法を取ることができる。
【0073】
図15を参照して、以上のような操作は、先に図14に示した測定エリアC1内に存在する三角形T1が、写真測量で求められた無地マーカー72の三次元座標値群のどの位置に存在しているのかを探し出す操作となる。上記合同判定で、図示する三角形T2が三角形T1と「合同」と判定された場合、三角形T1、T2を重畳させたその写真測量上の座標位置に、三次元デジタイザ20の1つの測定エリアC1が存在することとなる。
【0074】
三角形(A)と最も合同に近い三角形(Bn)が求められたなら、三角形(A)が三角形(Bn)に一致する座標変換行列が求められる。この座標変換行列を用いて、測定エリアC1についての測定データの三次元座標値が座標変換される。これにより、測定エリアC1の部分について統合データが生成されたこととなる。引き続き、他の測定エリアにおいて上記の「三角形(A)」に相当する三角形を選定し、三角形(B1)、(B2)、(B3)・・・群の中から合同に近い「三角形(Bn)」を選定し、その測定エリアに応じた座標変換行列を求めるという処理を全測定エリアについて行い、各々座標変換することで全ての領域について統合データが生成されるものである。
【0075】
[ステップ#17]
その後、測定対象物51及び基準ブロック62の断面を成す平面である第2の平面π1を決定づける平面方程式と、測定対象物51及び基準ブロック62のポリゴンメッシュデータ(三次元データ)との交点が、断面演算部446により求められる。図16は、コードマーカー711、712の位置(図11、図12参照)において、測定対象物51及び基準ブロック62(実際はこれらのポリゴンメッシュ)に対して張られている第2の平面π1を模式的に示した斜視図である。そして、求められた交点をポリラインで結ぶことで、第2の平面π1により切断された箇所における測定対象物51の断面データが求められる。同様にして、第3〜第5の平面についても、先にステップ#14で求められRAM42に格納されている平面方程式を読み出して断面データが求められる。
【0076】
[ステップ#18]
しかる後、求められた断面データを用いて隙間段差検査が行われる。図17は、その検査方法を説明するための断面説明図である。いま、検査位置S1で張られた第2の平面π1において、測定対象物51の断面データ51S1と、左右の基準ブロック62の断面データ62S11,62S12とが取得されたものとする。基準ブロック62には、予め測定対象物51に対する高さ比較の基準となる第1基準位置f12,f22と、隙間測定の基準となる第2基準位置f14,f24とがそれぞれ準備されている。
【0077】
第1基準位置f12,f22の三次元座標値と、測定対象物51の断面データ51S1に指定されている段差比較対象ポイントf12,f22の三次元座標値とが比較され、両者間の段差d1,d2が左右それぞれで求められる。また、第2基準位置f14,f24の三次元座標値と、測定対象物51の断面データ51S1に指定されている隙間比較対象ポイントf13,f23の三次元座標値とが比較され、両者間の隙間h1,h2が左右それぞれで求められる。そして、上記段差d1,d2及び隙間h1,h2が、定められた公差の範囲内であるか否かの検査が行われる。実際の処理では、パーソナルコンピュータ40に予め公差を与えておき、該公差と測定により検出された段差、隙間との比較処理を実行させることで、自動的に検査処理させることができる。
【0078】
以上説明した検査方法によれば、基準平面上61Pに配置された少なくとも3つのコードマーカー71の三次元座標値に基づく第1の平面π0から導出される第2の平面π1は、2つのコードマーカー711,712により座標位置が把握されている平面であることから、その断面は位置関係が明示的なものとなる。このため、第2の平面π1を決定づける平面方程式と測定対象物51及び基準ブロック62のポリゴンメッシュとの交点から求められる断面データは、位置情報が明示化された断面データとなる。このため、測定対象物51及び基準ブロック62の任意断面に相当する任意断面データを、手動で座標位置合わせ等を行うことなく自動的に取得することができる。従って、測定対象物51の隙間段差検査を自動化することができる。
【0079】
次に、段差隙間検査方法(断面データ取得方法)の他の実施形態について説明する。図18は、段差隙間検査方法の第2実施形態に係る工程フローを示すフローチャートである。この第2実施形態は、デジタルカメラ30による写真測量を行わない点で、上述の第1実施形態とは相違する。以下、図18のフローチャートに示すステップ#21〜#28の順に従い、各ステップの詳細、並びにそのときの断面データ取得システムSの動作について順次説明する。なお、ステップ#21は図9に示したステップ#11と、ステップ#28、#29はステップ#17、#18と同様であるので、これらのステップについてはここでは説明を省略乃至は簡略化する。
【0080】
[ステップ#22]
ステップ#21で図9に示したステップ#11と同様にして、測定対象物51及び基準ブロック62の基準平面上61Pへの据え付けが完了したら、続いて図19に示すようにマーカーが適所に配置される。本実施形態では、写真測量を行わない代わりに、三次元デジタイザ20により三次元形状が測定可能な球マーカーが使用される。この球マーカーは、球体若しくは半球体の形状を有し、磁石などの接着部材が付設されてなる。
【0081】
本実施形態では、球マーカーとして、段差隙間検査の検査位置S1〜S4に配置される断面位置用球マーカー73(特許請求の範囲における「マーカー」に相当する)と、位置合わせ用球マーカー74とが用いられている例を示している。第1実施形態と同様に、断面位置用球マーカー73(731〜737)は、段差隙間検査の検査位置S1〜S4に合わせて、基準平面上61P上にワンペアずつ配置される。すなわち、検査位置S1には測定対象物51及び基準ブロック62を挟んで一対の断面位置用球マーカー731、732が配置されている。また、他の検査位置S2〜S4にも同様に、各々断面位置用球マーカー731、735、737のペア(これらについては、ペアの他方は図には表れていない)が配置される。なお、この時点では、断面位置用球マーカー731〜737のペアの電子データ上の対応付けは行われていない。位置合わせ用球マーカー74は、基準平面上61P上だけでなく、測定対象物51の表面及び基準ブロック62の表面に、適宜な間隔を置いて所要個数だけ配置される。
【0082】
球マーカー73、74としては、その表面が無地のものを用いても良いが、表面に各マーカーの個体識別を可能とする識別パターン(凹凸)が形成されているものを用いても良い。或いは、球体若しくは半球体とされた球面の球径が異なる2種以上の球マーカーを用いる用にしても良い。このようにすれば、球マーカーのサイズによってマーカーの個体識別が行えるという利点がある。少なくとも、断面位置用球マーカー73の球径と位置合わせ用球マーカー74の球径とは異ならせることが望ましい。
【0083】
[ステップ#23]
続いて、三次元デジタイザにより、測定対象物51及び基準ブロック62と、断面位置用球マーカー73及び位置合わせ用球マーカー74の三次元形状が測定される。三次元デジタイザ20による測定態様は、図13に示したものと同様である。この測定は、図20に示すように、測定エリアを順次シフトしながら、測定対象物51及び基準ブロック62を含む基準平面上61Pの略全域をカバーするように複数回行われる。この際、測定エリアC11とC12、C12とC13は、それぞれ一部測定エリアが重複するように測定が行われるが、この重複部に少なくとも断面位置用球マーカー73若しくは位置合わせ用球マーカー74が3個以上含まれるように各々の測定エリアが設定される。これは、後述する統合データの生成のためである。
【0084】
[ステップ#24、#25]
三次元デジタイザ20によるステップ#23の測定により、測定エリアC11、C12、C13・・・の三次元形状の測定データ(x,y,z)が各々取得される。これにより、断面位置用球マーカー73及び位置合わせ用球マーカー74を含んだ、測定対象物51及び基準ブロック62のポリゴンメッシュ(三次元データ)が生成される。また、断面位置用球マーカー73及び位置合わせ用球マーカー74の中心点の三次元座標値も取得される。
【0085】
この測定データに基づいて、断面を成す平面を求める位置に配置されている断面位置用球マーカー73(731〜737)が手動で検出される。そして、検出された断面位置用球マーカー731〜737について、断面を成す位置を定める2つ1組のペアが手動で対応付けられる。この場合は、検査位置S1に配置された断面位置用球マーカー731、732のペア、他の検査位置S2〜S4に配置された断面位置用球マーカー731、735、737の各ペアが対応付けられる。なお、断面位置用球マーカー731〜737の球径をそれぞれのペア毎に異なるものとしておく、その球形に基づきマーカーのペアを自動的に対応付けるようにしても良い。
【0086】
[ステップ#26]
続いて、測定対象物51及び基準ブロック62の断面を成す平面が求められる。断面を成す平面は、断面位置用球マーカー731〜737のうち、3つ以上のマーカーの三次元座標値に基づいて第1の平面π0を求め、例えば検査位置S1に配置された断面位置用球マーカー731、732を通り前記第1の平面π0に垂直な第2の平面π1(平面方程式)として求められる。同様にして、他の検査位置S2〜S4についても断面を成す平面の平面方程式が求められる。
【0087】
[ステップ#27]
そして、測定エリアC11、C12、C13・・・についての複数の三次元データを、特徴形状の一致度合いに基づいて一体に統合する処理が行われる。図21は、この統合処理を説明するための模式図である。図21(a)に示すように、例えば測定エリアC11と測定エリアC12とは、ステップ#23で説明した通り、少なくとも3つのマーカー(ここでは位置合わせ用球マーカー74)が重複するように測定領域が定められている。
【0088】
ここで、測定エリアの重複部に含まれている位置合わせ用球マーカー74を通る直線xに注目する。この直線xに沿った三次元形状は、図21(b)に示すように、測定エリアC11及び測定エリアC12の双方で検出される。測定エリアC11における、直線xに沿った三次元形状x1は、位置合わせ用球マーカー74の突出した球形状に応じた凸曲線部x11と、測定対象物51の平坦面に応じた平坦部x12とからなる。同様に、測定エリアC12における、直線xに沿った三次元形状x2は、凸曲線部x21と平坦部x22とからなる。このように同じ領域を重複して三次元計測した場合、特徴形状が一致する部分が存在することとなる。
【0089】
従って、互いに重複する部分を測定エリアに含む測定エリアC11及び測定エリアC12の三次元データについて、例えば位置合わせ用球マーカー74を含む直線領域を互いに抜き出して比較し、両者のずれが最小となるポイントを探し出すベストフィット処理を行うことで、測定エリアC11の三次元データと測定エリアC12の三次元データとの統合位置合わせが行うことができる。このような処理を取得された測定エリアC11、C12、C13・・・の全てで行うことで、測定対象物51及び基準ブロック62全体の統合された三次元データ(ポリゴンメッシュ)が取得されるようになる。
【0090】
このようにして取得された三次元データは、先に求められている断面位置用球マーカー73の三次元座標値と座標系が同一であるため、座標変換処理等は不要である。以下、第1実施形態で説明したステップ#17、#18と同様にして、測定対象物51及び基準ブロック62の断面を成す平面の平面方程式と、測定対象物51及び基準ブロック62のポリゴンメッシュデータ(三次元データ)との交点から断面データが求められ(ステップ#28)、求められた断面データを用いて隙間段差検査が行われる(ステップ#29)。
【0091】
以上説明した第2実施形態に係る検査方法によれば、球マーカーを用いることで、デジタルカメラを用いた写真測量を行うことなく、測定対象物51及び基準ブロック62について断面位置が特定された断面データを取得することができる。従って、測定対象物51の隙間段差検査の省力化を図ることができる。
【0092】
以上、本発明の実施形態につき説明したが、本発明はこれに限定されるものではない。例えば次のような変形実施形態を取ることができる。
【0093】
(1)上記実施形態では、写真測量を行う手法と、球マーカーを用いる手法について例示した。これ以外にも、断面データを取得する位置を指定するマーカーの三次元座標値を求めることができ、且つ、測定対象物の三次元データの三次元座標値を前記マーカーの三次元座標値を目標にして位置合わせさえできる手法であれば、どのような手法を採用しても良い。
【0094】
(2)上記実施形態では、パーソナルコンピュータ40を、データ解析を行うための手段として用いる例を示したが、例えば三次元デジタイザ20にデータ解析機能を具備させるようにしても良く、断面データ取得システムのハード構成は適宜に設定して良い。
【0095】
(3)上記実施形態では、本発明に係る断面データ取得方法を、段差隙間検査に適用する例を示したが、リバースエンジニアリングのための形状データの取得、金属やプラスチック成型品の寸法管理や各種形状評価等、様々な用途に適用することができる。
【図面の簡単な説明】
【0096】
【図1】本発明に係る断面データの取得方法を説明するための模式図である。
【図2】本発明に係る断面データの取得方法の、他の実施形態を説明するための模式図である。
【図3】本発明に係る断面データ取得システムSの一実施形態を示す構成図である。
【図4】三次元デジタイザによる投受光動作を示す説明図である。
【図5】三次元デジタイザの基本的な内部構成を示す模式図である。
【図6】三次元デジタイザによる三次元計測方法の原理を示す説明図である。
【図7】パーソナルコンピュータの概略構成を示すブロック図である。
【図8】CPUの機能構成を示す機能ブロック図である。
【図9】段差隙間検査方法の第1実施形態に係る工程フローを示すフローチャートである。
【図10】測定対象物(自動車の前輪付近のアウターボディを構成するプレス部品)51の固定ゲージ61への取り付け状態を示す斜視図である。
【図11】測定対象物51へのマーカーの取り付け状況を示す斜視図である。
【図12】第1の平面π0及び第2の平面π1を説明するための模式的な斜視図である。
【図13】三次元デジタイザによる測定態様を示す斜視図である。
【図14】三次元デジタイザによる1回の測定範囲である測定エリアC1を示した平面図である。
【図15】三次元デジタイザによる測定データを、写真測量により求められたマーカーの三次元座標値を目標にして位置合わせする手法を説明するための説明図である。
【図16】第1の平面π0及び第2の平面π1を説明するための模式的な斜視図である。
【図17】隙間段差検査の検査方法を説明するための断面説明図である。
【図18】段差隙間検査方法の第2実施形態に係る工程フローを示すフローチャートである。
【図19】測定対象物51へのマーカーの取り付け状況を示す斜視図である。
【図20】三次元デジタイザによる測定データを、マーカーの三次元座標値を目標にして位置合わせする手法を説明するための説明図である。
【図21】複数の三次元データを、特徴形状の一致度合いに基づいて一体に統合する統合処理を説明するための模式図である。
【符号の説明】
【0097】
π0 第1の平面
π1 第2の平面
11、61 固定ゲージ
11P、61P 基準平面
12、12a、12b、51 測定対象物
13、13a、13b マーカー
20 三次元デジタイザ(測定手段/三次元形状測定装置)
30 デジタルカメラ(撮像手段)
40 パーソナルコンピュータ
441 写真測量処理部(座標値検出手段)
442 三次元形状演算部
443 平面抽出部(平面抽出手段)
444 マーカー選択部(選択手段)
445 統合処理部(統合手段)
446 断面演算部(断面演算手段)
447 表示制御部
62 基準ブロック
71 コードマーカー(マーカー)
72 無地マーカー
73、74 球マーカー


【特許請求の範囲】
【請求項1】
基準平面上に測定対象物を載置し、前記基準平面上に、前記測定対象物を挟んで少なくとも3つのマーカーを配置するステップと、
前記マーカーの三次元座標値に対して位置合わせが可能なように、前記基準平面上に載置された前記測定対象物の三次元データを取得するステップと、
前記少なくとも3つのマーカーの三次元座標値に基づいて、第1の平面π0を求めるステップと、
前記少なくとも3つのマーカーのうち、2つのマーカーを通り、前記第1の平面π0に垂直な第2の平面π1を決定するステップと、
前記第2の平面π1を決定づける平面データと前記三次元データとの交点から、前記三次元データの断面データを取得するステップと
を含むことを特徴とする断面データ取得方法。
【請求項2】
基準平面上に測定対象物を載置し、前記基準平面上に、前記測定対象物を挟んで4つ以上のマーカーを配置するステップと、
前記マーカーの三次元座標値に対して位置合わせが可能なように、前記基準平面上に載置された前記測定対象物の三次元データを取得するステップと、
前記4つ以上のマーカーから、その短絡線が前記測定対象物を横断する第1のマーカー及び第2のマーカーと、これらマーカーとは異なる第3のマーカーとの少なくとも3つのマーカーを選択するステップと、
前記少なくとも3つのマーカーの三次元座標値を求めるステップと、
前記少なくとも3つのマーカーの三次元座標値に基づいて、第1の平面π0を求めるステップと、
前記第1のマーカー及び第2のマーカーを通り、前記第1の平面π0に垂直な第2の平面π1を決定するステップと、
前記第2の平面π1を決定づける平面データと前記三次元データとの交点から、前記三次元データの断面データを取得するステップと
を含むことを特徴とする断面データ取得方法。
【請求項3】
前記第2の平面π1を決定づける平面データが平面方程式で定められるデータであり、前記三次元データがポリゴンメッシュデータであって、
前記断面データは、前記平面方程式とポリゴンメッシュとの交点を結ぶポリラインとして取得されることを特徴とする請求項1又は2に記載の断面データ取得方法。
【請求項4】
測定対象物の三次元データは、
前記測定対象物に所定の検出光を投光手段と、その反射光を受光する撮像手段とを備える測定手段を用い、
前記検出光の投受光により得られた撮像データに基づき、光投影法により求められることを特徴とする請求項1〜3のいずれかに記載の断面データ取得方法。
【請求項5】
前記マーカーとして、ポイント位置が特定可能な平面状マーカーが用いられ、
前記マーカーの三次元座標値は、写真測量により求められることを特徴とする請求項1〜4のいずれかに記載の断面データ取得方法。
【請求項6】
前記マーカーとして、球面を備える球マーカーが用いられ、
前記測定手段により、前記球マーカーが配置された前記基準平面を含めて前記検出光の投受光を行い、これにより得られた撮像データに基づき前記球マーカーの三次元座標値が求められることを特徴とする請求項4に記載の断面データ取得方法。
【請求項7】
前記マーカーとして、各マーカーの個体識別を可能とする識別パターンが付与されたマーカーが用いられることを特徴とする請求項1〜6のいずれかに記載の断面データ取得方法。
【請求項8】
前記球マーカーとして、前記球面の球径が異なる2種以上の球マーカーが用いられることを特徴とする請求項6に記載の断面データ取得方法。
【請求項9】
測定対象物の三次元データを取得する測定手段と、
基準平面上に測定対象物を載置し、前記基準平面上に、前記測定対象物を挟んで少なくとも3つのマーカーが配置された状態において、これらマーカーの三次元座標値を求める座標値検出手段と、
前記測定手段により取得された三次元データを、前記マーカーの三次元座標値に対して位置合わせする統合手段と、
前記3つのマーカーの三次元座標値に基づいて第1の平面π0を求めると共に、前記少なくとも3つのマーカーのうち、2つのマーカーを通り、前記第1の平面π0に垂直な第2の平面π1を求める平面抽出手段と、
前記第2の平面π1を決定づける平面データと前記三次元データとの交点から、前記三次元データの断面データを求める断面演算手段と
を備えることを特徴とする断面データ取得システム。
【請求項10】
測定対象物の三次元データを取得する測定手段と、
基準平面上に測定対象物を載置し、前記基準平面上に、前記測定対象物を挟んで配置された4つ以上のマーカーから、その短絡線が前記測定対象物を横断する第1のマーカー及び第2のマーカーと、これらマーカーとは異なる第3のマーカーとの少なくとも3つのマーカーを選択する選択手段と、
前記少なくとも3つのマーカーの三次元座標値を求める座標値検出手段と、
前記測定手段により取得された三次元データを、前記マーカーの三次元座標値に対して位置合わせする統合手段と、
前記3つのマーカーの三次元座標値に基づいて第1の平面π0を求めると共に、前記少なくとも3つのマーカーのうち、2つのマーカーを通り、前記第1の平面π0に垂直な第2の平面π1を求める平面抽出手段と、
前記第2の平面π1を決定づける平面データと前記三次元データとの交点から、前記三次元データの断面データを求める断面演算手段と
を備えることを特徴とする断面データ取得システム。
【請求項11】
前記座標値検出手段は、
前記基準平面上に配置されたマーカーを含んだ画像を撮像する撮像手段と、
前記画像に基づき写真測量に関する演算を行う写真測量演算手段とを含むことを特徴とする請求項10又は11に記載の断面データ取得システム。
【請求項12】
前記測定手段は、
前記測定対象物に所定の検出光を投光手段と、
その反射光を受光する撮像手段と、
前記検出光の投受光により得られた撮像データに基づき、光投影法を用いて三次元データを求めるデータ処理手段とを備える三次元形状測定装置からなることを特徴とする請求項10又は11に記載の断面データ取得システム。
【請求項13】
前記三次元形状測定装置は、前記座標値検出手段を兼ねるものであり、
球面を備える球マーカーが配置された前記基準平面を含めて前記検出光の投受光を行い、これにより得られた撮像データに基づき前記球マーカーの三次元座標値を求める座標値検出部を備えることを特徴とする請求項12に記載の断面データ取得システム。
【請求項14】
基準平面上に所定の基準位置を提供する基準ブロックと検査対象物とを離間して固定するステップと、
前記基準平面上に、前記基準ブロック及び検査対象物を挟んで少なくとも3つのマーカーを配置するステップと、
前記マーカーの三次元座標値に対して位置合わせが可能なように、前記基準平面上に固定された前記基準ブロック及び測定対象物の三次元データを取得するステップと、
前記少なくとも3つのマーカーの三次元座標値に基づいて、第1の平面π0を求めるステップと、
前記少なくとも3つのマーカーのうち、2つのマーカーを通り、前記第1の平面π0に垂直な第2の平面π1を決定するステップと、
前記第2の平面π1を決定づける平面データと前記三次元データとの交点から、前記三次元データの断面データを取得するステップと、
前記断面データから導出された検査対象物と基準ブロックの基準位置との位置関係が、予め定められた公差の範囲内であるか否かを判定するステップと
を含むことを特徴とする断面検査方法。
【請求項15】
基準平面上に所定の基準位置を提供する基準ブロックと検査対象物とを離間して固定するステップと、
前記基準平面上に、前記基準ブロック及び検査対象物を挟んで4つ以上のマーカーを配置するステップと、
前記マーカーの三次元座標値に対して位置合わせが可能なように、前記基準平面上に固定された前記基準ブロック及び測定対象物の三次元データを取得するステップと、
前記4つ以上のマーカーから、その短絡線が前記測定対象物を横断する第1のマーカー及び第2のマーカーと、これらマーカーとは異なる第3のマーカーとの少なくとも3つのマーカーを選択するステップと、
前記少なくとも3つのマーカーの三次元座標値を求めるステップと、
前記少なくとも3つのマーカーの三次元座標値に基づいて、第1の平面π0を求めるステップと、
前記第1のマーカー及び第2のマーカーを通り、前記第1の平面π0に垂直な第2の平面π1を決定するステップと、
前記第2の平面π1を決定づける平面データと前記三次元データとの交点から、前記三次元データの断面データを取得するステップと、
前記断面データから導出された検査対象物と基準ブロックの基準位置との位置関係が、予め定められた公差の範囲内であるか否かを判定するステップと
を含むことを特徴とする断面検査方法。
【請求項16】
前記基準ブロックが、前記検査対象物に対する高さ比較の基準となる第1基準位置、及び/又は、前記検査対象物に対する隙間測定の基準となる第2基準位置を含むことを特徴とする請求項14又は15に記載の断面検査方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate


【公開番号】特開2007−303828(P2007−303828A)
【公開日】平成19年11月22日(2007.11.22)
【国際特許分類】
【出願番号】特願2006−129187(P2006−129187)
【出願日】平成18年5月8日(2006.5.8)
【出願人】(303050160)コニカミノルタセンシング株式会社 (175)
【Fターム(参考)】