説明

機能性ペプチドが固定された複合部材

【課題】機能性ペプチドが固定された複合部材を提供する。
【解決手段】機能性ペプチドが固定された複合部材であって、基体と、シランモノマーが表面に脱水縮合により結合しているとともに、シランモノマーと基体表面との化学結合を介して基体表面に固定された無機微粒子とを有し、機能性ペプチドは、該機能性ペプチドとシランモノマーとの共有結合を介して、無機微粒子に固定されていることを特徴とする。これにより、抗菌等の機能を有する機能性ペプチドの特異的な機能を有し、且つ、該機能性ペプチドを強固に保持することができる。さらに、無機微粒子により、機能性ペプチドを固定できるより大きな表面積を確保することができる。加えて、無機微粒子部により、付着した塵等によって機能性ペプチドと対象物質との接触が妨げられるのを抑制することができる。したがって、通常より高い効果と長期の寿命をもった部材を提供することができる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、機能性ペプチドが固定された複合部材に関し、より具体的には、例えば抗菌、抗真菌、抗アレルゲン、抗ウイルス、重金属捕集、等、様々な機能をもつ分子である機能性ペプチドが表面に固定された複合部材に関する。
【背景技術】
【0002】
近年、さまざまなアレルゲン物質や、カビの胞子、或いはウイルス等により引き起こされる様々なアレルギー疾患や、感染症が社会的に大きな問題になってきている。これらの浮遊性の病原物質から引き起こされる疾患を予防するために、花粉の付着を抑制する衣服が知られている。また、花粉中のタンパク質と結合することにより花粉アレルゲンを不活化する家電フィルターやマスク等が開発されている。しかし、環境中には疾患を引き起こす浮遊性物質だけでなく、人体には無害な浮遊性物質が多く浮遊している。これらと反応してしまうことで従来の機能性製品では、実際には高い効果を発揮することはできず、また、製品の寿命も短くなってしまっていた。
【0003】
そこで、特定の病原物質と特異的に反応し、不活化する機能性材料が求められ、開発が行われてきた。特定の物質と反応する物質としては、生物由来の高い特異性を持つ酵素や抗体を用いることが有効であり、これらの酵素、抗体を固定したフィルターが開発されている。
【0004】
例えば、抗アレルゲン性機能製品では、抗アレルゲン抗体を担持させることができるフィルター(例えば、特許文献1)や、タンパク質を特異的に分解する酵素を担持させるフィルター(例えば、特許文献2)、スプレーや塗布により酵素を繊維に担持させる加工剤(例えば、特許文献3)等が開発されている。
【特許文献1】特開2006−321791号公報
【特許文献2】特許第3790479号公報
【特許文献3】特開2006−307380号公報
【発明の開示】
【発明が解決しようとする課題】
【0005】
しかし、これらの機能性製品群では、酵素や抗体など湿潤な環境下で効果を発揮する物質を使用しているため、いずれも多量の親水性物質を含む必要がある(例えば、特許文献1のポリアルキレングリコール成分)。その結果、親水性物質により湿潤な表面になっているため、綿ぼこりや砂塵といった機能性物質の対象とする物質以外の浮遊性物質(以下、非対象物質と称す)がより多く付着しやすくなっている。したがって、機能性物質とアレルゲンやウイルス等との接触が多量に付着した非対象物質により阻害され、製品の標的物質に対する吸着性が大きく低下するおそれがある。
【0006】
また、機能性物質の担持方法も単純な浸漬や塗布であるなど、基材に完全に固定されていない。上記のように付着した非標的物質を取り除くためには水洗が効果的だが、これらの加工では、水洗を行うと基材に保持されている酵素等の機能性物質が溶出するおそれがある。そのため、水洗によっても低下した吸着性能が回復することがないか、若しくはさらに低下する。この結果、製品の寿命の長期化はのぞめず、消費者に買い替えを強いることとなる。
【0007】
更に、これらの機能性物質は基材表面の親水性ポリマーやバインダー中に担持されている。そのため、アレルゲンやウイルス等が基材表面に接触しても、ポリマーやバインダー中の酵素や抗体に接触するには時間かかり、接触する機会も少ない。
【0008】
そこで本発明は、このような従来の問題を解決するためになされたものであり、機能性ペプチドの機能が付与され、該機能を従来よりも長期間維持できる複合部材を提供することを目的とする。
【課題を解決するための手段】
【0009】
すなわち、第1の発明は、機能性ペプチドが固定された複合部材であって、基体と、シランモノマーが表面に脱水縮合により結合しているとともに、当該シランモノマーと基体表面との化学結合を介して基体表面に固定された無機微粒子とを有し、機能性ペプチドは、該機能性ペプチドとシランモノマーとの共有結合を介して、無機微粒子に固定されていることを特徴とする複合部材である。
【0010】
第1の発明によれば、基体上に無機微粒子を固定し、これに抗菌性や、抗真菌性や、抗アレルゲン性や、抗ウイルス性などの機能を持つ機能性ペプチドを固定することで、機能性ペプチドの機能を基体表面で発現させることができる。また、当該構成とすることで、機能性ペプチドを従来よりもより強固に基体に固定できる。さらに、部材表面と塵埃などの非対象物質の接触面積を小さくすることができる。さらにまた、無機微粒子の表面に機能性ペプチドを固定することにより、基体に直接機能性ペプチドを固定した場合よりも、固定できる表面積が大きい。
【0011】
また、第2の発明は、前記無機微粒子が、シランモノマーを介して基体に結合する第1の無機微粒子と、少なくとも第1の無機微粒子を介して基体と結合する第2の無機微粒子とからなることを特徴とする複合部材である。
【0012】
また、第3の発明は、上記第1または2の発明において、無機微粒子を被覆しているシランモノマーには、不飽和結合を有するシランモノマーが含まれることを特徴とする複合部材を提供するものである。
【0013】
さらに、第4の発明は、上記第3の発明において、シランモノマーと基体の表面との化学結合が、不飽和結合を有するシランモノマーと基体表面とのグラフト重合であることを特徴とする複合部材である。
【0014】
さらに、第5の発明は、上記第4の発明において、シランモノマーと基体の表面との化学結合が放射線グラフト重合であることを特徴とする複合部材である。
【0015】
さらに、第6の発明は、上記第1から第5のいずれかの発明において、機能性ペプチドが3個〜30個のアミノ酸残基からなることを特徴とする複合部材である。
【0016】
さらに、第7の発明は、上記第1から第6のいずれかの発明において、基体が繊維であることを特徴とする複合部材である。
【0017】
さらに、第8の発明は、上記第1から第6のいずれかの発明において、基体が網状構造を有していることを特徴とする複合部材である。
【0018】
さらに第9の発明は、上記第1から8のいずれかの発明において、基体が不織布であることを特徴とする複合部材である。
【0019】
さらに、第10の発明は、上記第1から第8のいずれかの発明において、基体がフィルターであることを特徴とする複合部材である。
【0020】
さらに、第11の発明は、上記第1から第8のいずれかの発明において、基体が建築材または内装材であることを特徴とする複合部材である。
【発明の効果】
【0021】
本発明によれば、機能性ペプチドの機能が付与され、該機能を従来よりも長期間維持できる複合部材を提供することができる。
【発明を実施するための最良の形態】
【0022】
以下に、本発明の複合部材の好ましい実施形態について図を用いて詳述する。なお、本実施形態を判りやすく模式的に示すため、無機微粒子群は、無機微粒子が1種類で形成された図であらわした。しかしながら、無機微粒子群は2種類以上の無機微粒子で形成してあってもよく、例えば層状に単層または複数層重なって無機微粒子群を形成してもよい。
【0023】
図1は、本実施形態の複合部材100の断面の一部を拡大した模式図である。複合部材100は、基体1と、表面にシランモノマー3が脱水縮合により結合しており、基体1表面に固定された無機微粒子2と、無機微粒子2に固定された機能性ペプチド5とにより構成されている。無機微粒子2は、シランモノマー3と基体1表面との化学結合(例えば、共有結合、疎水結合、イオン結合、および水素結合など)により、基体1表面に固定されている。また、機能性ペプチド5は、シランモノマー3と共有結合することにより、無機微粒子2に固定されている。なお、本実施形態において、無機微粒子2は集合して無機微粒子群10を形成している。当該無機微粒子群10は、機能や使用目的にあわせて点状、膜状、海島状など、様々な形態とすることができる。また、図1に示すように、無機微粒子2同士が、表面のシランモノマー3の化学結合(例えば、後述するグラフト重合などの共有結合、疎水結合、イオン結合、および水素結合など)を介して結合するようにしてもよい。
【0024】
ここで、本明細書において機能性ペプチドとは、例えば抗菌性、抗真菌性、抗アレルゲン性および抗ウイルス性などのいずれかの機能を持った、3個以上のアミノ酸残基からなるペプチドをいう。また、機能性ペプチドは、機能性を示す配列が5個以上のアミノ酸残基からなるとき、対象に対してより効果的な機能を示す。
【0025】
無機微粒子2の表面には、機能性ペプチド5と共有結合を形成可能な官能基を有するシランモノマー3が、炭素鎖を無機微粒子2の外側に向けて配向して結合して被覆を形成している。シランモノマー3の片末端であるシラノール基は親水性であるため、親水性である無機微粒子2の表面に引きつけられる。一方、逆末端の炭素鎖は疎水性であるため、無機微粒子2の表面からは離れようとする。このため、シラノール基は無機微粒子2の表面に脱水縮合により結合し、機能性ペプチド5と共有結合を形成可能な官能基を外側に向けて配向する。
【0026】
無機微粒子2は、以下のようにしてシランモノマー3と結合させることができる。例えば、シランモノマー3を、無機微粒子2を懸濁した有機溶剤に、無機微粒子2の質量%に対して0.01質量%から40質量%加えて、ビーズミル分散機等により無機微粒子2を微粒子化し、分散する。次に、上記分散溶液を固液分離して、得られた無機微粒子2を100℃から180℃で加熱してシランモノマー3を無機微粒子2の表面に結合させる。また、無機微粒子2を懸濁した有機溶剤に、シランモノマー3を無機微粒子2の質量%に対して0.01質量%から40質量%加えて、ビーズミル分散機等により無機微粒子を微粒子化し、分散する。次に、上記分散溶液を、冷却管を備えたフラスコに移して、フラスコをオイルバスで加熱処理することにより、シランモノマー3を無機微粒子2の表面に結合させる。
【0027】
なお、無機微粒子2の径については特に限定されないが、後述するグラフト重合を好適に行うには、平均の粒子径が300nm以下とすることが好ましい。さらに平均の粒子径が100nm以下であれば、グラフト重合による基体1へのより強固な結合が達成されるため、耐久性の点より一層好適である。
【0028】
基体1表面に固定される無機微粒子2は、シランモノマー3を介して基体1に結合する第1の無機微粒子と、少なくとも第1の無機微粒子を介して基体1と結合する第2の無機微粒子とからなるようにしてもよい。本実施形態においては、図2に示すように、第2の無機微粒子は、少なくともシランモノマー3による化学結合(例えば、後述するグラフト重合などの共有結合、疎水結合、イオン結合、および水素結合など)を介して第1の無機微粒子と結合する。このとき、塵埃などの非対象物質などの付着による機能性ペプチド5の機能阻害をより好適に抑えることができる。
【0029】
非対象物質の付着の抑制についてより詳細に説明する。本実施形態の複合部材100は、基体1の表面に無機微粒子2を結合させたことにより、無機微粒子群10の表面には図1に示すように、微粒子形状に由来する凹凸が存在する。そのため、部材表面と塵埃などの非対象物質の接触面積が減少する。その結果、付着力の要因である、ファンデルワールス力,液架橋力,固体架橋力等が減衰し、塵埃などの非対象物質が付着しずらくなる。そのため、従来問題となっていた、表面に非対象物質が吸着することによる機能性ペプチド5の機能の低下を抑制することができる。言い換えれば、長期間、安定して機能性ペプチド5の機能を発現できる。
【0030】
ここで、図2に示すように基体1表面に固定される無機微粒子2を、シランモノマー3を介して基体1に結合する第1の無機微粒子と、少なくとも第1の無機微粒子を介して基体1と結合する第2の無機微粒子とから構成することにより、無機微粒子群10の表面における凹凸形状の起伏をより大きくすることができる。そのため、非対象物質との接触面積をより小さくすることができるため、非対象物質の付着を一層抑制することができる。したがって、機能性ペプチド5の機能をより長期間維持させることが可能となる。
【0031】
本実施形態の複合部材100に用いられる無機微粒子2としては、非金属酸化物、金属酸化物、金属複合酸化物などが用いられ、また、その結晶性は、非晶性あるいは結晶性のどちらでも良い。非金属酸化物として、例えば酸化珪素が挙げられる。また、金属酸化物としては、例えば、酸化マグネシウム、酸化バリウム、過酸化バリウム、酸化アルミニウム、酸化スズ、酸化チタン、過酸化チタン、酸化ジルコニウム、酸化鉄、水酸化鉄、酸化タングステン、酸化ビスマスおよび酸化インジウム、金属複合酸化物として、酸化チタンバリウム、酸化コバルトアルミニウム、酸化ジルコニウム鉛、酸化ニオブ鉛、TiO2−WO3、AlO−SiO、WO−ZrOおよびWO−SnOなどが挙げられる。
【0032】
ここで、無機微粒子2が抗菌性を有するようにしてもよい。無機微粒子2として抗菌性を有する無機微粒子を用いる場合は、特に黴や細菌、微生物の繁殖による汚れを防止することができる。抗菌性を有する無機微粒子としては、銀、銅、亜鉛、錫、鉛およびこれらの化合物などが通常知られている。特に、銀、銅、亜鉛およびそれらの化合物から選ばれる1種以上の抗菌性を有する材料は、抗菌特性や人体への安全性などの観点から様々な分野で利用されている。また、これらは単体の無機微粒子2として無機微粒子群10を構成してもよいほか、他の無機微粒子に担持されて無機微粒子群10中に存在するようにしてもよい。
【0033】
さらに、無機微粒子2に添加剤が混合されて無機微粒子群10が構成されるようにしてもよい。例えば光触媒機能を発現する材料、抗菌性、抗ウイルス性、抗アレルゲン性を有する材料、マイナスイオンを放出する材料、遠赤外線を放出する材料、反射防止特性を有する材料および近赤外線を吸収する材料などを混合したものでも良い。
【0034】
さらに、図3のように、無機微粒子2−aにより形成された無機微粒子群20−aの表面に、他の無機微粒子2−bを一種もしくは二種以上混合した無機微粒子群20−bを形成してあっても良い。これらの無機微粒子2−bは、無機微粒子2−aと同じ機能や性質を持っていてもいいし、異なる機能や性質を持っていてもよい。無機微粒子群20を構成する無機微粒子2−a、および2−bは化学結合により結合される。
【0035】
本実施形態においては、無機微粒子2には、反応性に優れたシランモノマー3が結合しており、このシランモノマー3と機能性ペプチド5が共有結合7することにより、機能性ペプチド5が無機微粒子2に固定される。さらに、シランモノマー3と基体1とが化学結合4することにより、無機微粒子2が基体1表面に固定されている。
【0036】
より具体的に説明すれば、本実施形態においては、機能性ペプチド5と共有結合を形成可能な官能基を有するシランモノマー3−aが無機微粒子2にシラノール基の脱水縮合反応により無機微粒子2に固定される。そして、当該官能基と機能性ペプチド5とが共有結合により化学的に結合することにより、機能性ペプチド5が無機微粒子2に固定される。
【0037】
また、本実施形態では、無機微粒子2の表面に結合するシランモノマー3には、不飽和結合を有するシランモノマー3−bが含まれる。これにより、不飽和結合を有するシランモノマー3−bのシラノール基の脱水縮合反応による無機微粒子2との化学結合と、基体1の樹脂表面への後述するグラフト重合による化学結合4とにより、機能性ペプチド5が固定された無機微粒子2を基体1表面により強固に固定することができる。
【0038】
シランモノマー3−aが有する官能基としては、アミノ基、エポキシ基、メルカプト基、カルボキシル基およびイソシアネート基などが挙げられる。シランモノマー3−aが有するシラノール基の脱水縮合反応による無機微粒子2−a、2−b表面との化学結合と、官能基と機能性ペプチド5との化学結合6により、無機微粒子群10の表面に結合せしめた機能性ペプチド5による機能と防塵性を有する複合部材である。
【0039】
シランモノマー3−aの具体例としては、2−(3,4エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、 N-フェニル-3-アミノプロピルトリメトキシシラン、N-(ビニルベンジル)-2-アミノエチル-3-アミノプロピルトリメトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルトリメトキシシラン、ビス(トリエトキシシリルプロピル)テトラスルフィドおよび3-イソシアネートプロピルトリエトキシシランなどが挙げられる。本実施形態においては、これらのシランモノマー3−aを、一種もしくは二種以上混合して用いることができる。
【0040】
さらに不飽和結合を有するシランモノマー3−bが有する不飽和結合としては、ビニル基、エポキシ基、スチリル基、メタクリロ基、アクリロキシ基、およびイソシアネート基などが挙げられる。
【0041】
シランモノマー3−bの具体例としては、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリアセトキシシラン、N−β−(N−ビニルベンジルアミノエチル)−γ−アミノプロピルトリメトキシシラン、N−(ビニルベンジル)−2−アミノエチル−3−アミノプロピルトリメトキシシランの塩酸塩、2−(3、4エポキシシクロヘキシル)エチルトリメトキシシラン、3−グリシドキシプロピルトリメトキシシランや、3−グリシドキシプロピルメチルジエトキシシラン、3−グリシドキシプロピルトリエトキシシラン、p−スチリルトリメトキシシラン、3−メタクリロキシプロピルメチルジメトキシシラン、3−メタクリロキシプロピルトリメトキシシラン、3−メタクリロキシプロピルメチルジエトキシシラン、3−メタクリロキシプロピルトリエトキシシラン、3−アクリロキシプロピルトリメトキシシランおよび3−イソシアネートプロピルトリエトキシシランなどが挙げられる。これらの不飽和結合を有するシランモノマー3−bは、一種もしくは二種以上混合して用いることができる。
【0042】
次に、表面にシランモノマー3が結合した無機微粒子2と機能性ペプチド5とを化学結合6にて固定する方法について説明する。本実施形態では、化学結合6の態様は、無機微粒子2に結合させたシランモノマー3によって導入した官能基と、機能性ペプチド5の末端の官能基、又は、結合のために機能性ペプチド5に導入した官能基によって適宜選択される。
【0043】
例えば、シランモノマー3によりエポキシ基を導入した場合、機能性ペプチド5のアミノ基と結合がおこる。また、シランモノマー3によりアミノ基を導入した場合、カルボジイミド試薬を使うことで機能性ペプチド5のカルボキシル基とペプチド結合させることができる。シランモノマー3によりメルカプト基を導入し、機能性ペプチド5の末端にシステインを導入すると、酸化剤存在下でジスルフィド結合させることができる、などの例が挙げられる。
【0044】
次に、基体1を構成する材料としては、基体1表面においてシランモノマー3による化学結合4が可能なものであれば良い。このような基体としては、少なくとも基体1表面が、例えば、各種樹脂や、合成繊維や、綿、麻、絹等の天然繊維や、天然繊維から得られた和紙などにより構成されたものが挙げられる。
【0045】
ここで、基体1の表面ないし全体を樹脂により構成する場合は、合成樹脂や天然樹脂が用いられる。その一例としては、ポリエチレン樹脂、ポリプロピレン樹脂、ポリスチレン樹脂、ABS樹脂、AS樹脂、EVA樹脂、ポリメチルペンテン樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリアクリル酸メチル樹脂、ポリ酢酸ビニル樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリカーボネート樹脂、ポリエチレンテレフタレート樹脂、ポリブチレンテレフタレート樹脂、ポリアセタール樹脂、ポリアリレート樹脂、ポリスルホン樹脂、ポリフッ化ビニリデン樹脂、ベクトラン(登録商標)、PTFEなどの熱可塑性樹脂、ポリ乳酸樹脂、ポリヒドロキシブチレート樹脂、修飾でんぷん樹脂、ポリカプロラクト樹脂、ポリブチレンサクシネート樹脂、ポリブチレンアジペートテレフタレート樹脂、ポリブチレンサクシネートテレフタレート樹脂、ポリエチレンサクシネート樹脂などの生分解性樹脂、フェノール樹脂、ユリア樹脂、メラミン樹脂、不飽和ポリエステル樹脂、ジアリルフタレート樹脂、エポキシ樹脂、エポキシアクリレート樹脂、ケイ素樹脂、アクリルウレタン樹脂、ウレタン樹脂などの熱硬化性樹脂、シリコーン樹脂、ポリスチレンエラストマー、ポリエチレンエラストマー、ポリプロピレンエラストマー、ポリウレタンエラストマーなどのエラストマーおよび漆などの天然樹脂などが挙げられる。
【0046】
基体1を構成する樹脂の形態は、板状、フィルム状、繊維、繊維から構成される織物・編物・不織布などを含む繊維構造体、ロール状、ウェブ状およびハニカム状など、使用目的に合った種々の形状及びサイズ等のものが適用でき、特に制限されるものではない。
【0047】
また、これらの樹脂は、基体1がアルミニウムやステンレス、鉄などの金属材料や、ガラスや、セラミックスなどの無機材料を含んで構成される場合には、これら各材料の表面に、フィルム状に積層されたり、吹き付け塗装や浸漬塗装、静電塗装などの塗装法や、スクリーン印刷やオフセット印刷などの印刷法により薄膜として形成された無機微粒子被結合部であっても良い。加えて、顔料や染料などにより着色されてあっても良く、シリカ、アルミナ、珪藻土およびマイカなどの無機材料が充填されてあっても良い。
【0048】
さらにまた、基体1がアルミニウムやステンレス、鉄などの金属材料、ガラスおよびセラミックスなどの無機材料である場合には、基体表面に化学結合4が可能な官能基をシランモノマーやチタンモノマー等で導入したものであっても良い。基体1表面に導入されるシランモノマー由来の官能基としては、ビニル基、エポキシ基、スチリル基、メタクリロ基、アクリロキシ基、イソシアネート基およびチオール基などが挙げられる。
【0049】
また図4のように、本実施形態の複合部材100の無機微粒子群10が凝集破壊等により劣化し、剥離することを抑制するために、バインダー成分7を添加してもよい。バインダー成分7は一種類で用いても、二種類以上を混合して用いてもよい。
【0050】
ここでバインダー成分7は、シランモノマー3が結合した無機微粒子2同士および無機微粒子2と基体1とを相互に結合するものを用いることが好ましい。バインダー成分7は、無機微粒子2に結合しているシランモノマー3の官能基と化学的に結合しうる反応サイトとして、ビニル基、エポキシ基、スチリル基、メタクリロ基、アクリロキシ基およびイソシアネート基等の不飽和基、またはアルコキシ基を分子の構成要素として保有することが望ましい。
【0051】
次に、基体1と、シランモノマー3が結合した無機微粒子2とを化学結合させる方法について説明する。本実施形態においては、化学結合させる方法として、グラフト重合による結合方法を用いている。
【0052】
グラフト重合の種類としては、例えばパーオキサイド触媒を用いるグラフト重合や、熱や光エネルギーを用いるグラフト重合や、放射線によるグラフト重合(放射線グラフト重合)などが挙げられる。
【0053】
このうち、重合プロセスの簡便性や、生産スピード等の観点より、放射線グラフト重合が特に適している。ここで、グラフト重合において用いられる放射線としては、α線、β線、γ線、電子線および紫外線などを挙げることができるが、本実施形態において用いるには、γ線、電子線および紫外線が特に適している。
【0054】
次に、本実施形態の機能性ペプチド5は、アミノ酸3残基以上30残基以下、好ましくは5残基以上25残基以下であることが望ましい。本発明では機能性ペプチド5の対象物に対する結合作用、特に対象物に対する特異的な結合作用を用いて、抗菌性や、抗真菌性や、抗アレルゲン性や、抗ウイルス性などの機能化を行っている。そのため、ペプチドが対象物に対し結合能を示すには3残基以上が必要であり、更に、対象物への特異性を示すためには5残基以上の長さがあることが望ましい。
【0055】
一方で、ペプチド鎖が長くなると三次元的な立体構造をとるようになり、その効果で強い特異性を示し、機能性が向上する。しかし、タンパク質等が特異的な立体構造をとるためには水分子の存在が不可欠となり、本発明を用いるような、乾燥、又は水分の少ない環境下では、正しい構造を保てなくなり、固定させてもその機能性は極めて寿命が短くなる。そのため、このような環境下で用いるためには、機能性ペプチド5は二次構造をとる程度の長さが好ましく、スペーサー配列等を含めて30残基以下、より好ましくは25残基以下であるとよい。
【0056】
本実施形態においては、2種類以上の機能性ペプチドを含有するようにしてもよく、これらが異なる機能を有するようにしてもよい。また、一本のペプチド鎖の中で、機能性配列を2、又は3回繰り返してもよく、2つ以上の機能性配列を一本のペプチド鎖につなげてもよい。
【0057】
なお本実施形態の機能性ペプチド5は、機能性を持った配列の他に、機能を持たないアミノ酸残基が1個以上10個以下のペプチド配列をスペーサー配列として含んでいてもよい。また、本実施形態のようにシランモノマー3と機能性ペプチド5が共有結合7することにより機能性ペプチド5が無機微粒子2に固定される場合は、無機微粒子2上のシランモノマー3との結合のために、側鎖に官能基を持ったアミノ酸配列、例えばシステインなどを適宜挿入しても良い。
【0058】
さらに、本実施形態で用いる機能性ペプチド5は、天然に存在する既知の機能を持ったアミノ酸配列のペプチドでも、人工的にランダムに作成されたペプチド群から機能により選別されたペプチドでも良く、ペプチド配列の取得方法によって限定されない。
【0059】
天然に存在する機能性ペプチドとして、例えば抗菌、抗真菌性ペプチドとしては、マガイニン、セクロピン、メリチチン、ラクトフェリチン、ディフェンシン、タキプレシン、およびプロタミンなどがあげられる。
【0060】
実施形態で用いるペプチドを人工的に得る方法としては、ファージや、酵母、細菌を用いたディスプレー法によるランダムペプチドライブラリーからの探索法が挙げられる。この方法はランダムに作製された5から7残基のペプチド群の中から、対象とする物質と結合、洗浄を繰り返すことにより強固な結合性を持つペプチドを得る方法である。
【0061】
次に、本実施形態の複合部材100の製造方法について、具体例を挙げて詳述する。
【0062】
第1の好適な方法としては、シランモノマー3-bが結合した無機微粒子2の分散液を、固定しようとする基体1の表面に塗布し、必要に応じて溶剤を加熱乾燥などの方法により除去した後、γ線、電子線および紫外線などの放射線を照射することで、シランモノマー3-bと基体1の表面とをグラフト重合にて化学結合4させる。次に、シランモノマー3-aを溶解した水溶液中に無機微粒子群10が結合した基体1を浸漬し、無機微粒子群10の表面にシランモノマー3-aを結合させたものを、洗浄・乾燥し、機能性ペプチド5水溶液中に浸漬する、という方法が用いられる。その際、反応させる結合の種類により、反応助剤の添加や温度調整を行い、シランモノマー3-aと機能性ペプチド5を反応させる。
【0063】
第2の好適な方法としては、シランモノマー3-a及び、3-bが結合した無機微粒子2が分散した溶液を、固定しようとする基体1の表面に塗布する。その後、第1の方法と同様にシランモノマー3-bと基体1の表面とをグラフト重合にて化学結合4させる。次に無機微粒子群10中のシランモノマー3-aと機能性ペプチド5を第1の方法と同様に反応させる。なお、シランモノマー3-aは、シランモノマー3-bと同一の化合物としてもよい。
【0064】
第3の好適な方法としては、予め基体1の表面にγ線や、電子線や、紫外線などの放射線を照射した後に、シランモノマー3−bが結合した無機微粒子2の分散液を塗布して、シランモノマー3-bと基体1とを反応(例えばグラフト重合)させることで無機微粒子2を結合させる、という方法がある。その後の工程は第1の方法と同じ方法が用いられる。
【0065】
第4の好適な方法としては、予め基体1の表面にγ線や、電子線や、紫外線などの放射線を照射した後に、シランモノマー3-a、及び3-bが結合した無機微粒子2の分散液を塗布して、シランモノマー3-bと基体1とを反応(例えばグラフト重合)させるという方法がある。その後の工程は第2と同じ方法が用いられる。なお、シランモノマー3aは、シランモノマー3bと同一の化合物としてもよい。
【0066】
無機微粒子2の分散液の塗布方法としては、一般に行われているスピンコート法、ディップコート法、スプレーコート法、キャストコート法、バーコート法、マイクログラビアコート法、およびグラビアコート法などが挙げられ、特に部分的に塗布する方法としては、スクリーン印刷法、パッド印刷法、オフセット印刷法、ドライオフセット印刷法、フレキソ印刷法およびインクジェット印刷法などの様々な方法が用いられ、目的に合った塗布ができれば特に限定されない。
【0067】
また、シランモノマー3のグラフト重合を効率良く、かつ、均一に行わせるためには、予め、基体1の表面が、コロナ放電処理やプラズマ放電処理、火炎処理、およびクロム酸や過塩素酸などの酸化性酸水溶液や水酸化ナトリウムなどを含むアルカリ性水溶液による化学的な処理などにより親水化処理されてあっても良い。
【0068】
以上説明したように、本発明の複合部材100によれば、基体1と、シランモノマー3が表面に脱水縮合により結合するとともに、当該シランモノマー3と基体1表面との化学結合により基体1表面に固定された無機微粒子2と、シランモノマー3との共有結合を介して無機微粒子2に固定された機能性ペプチド5とを有することにより、環境中の細菌や、真菌や、アレルゲンや、ウイルスなどを不活化できる。また、基体1上に無機微粒子2を固定し、これに抗菌性や、抗真菌性や、抗アレルゲン性や、抗ウイルス性などの機能を持つ機能性ペプチド5を固定することで、従来よりも強固に機能性ペプチド5を基体1に固定化できる。そのため、例えば水洗い等によりこれら機能が低下するのを抑制することができる。すなわち、機能性ペプチド5により付与される機能を、従来よりも長期間維持することができる。
【0069】
さらに、複合部材表面と塵埃などの非対象物質の接触面積を小さくすることにより、非対象物質の付着を抑制することができるため、当該付着による機能性ペプチド5の機能阻害を小さくすることができる。さらにまた、無機微粒子2の表面に機能性ペプチド5を固定することにより、基体1に直接機能性ペプチド5を固定した場合よりも、固定できる表面積が大きい。そのため、より多くの機能性ペプチド5を基体1表面に固定することができる。言い換えれば、抗菌性等についてより高い機能を有する複合部材を提供することが可能となる。加えて、これらの機能を持った機能性ペプチド5を複数、同時に結合させることで簡便に多機能化することができる。
【0070】
また、無機微粒子2は単粒子膜状や多層粒子膜状、点状、海島状、などの様々な態様に集合させて、フィルムや樹脂プレート、繊維や布などからなる基体1に固定できる。よって、これらの基体2の風合いを損なわないことから、様々な分野で応用できる抗菌性や、抗真菌性や、抗アレルゲン性や、抗ウイルス性を有する複合部材を提供することが可能となる。特に、海島状の構造では、基体表面が無機微粒子2に覆われている部分とそうでない部分とが存在するので、エレクトレットなどの特殊な性能を持つ部材が基体になる場合、基体の性能を保持したまま、機能性ペプチドの性能も付与できる複合材を提供できる。
【0071】
なお本発明において、基体は、例えば、フィルム状、繊維状、布状、メッシュ状(網状構造)、ハニカム状、不織布状など、使用目的に合った様々な形態(形状、大きさ等)とすることが可能である。したがって、これら様々な形態の各種基体に様々な機能と防塵性の機能を付加することが可能となり、繊維や、ハウス用フィルム、トンネルハウス用フィルムなどの農業資材、外壁材、サッシ、ドア、ブラインドなどの建装材、壁紙、カーペット、樹脂タイルなどの内装材、衣類、インナーウェア、靴下、手袋、靴等の履物、パジャマ、マット、シーツ、枕、枕カバー、毛布、タオルケット、蒲団および蒲団カバーなどの寝装材、帽子、ハンカチ、タオル、絨毯、カーテン、空気清浄機やエアコン、換気扇、電気掃除機、扇風機などのフィルターまたは防虫網やスクリーン印刷用メッシュなどの繊維構造体の製品へ応用が可能となる。従って、本発明は、様々な分野に優れた各種製品を提供することができる有用な部材である。
【実施例】
【0072】
次に、実施例を挙げて本発明をより具体的に説明する。ただし、本発明はこれらの実施例のみに限定されるものではない。
【0073】
下記実施例、及び比較例の試料である複合部材の製造にあたっては、岩崎電気株式会社製、エレクトロカーテン型電子線照射装置、CB250/15/180L、を用い、電子線グラフト重合により実施した。
【0074】
(シランモノマー結合微粒子液の作製)
市販の二酸化チタン微粒子(テイカ株式会社製、MT−100HD)をメタノールに対して10.0質量%、シランモノマーとして3−メタクリロキシプロピルトリメトキシシラン(信越化学工業株式会社製、KBM−503)を微粒子に対して3.0質量%加えてpHを3.0に塩酸で調製した後、ビーズミルにより平均粒子径18nmに粉砕分散した。その後、凍結乾燥機により溶媒を除いた後、120℃で加熱してシランモノマーを二酸化チタン微粒子の表面に脱水縮合反応により化学結合させた。
【0075】
(ファージディスプレイ法による機能性ペプチドの選別)
精製スギ花粉抗原Cryj1(10 mg/ml、生化学バイオビジネス株式会社製)を96穴タイタープレートのウェルへ加え、4℃で、16時間静置し、固定化を行った。上清を取り除いた後、ブロッキングバッファー(0.1 M NaHCO3, 5 mg/ml BSA, pH 8.6) 200 mlを添加し、1時間静置した。TBST (50 mM Tris-HCl (pH 7.5), 150 mM NaCl, 0.5 % Tween-20)で6回洗浄後、7個のアミノ酸残基からなるランダムペプチドを提示しているファージ、Ph.D.TM-7 Phage Display Peptide Library Kit (BioLabs社)を、2.0×1011pfu/well 100 ml添加し、1時間静置した。10回洗浄後、結合しているファージを溶出バッファー(0.2 M Glycin-HCl, 1 mg/ml BSA, pH 2.2)100 mlを用いて溶出した。溶出させたファージ溶液を大腸菌(ER2738)に感染させ、5時間培養後、溶菌ファージを得るため、遠心分離(9,100 g, 4℃, 10分間)を行い、上清を回収した。さらに、1/6 (v/v) PEG/NaCl溶液 (20 % (w/v) polyethylene glycol-8000, 2.5 M NaCl)を加えて4℃で一晩静置した。沈殿したファージを遠心回収後、TBS (50 mM Tris-HCl (pH 7.5), 150 mM NaCl) 1 mlに再懸濁し、遠心(9,100 g, 4℃, 5 分間)した。上清に1/6 (v/v) PEG/NaClを加え1時間氷上で静置後、沈殿を回収しTBS (含0.02 % NaN3) 200 mlに再懸濁して、再度、遠心分離を行い、上清液を増殖ファージ液とした。この1連の操作を1回のサイクルとし、5サイクルの操作を行った。
【0076】
5サイクルの操作後の溶出ファージを大腸菌の混釈培地上で培養し、プラークを得た。このプラークを任意に選択し、それぞれ大腸菌に感染させ、5時間の培養により増殖後、ファージを含む上清(500 μl)を遠心回収 (9,100 g, 30秒間)した。このファージを100 μlのIodide buffer (10 mM Tris-HCl (pH 8.0), 1 mM EDTA, 4 M NaI)に懸濁し、250 μlのエタノールを加え10分反応させることでファージゲノムを抽出した。精製後のファージゲノムを、ペプチドライブラリーキットに付属のペプチド部位の外側に設計されたプライマーを用いてサイクルシークエンスを行い、ABI-3100(Applied Biosystems社)を用いてDNA配列を解析することで配列表2に示すペプチド配列を決定した。
【0077】
(ペプチドの合成)
ペプチドの合成はFmoc固相合成法にて行った。Fmoc固相合成法はペプチドシンセサイザー、PSSM−8((株)島津製作所社製)を用い、同装置のプロトコールに従って合成した。合成終了後、反応容器内の樹脂をジクロロメタンにて5回洗浄した後、ペプチドレジンを減圧乾燥した。乾燥後、脱保護、切り出し液(m-クレゾール:エタンジチオール:チオアニソール:TFA=2:6.5:6.5:85)を注入し、約1時間反応させ、ペプチドを樹脂から切り離すと共に、残ったFmoc基をペプチドから脱離させた。濾液を遠沈管に回収し、冷却したジエチルエーテルを加え、ペプチドを析出させ、遠心分離により沈殿物を回収した。これを減圧乾燥して、粗ペプチドを得た。この粗ペプチドをTSKgel Octadecyl-4PWカラム(21.5mm×15cm、東ソー(株))を装着した逆相系液体クロマトグラフィー(溶出液0.1%TFA水溶液と0.1%TFA+80%アセトニトリル水溶液のグラジエント溶出)により単離し、減圧乾燥して、配列表2のペプチドを得た。合成したペプチドはエレクトロスプレーイオン質量分析機LCQ Deca XP(Thermo Fisher 社製)を用いてアミノ酸配列を確認した。
【0078】
(実施例1)
メタノールに、上記方法で作製したシランモノマー結合二酸化チタン微粒子を3質量%となるよう加え、ビーズミルにより平均粒子径18nmに再度粉砕分散した。次に、ポリエステル製フィルム(フィルム厚、125μm)に二酸化チタン微粒子分散液を塗布し、電子線を200kVの加速電圧で5Mrad照射することで、二酸化チタン微粒子をシランモノマーのグラフト重合によりポリエステルフィルム表面に結合させた。その後、微粒子固定化フィルムを、アミノプロピルトリメトキシシラン(信越化学工業株式会社製、KBM−903)の1%水溶液中に30分浸漬し、純水にて洗浄後、120度℃で乾燥させ、粒子膜表面にアミノ基を持ったシランモノマーを固定化した。アミノ基を導入した微粒子固定化フィルムを、5mMの抗菌性を持つ配列表1に示すペプチド(Met - Pro - Arg - Arg - Arg - Arg - Ser - Ser - Ser - Arg- Pro - Val - Arg - Arg - Arg - Arg - Arg- Pro - Arg - Val - Ser - Arg- Arg - Arg)(プロタミン硫酸塩、和光純薬工業株式会社製)りん酸緩衝液中に浸漬し、さらに、反応剤として終濃度 10 mM となるよう塩酸1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド(株式会社同仁化学研究所製)を加え、ペプチドのカルボキシル基とシランモノマーのアミノ基とでペプチド結合を形成し、ペプチドを固定した。その後、りん酸緩衝液、次いで純水で洗浄し、室温で3時間風乾した。
【0079】
(実施例2)
実施例1と同様の方法にて、抗菌性ペプチドの代わりに、ファージディスプレイ法により得た配列を、固相合成法により合成し、得られたスギ花粉アレルゲンCryJ1に対して強固な結合能を持つ配列表2に示すペプチド(Thr - Phe - Ile - Asn- Pro - Ser - His )を固定し、その後、りん酸緩衝液、次いで純水で洗浄し、室温で3時間風乾した。
【0080】
(実施例3)
実施例1と同様の方法にて、配列表1のペプチドの代わりに、抗菌性を持つ配列表3のペプチド(Lys-Trp-Lys-Leu-Phe-Lys-Lys-Ile-Glu-Lys-Val-Gly-Gln-Asn-Ile-Arg-Asp-Gly-Ile-Ile-Lys-Ala-Gly-Pro-Ala-Val-Ala-Val-Val-Gly-Gln-Ala-Thr-Gln-Ile-Ala-Lys)(セクロピンA、和光純薬工業株式会社製)を固定し、その後、りん酸緩衝液、次いで純水にて洗浄し、室温で3時間風乾した。
【0081】
(比較例1)
実施例1と同様の方法にて、抗菌性ペプチドの代わりに、スギ花粉アレルゲンCryJ1に対する抗体、抗CriJ1モノクローナル抗体(クローン番号013、生化学バイオビジネス株式会社製)を固定し、その後、りん酸緩衝液、次いで純水にて洗浄し、室温で3時間風乾させた。
【0082】
(比較例2)
ブランクとして実施例1と同様の方法にて、抗菌性ペプチドを固定しない試料を作成した。
【0083】
(抗菌性の評価)
JIS Z 2801、抗菌加工製品の抗菌試験方法に従って試験を行った。それぞれのサンプルを5×5cmの大きさに切り取り、シャーレ内で大腸菌の3×10個/mlの菌液、0.4mlをサンプル上に置き、4×4cmのカバーフィルムをのせ、温度35℃、湿度95%で24時間培養した後、培地を用いて大腸菌をサンプルから洗い出し、コロニーを形成させ、比較例3を基準として抗菌活性値を求めた。また、それぞれのサンプルを作成してから1ヶ月または6ヶ月、室温で室内に放置した後、同様の試験を行い、抗菌活性値を求めた。評価結果を表1に示す。
【0084】
【表1】

【0085】
(抗アレルゲン性の評価)
抗アレルゲン性の評価は、それぞれのサンプルを1×2cmの大きさに切り取り、さらに細断したのち、10μg/mlの精製スギ花粉抗原CryJ1スギ花粉溶液0.5mlのなかに浸漬した。24時間後、上澄み液のCryJ1量の測定を行った。CryJ1量の測定には、ELISA法を使用した。また、それぞれのサンプルを作成してから1ヶ月または6ヶ月、室温で室内に放置した後、同様の試験にて評価を行った。
【0086】
ELISA法によるCryJ1量の測定について、以下に詳細に説明する。ELISA法によるCryJ1量の測定は生化学バイオビジネス社の技術資料に従い行った。すなわち、抗CryJ1抗体(クローン番号013、生化学バイオビジネス株式会社製)をPBS(20 mM Na2HPO4,0.8% NaCl, pH7.4)で10μg/mLとなるように希釈し、96穴タイタープレートに1ウェルにつき100μLずつ加え、室温で1時間静置した。溶液を除去し、ペーパータオル上で数回叩いて水分を除去した後、0.1% BSA含有PBSを1ウェルにつき200μLずつ加え、室温で1時間静置した。プレートから0.1% BSA含有PBSを除去し、ペーパータオル上で数回叩いて水分を除去した後、検液、標準溶液をそれぞれ1ウェルにつき100μLずつ加え、室温で1時間静置した。検液、標準溶液をプレートから除去し、Tween 20含有PBSを1ウェルにつき250μL加えて、捨てる洗浄操作を3回繰り返した。ペーパータオル上で数回叩いて水分を除去した後、ペルオキシダーゼ標識抗CryJ1抗体(クローン番号053、生化学バイオビジネス株式会社製)を0.1% BSA含有PBSで1,000倍に濃度に希釈し、プレートに1ウェルにつき100μLずつ加え、室温で1時間静置した。ペルオキシダーゼ標識抗CryJ1抗体をプレートから除去し、Tween 20含有PBSで洗浄操作を3回繰り返した。呈色溶液基質溶液1-StepTM Turbo TMB-ELISA(ピアス社製)を、1ウェルにつき100μLずつ加え、3分間静置し、次いで、2N硫酸を1ウェルにつき100μLずつ加え、酵素反応を停止させた。硫酸添加後、各ウェルの450nmの吸光度を測定した。
【0087】
測定したCryJ1の濃度より、初期の濃度からのCryJ1の減少率を求め、アレルゲンの不活化について評価を行った。減少率の結果を表2に示す。
【0088】
【表2】

【0089】
表1の結果より以下のことが明らかとなった。作成直後では抗菌性ペプチドを固定化したサンプル(実施例1、実施例3)で、強い抗菌性を示し、抗アレルゲン性ペプチドを固定化したサンプル(実施例2)では抗菌性は得られなかった。すなわち、抗菌性という機能が、ペプチドの配列特異的に発現することが示された。さらに、作成6ヶ月後の試験では、実施例3の効果が減衰した。配列表3の抗菌性ペプチドは配列表1の抗菌性ペプチドに比べてアミノ酸長が長く、光、熱、乾燥等の環境の影響を多く受けたものと考えられる。
【0090】
表2の結果より以下のことが明らかとなった。作成直後では抗菌性ペプチドを固定化したサンプルは(実施例1)アレルゲン結合性を示さず、抗体及びアレルゲン結合性ペプチドを固定化したサンプル(実施例2、比較例1)はアレルゲンと結合し、溶液中のアレルゲンを減少させた。すなわち、ここでも、固定化したペプチドが特異的な機能を発現することが示された。
【0091】
さらに、作成6ヶ月後の試験では、抗体を固定化した比較例1が効果がなくなったのに対し、ペプチドを固定化した実施例2では効果を保っていた。抗体が活性を失った原因は、はっきりしないが、乾燥により、水分を失い三次構造を保てなくなり、結合力を示すことができなかったと考えられる。一方の実施例2のペプチドは短いペプチドであり、三次構造に機能が依存しない。そのため、乾燥に強く一月後でも効果を示すことができたと考えられる。
【0092】
以上より、本発明による機能性ペプチドを用いた複合部材を示す複合部材は、非対象物質である浮遊性粒子による機能阻害を小さく抑えることができ、従来よりも長期にわたり効果を発揮する部材を提供することがでる。さらに、本発明による技術の実施形態は、基体を、例えば、フィルム状、繊維状、布状、メッシュ状、ハニカム状等、使用目的に合った様々な形態(形状、大きさ等)とすることが可能であり、様々な形態の各種基体に防塵性の機能を付加した製品に適用可能である。
【図面の簡単な説明】
【0093】
【図1】本実施形態の機能性ペプチドが固定された複合部材の模式図である。
【図2】本実施形態の機能性ペプチドが固定された複合部材の他の例の模式図である。
【図3】本実施形態の機能性ペプチドが固定された複合部材の他の例の模式図である。
【図4】本実施形態の機能性ペプチドが固定された複合部材の他の例の模式図である。
【符号の説明】
【0094】
100 :機能性ペプチドが固定された複合部材
1 :基体
2 :無機微粒子
2−a :無機微粒子
2−b :無機微粒子
3 :シランモノマー
3−a :シランモノマー
3−b :不飽和結合を有するシランモノマー
4 :化学結合
5 :機能性ペプチド
6 :化学結合
7 :バインダー
10 :無機微粒子群
20−a:無機微粒子群
20−b:無機微粒子群
200 :機能性ペプチドが固定された複合部材

【特許請求の範囲】
【請求項1】
機能性ペプチドが固定された複合部材であって、
基体と、
シランモノマーが表面に脱水縮合により結合しているとともに、前記シランモノマーと前記基体表面との化学結合を介して基体の表面に固定された無機微粒子とを有し、
前記機能性ペプチドは、該機能性ペプチドと前記シランモノマーとの共有結合を介して、前記無機微粒子に固定されていることを特徴とする複合部材。
【請求項2】
前記無機微粒子が、シランモノマーを介して基体に結合する第1の無機微粒子と、少なくとも第1の無機微粒子を介して基体と結合する第2の無機微粒子とからなることを特徴とする請求項1に記載の複合部材。
【請求項3】
前記無機微粒子の表面に結合するシランモノマーには、不飽和結合を有するシランモノマーが含まれることを特徴とする請求項1または2に記載の複合部材。
【請求項4】
前記シランモノマーと前記基体表面との化学結合が、前記不飽和結合を有するシランモノマーと前記基体表面とのグラフト重合であることを特徴とする請求項3に記載の複合部材。
【請求項5】
前記グラフト重合は、放射線グラフト重合であることを特徴とする請求項4に記載の複合部材。
【請求項6】
前記機能性ペプチドが 3〜30個のアミノ酸残基からなることを特徴とする請求項1から5のいずれか1つに記載の複合部材。
【請求項7】
前記基体が繊維であることを特徴とする請求項1から6のいずれか1つに記載の複合部材。
【請求項8】
前記基体が網状構造を有していることを特徴とする請求項1から6のいずれか1つに記載の複合部材。
【請求項9】
前記基体が不織布であることを特徴とする請求項1から8のいずれか1つに記載の複合部材。
【請求項10】
前記基体がフィルターであることを特徴とする請求項1から9のいずれか1つに記載の複合部材。
【請求項11】
前記基体が建築材または内装材であることを特徴とする請求項1から8のいずれか1つに記載の複合部材。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate


【公開番号】特開2010−58447(P2010−58447A)
【公開日】平成22年3月18日(2010.3.18)
【国際特許分類】
【出願番号】特願2008−228673(P2008−228673)
【出願日】平成20年9月5日(2008.9.5)
【出願人】(391018341)株式会社NBCメッシュテック (59)
【出願人】(504132881)国立大学法人東京農工大学 (595)
【Fターム(参考)】