説明

流体軸受装置およびこれを備えたスピンドルモータ、情報装置

【課題】循環型の流体軸受装置において、潤滑流体に含まれる気泡を効率よく外気へと排出しながら、ラジアル軸受部等の動圧軸受部の軸方向長さを十分に確保することが可能な流体軸受装置を提供する。
【解決手段】流体軸受装置10では、第1の隙間G1が、軸12とスリーブ11との間に形成される。第2の隙間G2は、スリーブキャップ16とスリーブ11との間に形成され、潤滑流体17が貯留される。スラスト軸受部材21は、スリーブキャップ16の中央穴16aの内周面に近接配置されている。第3の隙間G3は、スラスト軸受部材21とスリーブキャップ16との間に形成され、大気に開放される。第4の隙間G4は、スラスト軸受部材21とスリーブ11との間に形成される。潤滑流体17は、連通路11b、第1の隙間G1、第2の隙間G2を含む循環経路に沿って循環する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、ハードディスク駆動装置等に搭載される流体軸受装置およびこれを備えたスピンドルモータに関する。
【背景技術】
【0002】
近年、ハードディスク駆動装置(以下、HDD)等のディスク駆動装置には、非接触回転によって低NRRO(Non-Repetitive Run OUT)や低騒音が実現できる動圧型流体軸受を搭載した流体軸受装置が主に用いられている。
【0003】
このような流体軸受装置では、動圧流体軸受の角度剛性(またはモーメント剛性)を向上させるために、軸とスリーブとの間の隙間に形成されるラジアル軸受部の長さをできるだけ長く確保した構成を採用することが望ましい。一方で、スピンドルモータの薄型化の要求も存在することから、ラジアル軸受部の長さを十分に確保しながら、流体軸受装置の厚みが増大しないような構成が必要とされている。なお、ここでいう角度剛性とは、外乱による動作中の軸の傾きを復元する度合いをいう。
【0004】
例えば、特許文献1には、スリーブキャップの内周面側に、軸に固定されたフランジ状のプレートと、ハブ下にボス部とを設け、スリーブキャップとプレートとの間の隙間にシール部が形成されるモータが開示されている。この構成では、スリーブキャップとプレートとの間に潤滑流体を介在させることで、内部の圧力を均一にして安定性を向上させるとともに、高いシール効果を持たせることができる。
【特許文献1】特開2008−43197号公報(平成20年2月21日公開)
【特許文献2】特開2005−257073号公報(平成17年9月22日公開)
【特許文献3】特開2005−304290号公報(平成17年10月27日公開)
【発明の開示】
【発明が解決しようとする課題】
【0005】
しかしながら、上記従来の流体軸受装置では、以下に示すような問題点を有している。
すなわち、上記公報に開示された流体軸受装置では、スリーブキャップの内底面側にフランジ状のプレートを追加しているため、軸方向における部材が従来よりも1つ追加されており、ラジアル軸受部の軸方向長さの確保については特に考慮されていない。よって、例えば、薄型化された流体軸受装置では、ラジアル軸受部の軸方向長さを十分に確保できずに、軸受の角度剛性が低下してしまうおそれがある。
【0006】
本発明の課題は、循環型の流体軸受装置において、潤滑流体に含まれる気泡を効率よく外気へと排出しながら、ラジアル軸受部等の動圧軸受部の軸方向長さを十分に確保することが可能な流体軸受装置およびこれを備えたスピンドルモータを提供することにある。
【課題を解決するための手段】
【0007】
第1の発明に係る流体軸受装置は、軸と、スリーブと、第1の隙間と、連通路と、第1の動圧発生溝と、スリーブキャップと、略円環状の第2の隙間と、スラスト軸受部材と、第3の隙間と、第4の隙間と、潤滑流体と、循環経路と、を備えている。スリーブは、軸が相対回転可能な状態で装填され軸受孔を有する。第1の隙間は、軸とスリーブの軸受孔の間に形成される。連通路は、スリーブの一部に形成されており、スリーブにおける軸受孔の開放端側と閉塞端側とを連通させる。第1の動圧発生溝は、軸の外周面およびスリーブの軸受孔内周面の少なくとも一方に形成されている。スリーブキャップは、スリーブの開放端側に設けられ中央穴を有する。第2の隙間は、スリーブキャップとスリーブの開放端側の端面との間に形成され、潤滑流体溜まり部を形成する。スラスト軸受部材は、軸における開放端側に固定されており、スリーブキャップの中央穴の内周面に近接するように配置されている。第3の隙間は、スラスト軸受部材の外周とスリーブキャップの中央穴の内周面との間に形成され、大気に開放される。第4の隙間は、スラスト軸受部材とスリーブの端面との間に形成される。潤滑流体は、互いに連通する第1の隙間、連通路、第2の隙間、第4の隙間内に貯留されている。循環経路は、連通路、第1の隙間、第2の隙間を含み、潤滑流体が循環する。
【0008】
ここでは、軸の外周面とスリーブの軸受孔内周面の少なくとも一方に形成された動圧発生溝の働きによって軸とスリーブとが非接触で回転するとともに、スラスト軸受部材やスリーブキャップ、スリーブ、軸等によって形成される第1の隙間、連通路、第2の隙間、第4の隙間が互いに連通した状態で、各隙間に潤滑流体が充填される。また、潤滑流体は、潤滑流体溜まり部としての第2の隙間や連通路、第1の隙間を含む循環経路に沿って装置内を循環する。
【0009】
これにより、スラスト軸受部材の外周面に近接するようにスリーブキャップを配置することで、スラスト軸受部材の直近までスリーブを配置することができるため、スリーブの軸方向長さを十分に確保することができる。よって、流体軸受装置が薄型化された場合でも、軸受部の軸方向長さを最大限確保して、流体軸受装置の角度剛性を向上させることができる。また、潤滑流体が装置内において循環可能となり、潤滑流体が軸受の隙間に途切れることなく供給されるため、軸受内における油膜切れのおそれがない。また、軸受の内部に気泡が凝集した場合でも、連通路を介してスムーズに気泡を排出することができる。
【0010】
第2の発明に係る流体軸受装置は、第1の発明に係る流体軸受装置であって、潤滑流体溜まり部を形成する第2の隙間は、周方向において隙間の大きさが変化する。
【0011】
ここでは、軸受部に対して供給される潤滑流体を貯留する潤滑流体溜まり部を形成する第2の隙間が、軸を中心とする周方向において隙間の大きさが変化するように形成されている。
【0012】
ここで、周方向において隙間の大きさが変化するとは、例えば、軸方向における隙間寸法の変化であってもよいし、径方向における隙間の大きさの変化であってもよい。
【0013】
これにより、潤滑流体溜まり部を形成する第2の隙間に貯留される潤滑流体を、隙間の大きさが小さくなる方向へ引き付けながら保持することができる。よって、潤滑流体の外部への漏れ出しを防止することができる。
【0014】
第3の発明に係る流体軸受装置は、第1または第2の発明に係る流体軸受装置であって、第4の隙間において互いに対向するスリーブの端面とスラスト軸受部材の対向面とのいずれか一方に、潤滑流体に対して循環力を付与する第2の動圧発生溝が形成されている。
【0015】
ここでは、スラスト軸受部材とスリーブ端面との間の隙間を形成する対向面のいずれか一方に形成された第2の動圧発生溝(スラスト動圧発生溝)において、連通路や第1〜第4の隙間に充填された潤滑流体を循環させるための循環力を付与する。
【0016】
ここで、上記循環力を付与する動圧発生溝としては、非対称形状のヘリングボーン溝であってもよいし、スパイラル溝であってもよい。
【0017】
これにより、スラスト軸受部において潤滑流体の循環力を発生させることにより、例えば、ラジアル軸受部等における第1の動圧発生溝については対称な形状の溝として形成することができる。この結果、軸受部分として用いられる対称溝部分の軸受スパン長を、軸方向等において従来よりも長く確保することができる。よって、流体軸受装置の軸受剛性を向上させることができる。
【0018】
第4の発明に係る流体軸受装置は、第3の発明に係る流体軸受装置であって、第2の動圧発生溝は、非対称形状のヘリングボーン、あるいはスパイラル形状を有している。
【0019】
ここでは、スラスト軸受部材とスリーブ端面との間に形成されるスラスト軸受部に含まれる第2の動圧発生溝として、非対称なヘリングボーン形状、あるいはスパイラル形状の溝を採用している。
【0020】
これにより、スラスト軸受部材とスリーブ端面との間において、潤滑流体に対して容易に循環力を付与することができる。
【0021】
第5の発明に係る流体軸受装置は、第3または第4の発明に係る流体軸受装置であって、第1の動圧発生溝は、対称な形状で形成されている。
【0022】
ここでは、上述したスラスト軸受部において潤滑流体に対して循環力を付与する構成において、軸の外周面およびスリーブの軸受孔内周面の少なくとも一方に形成された第1の動圧発生溝を対称形状として形成している。
【0023】
ここで、従来の流体軸受装置では、連通路を含む循環経路において潤滑流体を循環させるために、主として、ラジアル軸受部等を構成するラジアル動圧発生溝を非対称形状として循環力を発生させていた。しかしながら、このような非対称形状は、対称形状の場合と比較して、実質的に軸受部としての軸受スパン長を非対称部分によってロスしていた。
【0024】
これにより、上述したスラスト軸受部において循環力を付与することができるため、第1の動圧発生溝を対称形状とし、従来よりも軸方向における軸受スパン長を長く確保することができる。よって、流体軸受装置の軸受剛性を向上させることができる。
【0025】
第6の発明に係る流体軸受装置は、第1から第5の発明のいずれか1つに係る流体軸受装置であって、スリーブキャップは、第2の隙間と外気とを連通させる換気路を端面に有している。
【0026】
これにより、潤滑流体溜まり部としての第2の隙間に貯留された潤滑流体に含まれる気泡を、スリーブキャップの端面に形成された換気路から効率よく排出することができる。
【0027】
第7の発明に係る流体軸受装置は、第1から第6の発明のいずれか1つに係る流体軸受装置であって、第2の隙間は、連通路の近傍において軸方向における寸法が最も小さくなる最小隙間部を有し、連通路から換気路に向かって軸方向における寸法が最も大きくなる最大隙間部を換気路付近に有しており、周方向に沿って最小隙間部から最大隙間部に向かって隙間が漸次大きくなる。
【0028】
これにより、潤滑流体溜まり部としての第2の隙間において、換気路が形成された最大隙間部付近に存在する潤滑流体は、表面張力の作用によって隙間が小さい最小隙間部の側へ引き付けられる。この結果、第2の隙間に貯留された潤滑流体が換気路から外部へ漏れ出してしまうことを回避することができる。また、最小隙間部近傍に配置された連通路内を循環する潤滑流体についても、換気路側へ移動しにくいため、換気路から外部へ潤滑流体が漏れ出してしまうことを回避することができる。
【0029】
第8の発明に係る流体軸受装置は、第1から第7の発明のいずれか1つに係る流体軸受装置であって、スリーブキャップの内周面とスリーブの外周面との間に形成され、潤滑流体溜まり部を形成する略円環状の第5の隙間を、さらに備えている。
【0030】
ここでは、スリーブの外周面とスリーブキャップの内周面との間に形成される略円環状の第5の隙間を、潤滑流体溜まり部として用いている。
【0031】
これにより、潤滑流体溜まり部として潤滑流体を貯留する第5の隙間をさらに設けることで、軸方向における軸受寸法に影響することなく、装置内に貯留される潤滑流体の量を十分に確保することができる。
【0032】
第9の発明に係る流体軸受装置は、第8の発明に係る流体軸受装置であって、潤滑流体溜まり部を形成する第5の隙間は、周方向において隙間の大きさが変化する。
【0033】
ここでは、軸受部に対して供給される潤滑流体を貯留する潤滑流体溜まり部を形成する第5の隙間が、軸を中心とする周方向において隙間の大きさが変化するように形成されている。
【0034】
ここで、周方向において隙間の大きさが変化するとは、例えば、径方向における隙間寸法の変化であってもよいし、軸方向における隙間の大きさの変化であってもよい。
【0035】
これにより、潤滑流体溜まり部を形成する第5の隙間に貯留される潤滑流体を、隙間の大きさが小さくなる方向へ引き付けながら保持することができる。よって、潤滑流体の外部への漏れ出しを防止することができる。
【0036】
第10の発明に係る流体軸受装置は、第8または第9の発明に係る流体軸受装置であって、スリーブキャップは、第5の隙間と外気とを連通させる換気路を外周面に有している。
【0037】
これにより、潤滑流体溜まり部としての第5の隙間に貯留された潤滑流体に含まれる気泡を、スリーブキャップの外周面に形成された換気路から効率よく排出することができる。
【0038】
第11の発明に係る流体軸受装置は、第8から第10の発明のいずれか1つに係る流体軸受装置であって、第5の隙間は、連通路の近傍において径方向における寸法が最も小さくなる最小隙間部を有し、連通路から換気路に向かって径方向における寸法が最も大きくなる最大隙間部を換気路付近に有しており、周方向に沿って最小隙間部から最大隙間部に向かって隙間が漸次大きくなる。
【0039】
これにより、潤滑流体溜まり部としての第5の隙間において、換気路が形成された最大隙間部付近に存在する潤滑流体は、表面張力の作用によって隙間が小さい最小隙間部の側へ引き付けられる。この結果、第5の隙間に貯留された潤滑流体が換気路から外部へ漏れ出してしまうことを回避することができる。また、最小隙間部近傍に配置された連通路内を循環する潤滑流体についても、換気路側へ移動しにくいため、換気路から外部へ潤滑流体が漏れ出してしまうことを回避することができる。
【0040】
第12の発明に係る流体軸受装置は、第1から第11の発明のいずれか1つに係る流体軸受装置であって、スラスト軸受部材の軸方向厚みは、スリーブキャップの軸方向厚みより小さいか、ほぼ同等である。
【0041】
ここでは、径方向において並ぶように近接配置されるスラスト軸受部材の軸方向厚みを、スリーブキャップの厚みより小さいか、ほぼ同等の厚さになるように形成している。
【0042】
これにより、軸受スパン長を、スラスト軸受部材の厚みによって削減することなく、十分に長く確保することができる。
【0043】
第13の発明に係る流体軸受装置は、第1から第12の発明のいずれか1つに係る流体軸受装置であって、軸はフランジレスであって、軸における開放端側の端部に固定されたハブをさらに備えている。スリーブは、径方向外側に突出した鍔部を有し、ハブは、鍔部の軸方向における移動を制限する抜け止め部を有している。
【0044】
ここでは、上述したスラスト軸受部材とスリーブ端面との間においてスラスト軸受部を形成する構成において、いわゆるフランジレスの軸を用いた場合に、スリーブの外周面から径方向外側に突出する鍔部とハブの一部である抜け止め部とを当接させて、抜け止め構造を構成する。
【0045】
これにより、上述したスラスト軸受部材を用いたことにより、軸にフランジを設けてスラスト軸受部を構成しなくてもよいため、フランジレスの軸を使用することができる。このようなフランジレスの軸を用いた場合には、軸方向において軸が抜けてしまう抜け止め構造が必要となるため、上記鍔部と抜け止め部とを採用することで、容易に抜け止め構造を構成することができる。
【0046】
第14の発明に係る流体軸受装置は、第1から第12の発明のいずれか1つに係る流体軸受装置であって、軸は、閉塞端側に抜け止め用のフランジ部を有している。
【0047】
ここでは、スラスト軸受部材とスリーブ端面との間においてスラスト軸受部を構成する流体軸受装置において、軸における閉塞端側の一端に、抜け止め用のフランジ部材を用いている。
【0048】
ここで、抜け止め用のフランジ部材としては、スラスト動圧発生溝等を形成する必要がないため、比較的薄い部材を用いることができる。
【0049】
これにより、簡易な構成により、軸方向における軸受部の長さをロスすることなく、抜け止め構造を形成することができる。
【0050】
第15の発明に係る流体軸受装置は、第1から第14の発明のいずれか1つに係る流体軸受装置であって、第1の隙間の大きさを(G1)、第2の隙間の最小隙間部の大きさを(G2min)、第2の隙間の最大隙間部を(G2max)、第3の隙間の大きさを(G3)、第4の隙間の最小隙間部を(G4)とすると、以下の関係式を満たす。
G1<G4≦G2min<G3
G2min<G2max
【0051】
これにより、スリーブ上端面部において互いに対向するスラスト軸受部材の外周面とスリーブキャップの内周面によって形成される開口部分では、表面張力によって潤滑流体が軸受内部に保持され、開口部分から外部へ流出してしまうことを防止することができる。
【0052】
よって、軸受内部に滞留していた気泡は、スリーブキャップの隙間が広い部分に移動し、やがて換気路から排出されるため、軸受隙間は潤滑流体で充填されて信頼性の高い軸受を得ることができる。
【0053】
第16の発明に係る流体軸受装置は、第1から第15の発明のいずれか1つに係る流体軸受装置であって、スリーブキャップは、対向配置されたスリーブの端面に向かって突出しスリーブの開放端側の端面に当接する複数の突出部をさらに有している。
【0054】
これにより、スリーブキャップが、薄い(例えば、30〜100μm程度)薄板金属や樹脂シートによって成形加工されている場合でも、スリーブキャップとスリーブ端面との間の最小隙間部のばらつきを10μm程度に精度よく保つことができる。
【0055】
第17の発明に係る流体軸受装置は、第1から第16の発明のいずれか1つに係る流体軸受装置であって、スリーブキャップは、透光性材料によって形成されている。
【0056】
これにより、スリーブの開放端側の端面とスリーブキャップとの間の隙間に形成される第2の隙間に貯留される潤滑流体の量を、スリーブキャップを介して容易に視認できるため、潤滑流体の液量管理を容易に行うことができる。
【0057】
第18の発明に係る流体軸受装置は、第17の発明に係る流体軸受装置であって、スリーブキャップは、換気路が形成された端面に透光性を有する部分を含んでいる。
【0058】
ここでは、スリーブキャップにおける略円筒状の部分の外周面側の一部であって、換気路が形成されている端面に、透光性を有する部分を配置している。
【0059】
これにより、本発明に係る流体軸受装置に対して注油を行う場合でも、透光性を有する端面から潤滑流体の気液境界面の位置を確認しながら注油量を調整することができる。この結果、精度よく注油作業を実施することができる。
【0060】
第19の発明に係る流体軸受装置は、第17の発明に係る流体軸受装置であって、スリーブキャップは、換気路が形成された外周面側に透光性を有する部分を含んでいる。
【0061】
ここでは、例えば、スリーブキャップの外周面に形成された換気路周辺の部分を、透光性のある材料によって形成している。ここで、透光性のある部分としては、スリーブキャップの全体であってもよいし、換気路周辺の一部であってもよい。
【0062】
これにより、スリーブキャップの外周面に形成された換気路を介して注油を行う場合において、透光性のある部分を通じて潤滑流体がどこまで注入されているかを目視によって容易に確認することができる。よって、潤滑流体の注油状況を目視で確認しながら過剰な注油を行うことを回避できるため、注油後に不要な潤滑流体を吸い取る作業等を省いて、注油作業の効率化を図ることができる。
【0063】
第20の発明に係るスピンドルモータは、第1から第19の発明のいずれか1つに係る流体軸受装置と、流体軸受装置の回転側部材に取り付けられた回転磁石と、回転磁石に対して回転力を付与するステータコアと、を備えている。
【0064】
これにより、流体軸受装置が薄型化された場合でも、軸受部の軸方向長さを最大限確保して流体軸受装置の角度剛性を向上させることができるとともに、連通路を介してスムーズに気泡を排出することができるという、上記と同様の効果を得ることができる。
【0065】
第21の発明に係る情報装置は、第20の発明に係るスピンドルモータを搭載している。
【0066】
これにより、装置が薄型化された場合でも、軸受部の軸方向長さを最大限確保して流体軸受装置の角度剛性を向上させることができるとともに、連通路を介してスムーズに気泡を排出することができるという、上記と同様の効果を得ることができる。
【発明の効果】
【0067】
本発明に係る流体軸受装置によれば、流体軸受装置が薄型化された場合でも、軸受部の軸方向長さを最大限確保して流体軸受装置の角度剛性を向上させることができるとともに、連通路を介してスムーズに気泡を排出することができる。
【発明を実施するための最良の形態】
【0068】
本発明の一実施形態に係る流体軸受装置10を搭載したスピンドルモータ1について、図1〜図8を用いて説明すれば以下の通りである。
【0069】
[スピンドルモータ1の構成]
本実施形態のスピンドルモータ1は、図1に示すように、円盤状の記録ディスク(記録媒体)151を回転駆動するための装置であって、主として、流体軸受装置10と、ベース18と、ステータコア19と、ロータマグネット20と、を備えている。
【0070】
流体軸受装置10は、軸12を中心として磁気記録ディスクを回転させるために、磁気記録ディスクが搭載されたロータハブ(ハブ)15を含む回転側の部材を固定側の部材(スリーブ11等)に対して互いに非接触の状態でスムーズに回転させる。なお、流体軸受装置10の構成については、後段にて詳述する。
【0071】
ベース18は、流体軸受装置10やステータコア19の基台部分を形成している。そして、ベース18は、非磁性のアルミ系金属材料(例えば、ADC12)または磁性を有する鉄系金属材料(例えば、SPCC、SPCD)によって形成されている。ベース18が非磁性材料の場合は、ロータマグネット20の端面に対向する位置に別途磁性を有する材料で形成された吸引板40を設ける。
【0072】
ステータコア19は、ベース18に固定されており、その外周部がロータマグネット20の内周部に所定の隙間を保持して対向する位置に配置されている。ステータコア19は、外周に向かって複数の突極が形成されており、それらの突極にコイルがそれぞれ巻回されている。そして、ステータコア19は、厚み0.15〜0.35mm(主として、0.15mm、0.20mm、0.35mm)の厚みのケイ素鋼板を積層して形成されている。
【0073】
ロータマグネット20は、円環状の形状を有し、ロータハブ15の鍔部からの垂下円筒部の外周側の面に固定されており、コイル(ステータコイル)が巻回されたステータコア19とともに磁気回路を構成する。なお、本実施形態では、ステータコア19の外周にロータマグネット20が配置されるアウターロータ型の流体軸受装置について説明するが、内周に向かって複数の突極が形成されるステータコアの内周にロータマグネットが配置されるインナーロータ型の流体軸受装置であってもよい。
【0074】
記録ディスク151は、ロータハブ15のディスク載置部上に載置され、例えば、図示しない軸方向にバネ性を有する円盤状のクランパ等を図示しないタッピングネジにセットされる。このとき、軸12の中央部に設けられたネジタップ部にタッピングネジをねじ込むことにより、記録ディスク151は、クランパによって軸方向下側に押え付けられてクランパとロータハブ15のディスク載置部との間に狭持される。
【0075】
[流体軸受装置10の構成]
本実施形態に係る流体軸受装置10は、図1および図2に示すように、スリーブ11と、軸12と、スラスト板14と、ロータハブ(ハブ)15と、スリーブキャップ16と、潤滑流体17と、スラスト軸受部材21と、を備えている。
【0076】
スリーブ11は、軸受孔11aの開放端側と閉塞端側とを連通させる連通路11bを有している。また、スリーブ11は、開放端側の端面に固定されたスリーブキャップ16との間に、潤滑流体溜まりとしての略円環状の第2の隙間G2を有している。また、略円環状の第2の隙間G2は、連通路11bにつながるように形成されている。第2の隙間G2の軸方向における隙間寸法は、周方向において変化し(図5参照)、連通路11b近傍において狭く、連通路11bから遠ざかるにつれて広くなり、換気路16b近傍において最大になるように形成されている。図5は、図4に示す円Cに沿って径方向に潤滑流体溜まり部としての第2の隙間G2の断面を見た図である。
【0077】
第2の隙間G2において、図5に示すように、連通路11b近傍の軸方向における隙間寸法は最小隙間部G2minである。また、換気路16b近傍の軸方向の隙間寸法は、図5に示すように、最大隙間部G2maxである。第2の隙間G2における潤滑流体17が貯留される部分の軸方向における隙間寸法は、最小隙間部G2min、最大隙間部G2maxとなる部分を含み、その隙間寸法は周方向において漸次変化している。
【0078】
本実施形態では、図5に示すように、潤滑流体溜まり部としての第2の隙間G2が周方向において漸次変化するようにテーパ形状に形成されている。このため、連通路11bから循環してきた軸受内に貯留された潤滑流体17に含まれる気泡は、このテーパ形状の軸方向における隙間寸法が大きい側へ移動することで、気液分離が可能になる。また、換気路16b付近における軸方向の隙間寸法が、第2の隙間G2の軸方向における隙間寸法よりも大きく、最大隙間部が形成されている。このため、集められた気泡は流体軸受装置10の姿勢に関わらず最大隙間部に保持され、この近傍に換気路16bが形成されているため、振動・衝撃や潤滑流体の熱膨張によって換気路16bから潤滑流体17が漏れ出すことを抑制することができる。さらに、換気路16bの第2の隙間G2側には、換気路16bの大きさ、または径よりも大きな拡大部または拡径部16cを設けることが好ましい。これにより、さらに換気路16bから潤滑流体17が漏れ出してしまうことを抑制することができる。
【0079】
軸12は、スリーブ11の軸受孔11a内に、第1の隙間G1を介して回転可能な状態で挿入されている。また、スリーブ11の軸受孔11a内周面には、ラジアル動圧発生溝11c,11dが形成されている。なお、ラジアル動圧発生溝11c,11dは、軸12の外周面に形成されていてもよい。
【0080】
ラジアル動圧発生溝11c,11dは、図3に示すように、(a:a)の左右対称の形状であって、かつ同じ大きさでそれぞれ形成されている。よって、このラジアル動圧発生溝11c,11dにおいては、潤滑流体17を循環させる循環力は生じない。
【0081】
ロータハブ15は、軸12の上端部に対して固定されており、後述するスラスト軸受部材21を軸方向において軸12の段差部分とともに挟み込むようにして固定されている。また、ロータハブ15は、記録ディスク151が装着されるディスク載置部を外周部分に有している。さらに、ロータハブ15は、スリーブ11の外周面に近接する垂下部分に、スリーブ11の外周面に設けられた鍔部11eに対して当接する抜け止め部15aを有している。抜け止め部15aは、カシメ、圧入接着あるいは溶接によってロータハブ15の一部に固定されている。これにより、フランジレスの軸12が軸方向に移動した場合でも、鍔部11eと抜け止め部15aとが当接することで、軸方向における相対移動を規制して抜け止め構造を構成することができる。
【0082】
スリーブキャップ16は、図2および図3に示すように、中央穴16aを有しており、スリーブ11の上端面に対して固定されている。中央穴16aは、内周面において、後述するスラスト軸受部材21の外周面と対向するように近接配置されている。そして、このスリーブキャップ16の内周面とスラスト軸受部材21の外周面との間の隙間において、潤滑流体17を外気と連通させる第3の隙間G3が形成される。
【0083】
潤滑流体17は、オイル、超流動グリス、イオン性液体等であって、第1〜第4の隙間G1〜G4を含む微小隙間に貯留されており、表面張力によって隙間が狭い方へと移動する。このため、第2の隙間G2においては、図4に示すように、外気と連通する換気路16b付近における軸方向隙間が大きい部分は、潤滑流体17が存在せずに空気Aが存在する空所となっている。潤滑流体17は、少なくとも第1の隙間G1、連通路11b、第2の隙間G2における隙間が小さい部分、第3の隙間G3および第4の隙間G4内につながった状態で貯留されている。
【0084】
ベース18には、スリーブ11やステータコア19が取り付けられている。ロータハブ15には、ステータコア19に対向する位置にロータマグネット(回転磁石)20が固定されるとともに、必要に応じて磁気ディスクまたは光ディスク等の記録ディスク151が取り付けられる。
【0085】
スラスト軸受部材21は、略円板状の部材であって、径方向において対向配置されたスリーブキャップ16とほぼ同じか、それよりも小さい厚み(軸方向厚さ)を有している。なお、スラスト軸受部材21の厚みは、スリーブキャップ16よりも若干薄くてもよい。スラスト軸受部材21は、軸12における上端部の段差部分に対してロータハブ15とともに固定されている。また、スラスト軸受部材21とスリーブ11における開放端側の端面とが対向する面の間の隙間には、図3に示すように、第4の隙間G4が形成される。スラスト軸受部材21は、第4の隙間G4から第1の隙間G1に向かって潤滑流体17が循環するように、第4の隙間G4を形成するスリーブ11との対向面に、潤滑流体17に対して循環力を付与するスラスト動圧発生溝(第2の動圧発生溝)21aを有している。
【0086】
スラスト動圧発生溝21aは、非対称のヘリングボーン形状、あるいはスパイラル形状の溝であって、第4の隙間G4においてスラスト軸受部を構成する。なお、スラスト動圧発生溝としては、スラスト軸受部材21側に形成されたものに限定されるものではなく、対向するスリーブ11の端面に形成されていてもよい。
【0087】
<流体軸受装置10の動作>
本実施形態の流体軸受装置10では、図1および図2に示すように、ステータコア19に順次通電させてロータマグネット20との間に回転磁界を発生させることで、軸12を含む回転側部材が回転を開始する。軸12が回転を始めると、ラジアル動圧発生溝11c,11dおよびスラスト動圧発生溝21aは、潤滑流体17をかき集めて圧力を発生させる。このとき、軸12は、潤滑流体17中において浮上した状態で非接触回転する。
【0088】
ここで、スラスト動圧発生溝21aは、上述したように、潤滑流体17に対して循環力を付与する溝形状となっている。このため、潤滑流体17は、図2中矢印に示す方向に沿って、第1の隙間G1から、連通路11b、第2の隙間G2の最小隙間部G2min、第4の隙間G4へと順次循環する。このような潤滑流体17の循環力によって、エアレーションやキャビテーションによって軸受内に発生した気泡を、連通路11bを介して第2の隙間G2の最大隙間部G2maxの空所に移動させることができる。
【0089】
一方、潤滑流体17は、表面張力によって隙間が小さい方へ力を受けて保持される。このため、気泡は、隙間が広い方へと追いやられて、換気路16bを介して軸受外へと排出される。
【0090】
また、軸12の回転中において、図2に示すように、潤滑流体17は、連通路11b内において図中矢印方向に流れる。つまり、潤滑流体17は、連通路11bから第2の隙間G2および第4の隙間G4を通って、スリーブ11と軸12との間の第1の隙間G1へと吸い込まれていく。第4の隙間G4は、例えば、10〜50μm程度と十分に小さい隙間であるため、表面張力によって常に潤滑流体17によって満たされた状態となる。
【0091】
第3の隙間G3は、大気に開放されているため、この箇所におけるオイル漏れ防止手段が必要である。本実施形態の流体軸受装置10では、軸受が停止状態において、潤滑流体17の表面張力によってオイルシールを行っている。
【0092】
ここで、第3の隙間G3において、潤滑流体17を内周方向に向かって引っ張る表面張力をPi、潤滑流体17を逆に外周方向に向かって引っ張る表面張力をPo、潤滑流体17を漏れ出す上向きの方向へ引っ張る表面張力をPuとする。このとき、これらの数値の大小関係が、以下の関係式(1)を満たす場合には、潤滑流体17は、第3の隙間G3から漏れ出すことはない。さらに、潤滑流体17は、表面張力によってスリーブ11と軸12との間に形成された第1の隙間G1に近づく方向に流入していく。
Pi>Po>Pu ・・・・・(1)
【0093】
ここで、上記関係式(1)を成立させるためには、各隙間の隙間寸法の大小関係が、以下の関係式(2)、(3)を満たす必要がある。
G1<G4≦G2min<G3 ・・・・・(2)
G2min<G2max ・・・・・(3)
【0094】
すなわち、本実施形態では、上述した流体軸受装置10の構成に、各隙間の大小関係を組み合わせたことにより、より効果的に、潤滑流体17の外部への漏れ出しがない高い信頼性を発揮することが可能な流体軸受装置10を得ることができる。
【0095】
<流体軸受装置10において延長された軸受スパン長>
本実施形態の流体軸受装置10では、上述したように、スラスト軸受部材21とスリーブ11との対向面間の隙間に、スラスト軸受部を設けている。そして、スラスト軸受部を構成するスラスト動圧発生溝21aが、潤滑流体17に対して循環力を付与する溝形状(非対称のヘリングボーン形状またはスパイラル形状)を有している。よって、ラジアル動圧発生溝11c,11dは、対称な形状で同じ大きさの溝として形成されている。
【0096】
ここで、図6は、左半分に従来の流体軸受装置1010の構成を示し、右半分に本実施形態の流体軸受装置10の構成を示している。
【0097】
従来の流体軸受装置1010は、軸1012とスリーブ1011との間の隙間にラジアル軸受部を設けており、スリーブ1011に形成されたラジアル動圧発生溝1011c,1011dが軸受スパン長Aで配置されている。
【0098】
一方、本実施形態の流体軸受装置10は、軸方向において対称なラジアル動圧発生溝11c,11dが軸受スパン長Bで配置されている。従来の流体軸受装置1010においては、シャフト1012に形成された、または固定されたスラストフランジ1012aが存在し、軸受スパン長Aを短くしている。一方、本実施形態の流体軸受装置10においては、スラスト軸受部材21がスリーブキャップ16の厚み内に配置されているので、ラジアル動圧発生溝11c,11dを配置可能な軸方向寸法を短くすることはない。そして、開口部30を軸方向において同じ位置に配置可能である。流体軸受装置10と従来の流体軸受装置1010とを比較すると、図6に示すように、従来のスラストフランジ1012aがない分、本実施形態の流体軸受装置10の方が従来の流体軸受装置1010よりも軸方向における軸受スパンを長く確保することができることが分かる。
【0099】
このとき、流体軸受装置10および流体軸受装置1010について、軸受スパン長A,Bの差、つまり「軸受スパン長B−軸受スパン長A」で表される軸受スパン延長長さ(mm)と流体軸受装置10における回転剛性(Nm/rad)との関係を、図7のグラフに示す。
【0100】
図7に示すように、軸受スパン延長長さ(mm)が大きくなるにつれて、流体軸受装置10の回転剛性が向上することが分かる。具体的には、軸受スパン延長長さが0.2mm大きくなると、約2Nm/rad分の回転剛性の向上が見られた。この結果は、軸受スパン長を最大限確保することで、スリーブ11に対して軸12が傾いた際に元の直立姿勢に戻すための力を表す回転剛性、または角度剛性が大きくなることを示している。
【0101】
以上のように、軸12をフランジレスとし、ラジアル動圧発生溝11c,11dを軸方向において対称に配置することで、ラジアル動圧発生溝11c,11dの軸受スパン長を最大限確保することができる。この結果、図7のグラフに示すように、従来よりも軸受スパン長を延長して、軸受剛性を向上させることができる。
【0102】
<流体軸受装置10への注油方法>
本実施形態では、上述した構成を備えた流体軸受装置10に対して、潤滑流体17を注油する際には、図8に示すように、注入管やディスペンサ等の注油装置22を用いて、第3の隙間G3から注油を行う。
【0103】
具体的には、まず減圧環境下において、注油装置22を第3の隙間G3に近づけて、潤滑流体17を所定量、または実際に必要な油量より多めに注入する。
【0104】
この後、流体軸受装置10の周囲を大気圧等のより高い圧力に復圧することによって、潤滑流体17を軸受内に完全に流入させる。なお、潤滑流体17を注入しながら軸12を回転させ、動圧発生溝11c,11d,21aのポンプイン力によって潤滑流体17を注入してもよい。あるいは潤滑流体17を大気圧等の環境下において注油装置22を用いて必要な油量より多めに注入した後で、その気圧より低い圧力に真空引きして減圧し、軸受内の空気と置換することによって潤滑流体17を注入してもよい。
【0105】
次に、スリーブキャップ16とスラスト軸受部材21の内周面との間の第3の隙間G3に、図示しない吸取管を挿入し、余剰な油量を吸い取ることで潤滑流体17の量を適正に制御する。
【0106】
この結果、流体軸受装置10の上面側から容易に潤滑流体17の注油および吸引を行うことができる。
【0107】
なお、このような注油工程における作業性、および高精度な注油作業を行うために、スリーブキャップ16の一部あるいは全体が透光性を有する材料によって形成されていることが好ましい。この場合には、潤滑流体17の気液境界面の位置を目視やカメラ等によって気液境界面D(図4参照)の位置を角度θによって監視しながら潤滑流体17を注油することができるため、より精度の高い注油作業を行うことができる。よって、注油作業を効率化することができる。
【0108】
[本流体軸受装置10の特徴]
(1)
本実施形態の流体軸受装置10は、図2等に示すように、軸12と、スリーブ11と、第1の隙間G1と、連通路11bと、ラジアル動圧発生溝11c,11dと、スリーブキャップ16と、略円環状の第2の隙間G2と、スラスト軸受部材21と、第3の隙間G3と、第4の隙間G4と、潤滑流体17と、潤滑流体17の循環経路と、を備えている。スリーブ11は、軸12が相対回転可能な状態で装填され軸受孔11aを有する。第1の隙間G1は、軸12とスリーブ11の軸受孔11aの間に形成される。連通路11bは、スリーブ11の一部に形成されており、スリーブ11における軸受孔11aの開放端側と閉塞端側とを連通させる。ラジアル動圧発生溝11c,11dは、スリーブ11の軸受孔11aの内周面に形成されている。スリーブキャップ16は、スリーブ11の開放端側に設けられ中央穴16aを有する。第2の隙間G2は、スリーブキャップ16とスリーブ11の開放端側の端面との間に形成され、潤滑流体17が貯留される潤滑流体溜まり部を形成する。スラスト軸受部材21は、軸12における開放端側に接合されており、スリーブキャップ16の中央穴16aの内周面に近接するように配置されている。第3の隙間G3は、スラスト軸受部材21の外周とスリーブキャップ16の中央穴16aの内周面との間に形成され、大気に開放される。第4の隙間G4は、スラスト軸受部材21とスリーブ11の端面との間に形成される。潤滑流体17は、互いに連通する第1の隙間G1、連通路11b、第2の隙間G2、第4の隙間G4内に貯留されている。潤滑流体17は、連通路11b、第1の隙間G1、第2の隙間G2を含む循環経路に沿って循環する。
【0109】
これにより、潤滑流体17を装置内において循環させながら、外気に開放された第3の隙間G3や換気路16b等から、潤滑流体17内に含まれる気泡を効果的に排出することができる。
【0110】
また、フランジレスタイプの軸12と、スラスト軸受部材21とを組み合わせて、スラスト軸受部をスラスト軸受部材21とスリーブ11の端面との間に配置することで、スラスト軸受部材21の直近までスリーブ11を延長して設けることができる。よって、軸方向におけるラジアル軸受部の軸受スパン長を最大限に確保することができる。
【0111】
この結果、薄型化された流体軸受装置10であっても、ラジアル軸受部の軸方向における軸受スパン長を最大限確保して、流体軸受装置10の角度剛性を向上させることができるとともに、連通路11bを介して潤滑流体17内の気泡をスムーズに排出することができる。
【0112】
(2)
本実施形態の流体軸受装置10では、図5に示すように、潤滑流体溜まり部としての第2の隙間G2の隙間の大きさが、周方向において変化するように形成されている。
【0113】
これにより、第2の隙間G2において貯留されている潤滑流体17を、隙間が小さい方に引き付けながら保持することができる。よって、流体軸受装置10の姿勢によらず、換気路16b付近に空気を保持することができるため、換気路16b等から潤滑流体17が外部へ漏れ出すことを容易に回避することができる。
【0114】
(3)
本実施形態の流体軸受装置10では、図3に示すように、スラスト軸受部材21におけるスリーブ11との対向面に、潤滑流体17に対して循環力を付与するスラスト動圧発生溝21aを設けている。
【0115】
これにより、ラジアル動圧発生溝11c,11d側において循環力を生じさせるための非対称形状等を採用する必要がなくなり、ラジアル動圧発生溝11c,11dを軸方向において対称な形状とすることができる。この結果、ラジアル軸受部における軸受スパン長を最大限確保して、軸受剛性を向上させることができる。
【0116】
(4)
本実施形態の流体軸受装置10では、図3に示すように、上述したスラスト軸受部材21に形成されたスラスト動圧発生溝21aについて、非対称なヘリングボーンあるいはスパイラル形状の溝を採用している。
【0117】
これにより、スラスト軸受部において潤滑流体17に対して循環力を付与することができる。
【0118】
(5)
本実施形態の流体軸受装置10では、図2および図3に示すように、スリーブ11の内周面に形成されたラジアル動圧発生溝11c,11dを、軸方向において対称な形状としている。
【0119】
これにより、非対称形状の場合と比較して非対称部分によるロスがないため、ラジアル軸受部における軸受スパン長を最大限確保して、流体軸受装置10の軸受剛性を向上させることができる。
【0120】
(6)
本実施形態の流体軸受装置10では、図2および図3に示すように、径方向において対向するように近接配置されたスリーブキャップ16とスラスト軸受部材21とは、スラスト軸受部材21の軸方向における厚みがスリーブキャップ16の軸方向における厚みより小さいか、ほぼ同等になっている。
【0121】
これにより、軸受スパン長が、スラスト軸受部材21の厚みによって削減されることなく、十分に長く確保することができる。
【0122】
(7)
本実施形態の流体軸受装置10では、図2に示すように、フランジレスの軸12を採用しており、スリーブ11の外周面に形成された鍔部11eとロータハブ15の垂下部分に固定された抜け止め部15aとを組み合わせて抜け止め構造を構成している。
【0123】
これにより、ラジアル軸受部における軸受スパン長をできるだけ大きく確保するために、フランジレスの軸12を用いた場合でも、軸12を含む回転側の部材がスリーブ11等の固定側に対して抜けてしまうことを回避することができる。
【0124】
(8)
本実施形態の流体軸受装置10では、図2等に示す第1〜第4の隙間G1〜G4の隙間の大きさについて、以下の関係式を満たすように構成している。
G1<G4≦G2min<G3 ・・・・・(2)
G2min<G2max ・・・・・(3)
【0125】
これにより、上述した流体軸受装置10の構成に、各隙間の大小関係を規定することで、より効果的に、潤滑流体17の外部への漏れ出しがなく、信頼性の高い流体軸受装置10を得ることができる。
【0126】
(9)
本実施形態のスピンドルモータ1は、図1および図2に示すように、上述した流体軸受装置10を搭載している。
【0127】
これにより、スピンドルモータ1あるいは流体軸受装置10を薄型化した場合でも、ラジアル軸受部の軸方向における軸受スパン長を最大限確保して、流体軸受装置10の角度剛性を向上させることができるとともに、連通路11bを介して潤滑流体17内の気泡をスムーズに排出することができるという、上記と同様の効果を得ることが可能なスピンドルモータ1を提供することができる。
【0128】
[他の実施形態]
以上、本発明の一実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、発明の要旨を逸脱しない範囲で種々の変更が可能である。
【0129】
(A)
上記実施形態では、スラスト軸受部材21およびスリーブキャップ16とスリーブ11の開放端側の端面との間の隙間に形成される潤滑流体溜まり部としての第2の隙間G2が、スリーブキャップ16の形状変化によって周方向において隙間の大きさが変化する例を挙げて説明した。しかし、本発明はこれに限定されるものではない。
【0130】
例えば、図9に示すように、スリーブキャップ116側はフラットな面とし、対向するスリーブ111の端面の形状を変化させることで、第2の隙間G2(潤滑流体溜まり部)の周方向における隙間の大きさを変化させるような構成であってもよい。
【0131】
特に、焼結材料を用いてスリーブを形成する際には、金型によって簡便にこの形状の成型が可能である。
【0132】
(B)
上記実施形態では、潤滑流体溜まり部としての第2の隙間G2が、スリーブ11の開放端側の端面上だけに形成される例を挙げて説明した。しかし、本発明はこれに限定されるものではない。
【0133】
例えば、図10に示すように、スリーブ211の径方向外側の外周面とスリーブキャップ216の内周面との間の隙間に沿って潤滑流体溜まり部としての第5の隙間G5が設けられた、いわゆるサイドシール構造の流体軸受装置210(スピンドルモータ201)であってもよい。
【0134】
ここでは、連通路211bは、第5の隙間G5が径方向に最大になる最大隙間部の近傍に形成されている。このとき、循環してきた気泡は、連通路211bが第2の隙間G2に開口されている近傍で、外周に向かって隙間が大きくなるようなテーパ部を設けて最大隙間部に連通させて気泡を気液分離してもよい。
【0135】
また、連通路211b’は、この図10とは反対側の第5の隙間G5が径方向に最小になる最小隙間部の近傍に形成されていてもよい。このときは、気泡は最小隙間部から最大隙間部に向かって周方向に沿って大きくなる第5の隙間において気液分離される。
【0136】
この場合でも、スリーブ211に形成された鍔部211eとロータハブ(ハブ)215に形成された抜け止め部215aとが当接する抜け止め構造を構成しつつ、連通路211bを含む循環経路に沿って潤滑流体17を循環させ、スリーブキャップ216の外周面に換気路216bを設けることができる。
【0137】
(C)
上記実施形態では、フランジレスの軸12を採用するとともに、スリーブ11の外周面に形成された鍔部11eとロータハブ15の垂下部に設けられた抜け止め部15aとを当接させて抜け止め構造を構成した例を挙げて説明した。しかし、本発明はこれに限定されるものではない。
【0138】
抜け止め構造としては、例えば、図11に示すように、軸312の閉塞端側の端部に薄いフランジ部312aを設けた流体軸受装置310(スピンドルモータ301)であってもよい。
【0139】
この構成では、スラスト軸受部材21にスラスト動圧発生溝を設けた場合には、フランジ部312aにスラスト動圧発生溝等を形成する必要がないため、フランジ部312aとして薄い部材を用いることができる。よって、この場合でも、ラジアル動圧発生溝の軸受スパン長を損なうことなく、上記実施形態と同等の軸受け剛性を確保することができる。
【0140】
(D)
上記実施形態では、スラスト軸受部材21とスリーブ11の端面との間に配置されたスラスト軸受部において、潤滑流体17を循環させる循環力を生じさせる例を挙げて説明した。しかし、本発明はこれに限定されるものではない。
【0141】
潤滑流体を循環させる循環力については、例えば、図12に示すように、スリーブ411に形成されたラジアル動圧発生溝411c,411dを軸方向において非対称に形成することで生じさせてもよい。
【0142】
ただし、ラジアル動圧発生溝を非対称とした場合には非対称部分において多少軸受スパン長をロスしてしまうことから、ラジアル動圧部における軸受スパン長をできる限り長く確保して軸受剛性を高めるという面では、上記実施形態と同様に、ラジアル動圧発生溝は軸方向において対称であることが好ましい。
【0143】
(E)
本発明に係るさらに他の実施形態として、図13に示すように、スリーブ11に対向するスリーブキャップ516の面の一部から突出する複数の突出部(凸部)516aを設けた流体軸受装置510がある。
【0144】
突出部516aは、複数箇所に亘って部分的にスリーブ11の開放側端面に当接するように形成されており、スリーブキャップ516とスリーブ11の開放端側の端面との間の隙間(第2の隙間G2)の大きさを規定する。もちろん、これは潤滑流体の循環を妨げるものではない。
【0145】
これにより、このスリーブキャップ516が薄くて変形しやすい薄板金属や薄い樹脂シートで成形加工されている場合でも、第2の隙間G2の大きさを精度よく規定して高精度な隙間寸法の管理を行うことができる。
【0146】
(F)
上記実施形態では、スリーブ11は、銅合金、ステンレス等の金属材料によって形成されているが、本発明はこれに限定されるものではない。
【0147】
例えば、鉄焼結材料によって形成し、その表面を樹脂、四酸化三鉄か三酸化二鉄の皮膜、メッキ等で表面のポーラスを完全に埋めて封孔したスリーブを用いてもよい。
【0148】
(G)
また、本発明に係る流体軸受装置およびスピンドルモータを搭載する記録再生装置としては、図14に示すように、記録ヘッド152によって記録ディスク151に情報を記録する/再生する磁気記録再生装置150に限らず、例えば、光ディスク等の記録再生装置に対して搭載してもよい。
【0149】
さらには、情報処理装置として、CPUに搭載される冷却ファンを回転させるスピンドルモータに含まれる流体軸受装置としても本発明を適用してもよい。
【産業上の利用可能性】
【0150】
本発明の流体軸受装置は、流体軸受装置が薄型化された場合でも、軸受部の軸方向長さを最大限確保して流体軸受装置の角度剛性を向上させることができるとともに、連通路を介してスムーズに気泡を排出することができるという効果を奏することから、各種情報処理装置に搭載される流体軸受装置に対して広く適用可能である。
【図面の簡単な説明】
【0151】
【図1】本発明の一実施形態に係る流体軸受装置を搭載したスピンドルモータの構成を示す断面図。
【図2】図1のスピンドルモータに含まれる流体軸受装置の構成を示す部分断面図。
【図3】図2の流体軸受装置におけるスラスト軸受部材周辺の構成を示す拡大断面図。
【図4】図2の流体軸受装置の潤滑流体溜まり部の構成を示す平面図。
【図5】図4の潤滑流体溜まり部を周方向に展開した展開図。
【図6】右半分が本発明に係る流体軸受装置の部分断面図。左半分が従来の流体軸受装置の部分断面図。
【図7】従来の流体軸受装置の軸受スパン長と比較した軸受スパン長の延長長さの大きさと回転剛性との関係を示すグラフ。
【図8】図2の流体軸受装置に対して潤滑流体を注油する際の工程の一部を示す断面図。
【図9】本発明の他の実施形態に係る流体軸受装置の潤滑流体溜まり部の構成を示す展開図。
【図10】本発明のさらに他の実施形態に係る流体軸受装置の構成を示す断面図。
【図11】本発明のさらに他の実施形態に係る流体軸受装置の構成を示す断面図。
【図12】本発明のさらに他の実施形態に係る流体軸受装置の構成を示す断面図。
【図13】本発明のさらに他の実施形態に係る流体軸受装置の構成を示す断面図。
【図14】本発明の流体軸受装置を含むスピンドルモータを搭載した記録再生装置の概略構成を示す断面図。
【符号の説明】
【0152】
1 スピンドルモータ
10 流体軸受装置
11 スリーブ
11a 軸受孔
11b 連通路
11c ラジアル動圧発生溝(第1の動圧発生溝)
11d ラジアル動圧発生溝(第1の動圧発生溝)
11e 鍔部
12 軸(シャフト)
14 スラスト板
15 ロータハブ(ハブ)
15a 抜け止め部
16 スリーブキャップ
16a 中央穴
16b 換気路
17 潤滑流体
18 ベース
19 ステータコア
20 ロータマグネット(回転磁石)
21 スラスト軸受部材
21a スラスト動圧発生溝(第2の動圧発生溝)
22 注油装置
40 吸引板
111 スリーブ
116 スリーブキャップ
116b 換気路
150 磁気記録再生装置(情報装置)
151 記録ディスク
152 記録ヘッド
201 スピンドルモータ
210 流体軸受装置
211 スリーブ
211b 連通路
211e 鍔部
215 ロータハブ(ハブ)
215a 抜け止め部
216 スリーブキャップ
216b 換気路
301 スピンドルモータ
310 流体軸受装置
312 軸(シャフト)
312a フランジ部
411 スリーブ
411c ラジアル動圧発生溝
411d ラジアル動圧発生溝
510 流体軸受装置
516 スリーブキャップ
516a 突出部(凸部)
G1〜G5 第1〜第5の隙間




【特許請求の範囲】
【請求項1】
軸と、
前記軸が相対回転可能な状態で装填され軸受孔を有するスリーブと、
前記軸と前記スリーブの軸受孔の間に形成される第1の隙間と、
前記スリーブの一部に形成されており、前記スリーブにおける前記軸受孔の開放端側と閉塞端側とを連通させる連通路と、
前記軸の外周面および前記スリーブの軸受孔内周面の少なくとも一方に形成された第1の動圧発生溝と、
前記スリーブの開放端側に設けられ中央穴を有するスリーブキャップと、
前記スリーブキャップと前記スリーブの開放端側の端面との間に形成され、潤滑流体溜まり部を形成する略円環状の第2の隙間と、
前記軸における前記開放端側に固定されており、前記スリーブキャップの前記中央穴の内周面に近接するように配置されたスラスト軸受部材と、
前記スラスト軸受部材の外周と前記スリーブキャップの中央穴の内周面との間に形成され、大気に開放される第3の隙間と、
前記スラスト軸受部材と前記スリーブの端面との間に形成される第4の隙間と、
互いに連通する前記第1の隙間、前記連通路、前記第2の隙間、前記第4の隙間内に貯留された潤滑流体と、
前記連通路、前記第1の隙間、前記第2の隙間を含み、前記潤滑流体が循環する循環経路と、
を備えている流体軸受装置。
【請求項2】
前記潤滑流体溜まり部を形成する前記第2の隙間は、周方向において隙間の大きさが変化する、
請求項1に記載の流体軸受装置。
【請求項3】
前記第4の隙間において互いに対向する前記スリーブの端面と前記スラスト軸受部材の対向面とのいずれか一方に、前記潤滑流体に対して循環力を付与する第2の動圧発生溝が形成されている、
請求項1または2に記載の流体軸受装置。
【請求項4】
前記第2の動圧発生溝は、非対称形状のヘリングボーン、あるいはスパイラル形状を有している、
請求項3に記載の流体軸受装置。
【請求項5】
前記第1の動圧発生溝は、対称な形状で形成されている、
請求項3または4に記載の流体軸受装置。
【請求項6】
前記スリーブキャップは、前記第2の隙間と外気とを連通させる換気路を端面に有している、
請求項1から5のいずれか1項に記載の流体軸受装置。
【請求項7】
前記第2の隙間は、前記連通路の近傍において軸方向における寸法が最も小さくなる最小隙間部を有し、前記連通路から前記換気路に向かって軸方向における寸法が最も大きくなる最大隙間部を前記換気路付近に有しており、周方向に沿って前記最小隙間部から前記最大隙間部に向かって隙間が漸次大きくなる、
請求項1から6のいずれか1項に記載の流体軸受装置。
【請求項8】
前記スリーブキャップの内周面と前記スリーブの外周面との間に形成され、潤滑流体溜まり部を形成する略円環状の第5の隙間を、さらに備えている、
請求項1から7のいずれか1項に記載の流体軸受装置。
【請求項9】
前記潤滑流体溜まり部を形成する前記第5の隙間は、周方向において隙間の大きさが変化する、
請求項8に記載の流体軸受装置。
【請求項10】
前記スリーブキャップは、前記第5の隙間と外気とを連通させる換気路を外周面に有している、
請求項8または9に記載の流体軸受装置。
【請求項11】
前記第5の隙間は、前記連通路の近傍において径方向における寸法が最も小さくなる最小隙間部を有し、前記連通路から前記換気路に向かって径方向における寸法が最も大きくなる最大隙間部を前記換気路付近に有しており、周方向に沿って前記最小隙間部から前記最大隙間部に向かって隙間が漸次大きくなる、
請求項8から10のいずれか1項に記載の流体軸受装置。
【請求項12】
前記スラスト軸受部材の軸方向厚みは、前記スリーブキャップの軸方向厚みより小さいか、ほぼ同等である、
請求項1から11のいずれか1項に記載の流体軸受装置。
【請求項13】
前記軸はフランジレスであって、
前記軸における前記開放端側の端部に固定されたハブをさらに備えており、
前記スリーブは、径方向外側に突出した鍔部を有し、
前記ハブは、軸方向における移動を制限する抜け止め部を有している、
請求項1から12のいずれか1項に記載の流体軸受装置。
【請求項14】
前記軸は、前記閉塞端側に抜け止め用のフランジ部を有している、
請求項1から12のいずれか1項に記載の流体軸受装置。
【請求項15】
前記第1の隙間の大きさを(G1)、前記第2の隙間の前記最小隙間部の大きさを(G2min)、前記第2の隙間の前記最大隙間部を(G2max)、前記第3の隙間の大きさを(G3)、前記第4の隙間の最小隙間部を(G4)とすると、以下の関係式を満たす、
請求項1から14のいずれか1項に記載の流体軸受装置。
G1<G4≦G2min<G3
G2min<G2max
【請求項16】
前記スリーブキャップは、対向配置された前記スリーブの端面に向かって突出し前記スリーブの開放端側の端面に当接する複数の突出部をさらに有している、
請求項1から15のいずれか1項に記載の流体軸受装置。
【請求項17】
前記スリーブキャップは、透光性材料によって形成されている、
請求項1から16のいずれか1項に記載の流体軸受装置。
【請求項18】
前記スリーブキャップは、前記換気路が形成された端面に透光性を有する部分を含んでいる、
請求項17に記載の流体軸受装置。
【請求項19】
前記スリーブキャップは、前記換気路が形成された外周面側に透光性を有する部分を含んでいる、
請求項17に記載の流体軸受装置。
【請求項20】
請求項1から19のいずれか1項に記載の流体軸受装置と、
前記流体軸受装置の回転側部材に取り付けられた回転磁石と、
前記回転磁石に対して回転力を付与するステータコアと、
を備えたスピンドルモータ。
【請求項21】
請求項20に記載のスピンドルモータを搭載した情報装置。



【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate


【公開番号】特開2010−78100(P2010−78100A)
【公開日】平成22年4月8日(2010.4.8)
【国際特許分類】
【出願番号】特願2008−249158(P2008−249158)
【出願日】平成20年9月26日(2008.9.26)
【出願人】(000005821)パナソニック株式会社 (73,050)
【Fターム(参考)】