説明

流量調整弁

【課題】流量調整機能及び全閉の流路遮断機能を備えた流量調整弁を提供する。
【解決手段】液体流体の流量調整を行うニードル弁20及び液体流体の流路を全閉とする開閉弁30が流体流路及び弁座13を形成した同一の筐体10の内部に収納設置され、ニードル弁20は、ニードル弁体21を弁座13に対して接近離間させることで流路を流れる液体流体の流量を調整する往復運動部40を備え、開閉弁30は、弁座13と対向するニードル弁体21の基部外周面を全閉用弁体31とし、全閉用弁体31を弁座13に密着する流路全閉位置と弁座13から離間する流路全開位置との間で、ニードル弁20から独立して往復運動させる全閉・全開操作部50を備えている。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、たとえば化学工場、半導体製造、食品、バイオ等の各種産業分野における流体移送配管に用いられて液体流体の流量を制御する流量調整弁に関する。
【背景技術】
【0002】
従来、薬液などの液体の流量を調整する流量調整弁としては、たとえば下記の特許文献1に開示されているように、ニードル弁を用いたものが知られている。このような流量調整弁は、軸体を回転駆動するステッピングモータ及び軸体の回転を軸体の進退に変換する変換機構を設けることにより、ニードル弁の開度を遠隔操作することも行われている。
また、従来の流量調整弁には、全閉/全開の操作を行う開閉弁をメインとし、電動の流量調整機能を備えたものもある。このような流量調整機能付きの開閉弁は、流量調整自体の精度が粗くなるとともに、弁座の形状変化による流量再現性の問題や、ピストン荷重をモータが受けることによる耐久性及び強度の問題が指摘されている。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開2006−153262号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
ところで、ニードル弁を用いた流量調整弁は、正確な流量調整を維持するため、ニードル弁を弁座に密着させる全閉操作を避けることが望ましい。すなわち、ニードル弁と弁座とが密着すると、かじりや摩耗等により弁口形状に変形が生じるため、当初のオリフィス形状(寸法)を維持できなくなり、この結果、ニードル弁の開度(オリフィス形状)に応じた正確な流量調整は困難になり、流量再現性の問題が生じてくる。
【0005】
このため、流量調整弁を流体移送配管に設置する場合、通常は流量調整弁と直列に開閉弁(シャット弁ともいう)を設置しておき、この開閉弁を全閉にして流量遮断の全閉操作を行っている。この場合のニードル弁は全閉にならず、ニードル弁が弁座と接触しない程度に必要最小限の隙間を確保した状態を最小開度とする。
なお、流量調整弁がニードル弁の開度を変化させて流量調整を行う場合、開閉弁は全開にした状態に維持される。
【0006】
しかし、流量調整弁及び開閉弁を直列に配列する場合、特に、水平配管上において流量調整弁の横に開閉弁を並べて横直列に連結する場合には、弁自体のフットプリントが、すなわち、弁類の設置に必要なスペースが大きくなるため、装置全体の小型化を妨げる要因となっている。
このような背景から、流量調整機能及び全閉の流路遮断機能を備えた流量調整弁が望まれる。すなわち、従来のニードル弁を用いた流量調整弁に対し、流量再現性を損なうことなく流路遮断機能を加えることにより、設置スペースを低減することが望まれる。
本発明は、上記の事情に鑑みてなされたものであり、その目的とするところは、流量調整機能及び全閉の流路遮断機能を備えた流量調整弁を提供することにある。
【課題を解決するための手段】
【0007】
本発明は、上記の課題を解決するため、下記の手段を採用した。
本発明に係る流量調整弁は、液体流体の流量調整を行うニードル弁及び液体流体の流路を全閉とする開閉弁が流体流路及び弁座を形成した同一の筐体内部に収納設置され、前記ニードル弁は、ニードル弁体を前記弁座に対して接近離間させることで前記流路を流れる液体流体の流量を調整する往復運動部を備え、前記開閉弁は、前記弁座と対向する前記ニードル弁体の基部外周面を全閉用弁体とし、該全閉用弁体を前記弁座に密着する流路全閉位置と前記弁座から離間する流路全開位置との間で、前記ニードル弁から独立して往復運動させる全閉・全開操作部を備えていることを特徴とするものである。
【0008】
このような流量調整弁によれば、流量調整を行うニードル弁と流体流路を全閉とする開閉弁とが同一の筐体内に収納設置され、しかも、往復運動部によるニードル弁の流量調整及び全閉・全開操作部による開閉弁の全閉/全開が独立しているので、設置スペースが小さく、精密な流量調整が可能であるニードル弁を採用した流量調整メイン構造に流路の完全遮断(全閉)機能を備えたものとなる。また、開閉弁の全閉・全開操作部が往復運動部から独立しているので、応答ラグをなくして応答時間の短縮が可能になる。
【0009】
この場合、前記往復運動部をステッピングモータにより駆動し、かつ、前記全閉・全開操作部を空気圧により駆動することが望ましい。
【0010】
上記の発明において、前記往復運動部は、前記ステッピングモータの回転運動を軸方向の往復運動に変換するトランサーと、該トランサーに遊嵌させた前記ニードル弁体の軸部と螺合して一体に軸方向の往復運動をするスライダと、該スライダを前記トランサーに押圧する方向の付勢をする弾性部材とを備え、前記全閉・全開操作部は、空気圧により軸方向の一方へ押圧されて前記トランサーの外周を移動するピストンと、該ピストンを軸方向の他方へ押圧して移動させる方向に付勢する弾性部材とを備え、前記トランサーに追従して往復動する前記スライダが前記ニードル弁を前記弁座に接近離間させる開度調整を行うとともに、前記ピストンが前記スライダとともに前記全閉用弁体を前記開閉弁の前記流路全閉位置に移動させることが望ましい。
この場合、前記ステッピングモータは、前記ピストンと一体に移動するようにしてもよい。
【0011】
上記の発明において、前記往復運動部は、前記ステッピングモータの回転運動を軸方向の往復運動に変換するトランサーと、該トランサーに遊嵌させた前記ニードル弁体の軸部と螺合して一体に軸方向の往復運動をするスライダと、該スライダを前記トランサーに押圧する方向の付勢をする弾性部材とを備え、前記全閉・全開操作部は、空気圧により軸方向の一方または他方へ押圧されて前記トランサーの外周を移動する複作動型のピストンを備え、前記トランサーに追従して往復動する前記スライダが前記ニードル弁を前記弁座に接近離間させる開度調整を行うとともに、前記ピストンが前記スライダとともに前記全閉用弁体を前記開閉弁の前記流路全閉位置に移動させることが望ましい。
【0012】
上記の発明において、前記開閉弁の全閉位置を検出した場合に前記往復運動部の動作を停止させる制御部を設けることが望ましく、これにより、ニードル弁の無用に動作することを防止できる。
【0013】
また、上記の発明において、電気機器類を収納した前記筐体内の空間に空気を流通させることが望ましく、これにより、換気冷却を行って電機機器類の温度上昇を防止できる。さらに、換気冷却を行うことにより、筐体内の電子機器類や温度伝達による流体の温度上昇も防止できる。
【発明の効果】
【0014】
上述した本発明によれば、流量調整機能及び全閉の流路遮断機能を備えた一体構造の流量調整弁となるので、良好な流調再現性を維持して装置内における設置スペースを低減することが可能になる。
【図面の簡単な説明】
【0015】
【図1】本発明に係る流量調整弁の一実施形態を示す内部構造の断面図であり、図の左側半分は、開閉弁及びニードル弁が共に全開の状態を示し、図の右側半分は、開閉弁が全閉でかつニードル弁が全開の状態を示している。
【図2】図1に示した流量調整弁の内部構造の断面図であり、図の左側半分は、開閉弁が全開でかつニードル弁が途中開度の状態を示し、図の右側半分は、開閉弁が全閉でかつニードル弁が途中開度の状態を示している。
【図3】図1の要部(開閉弁及びニードル弁)を拡大した図である。
【図4】(a)は、図3のA部を拡大してニードル弁体、全閉用弁体及び弁座の形状を示す図、(b)は(a)の第1変形例を示す図、(c)は(a)の第2変形例を示す図である。
【図5】本発明に係る流量調整弁の第1変形例を示す内部構造の断面図であり、開閉弁の開閉動作と共にステッピングモータが上下動する構成例が示されている。
【図6】本発明に係る流量調整弁の第2変形例を示す内部構造の断面図であり、複動型ピストンを用いて開閉弁を開閉動作させる構成例が示されている。
【図7】本発明に係る流量調整弁の第3変形例を示す内部構造の断面図であり、筐体内に空気を流通させて冷却する構成例が示されている。
【発明を実施するための形態】
【0016】
以下、本発明に係る流量調整弁の一実施形態を図面に基づいて説明する。
本実施形態では、半導体製造装置において液体流体(薬液)の流量を調整する流量調整弁に適用して説明するが、本発明の流量調整弁はこれに限定されることはなく、他の装置等において液体流体の流量調整をおこなう流量調整弁にも適用可能である。
【0017】
図1から図4に示す実施形態の流量調整弁1Aは、筐体10の内部に、液体流体の流量調整を行うニードル弁20と、液体流体の流路を全閉とする開閉弁(シャット弁)30とが収納設置されている。また、この流量調整弁1Aでは、ニードル弁20の開度制御がステッピングモータ(以下、モータ)Mを用いた動作により行われ、さらに、開閉弁30の全閉・全開操作が空気圧を用いた動作により行われるように構成されており、従って、いずれも遠隔操作が可能となっている。
【0018】
流量調整弁1Aの外形を構成する筐体10は、上部筐体10Aと、中間筐体10Bと、下部筐体10Cとにより構成される。
筐体10の内部には、ニードル弁20及び開閉弁30の他にも、ニードル弁20のニードル弁体21を弁座13に対して接近離間させる往復運動部40、開閉弁30の全閉用弁体31を流路全閉位置及び流路全開位置との間で往復運動させる全閉・全開操作部50、及び各種制御用の基板2等が収納設置されている。
このうち、下部筐体10Cには、液体流体が流れる流入流路11や出口流路12に加えて、ニードル弁20及び開閉弁30の弁座13が形成されている。
【0019】
開閉弁30の全閉用弁体31は、ニードル弁体21の基部外周面22を全閉用弁体31とする。
全閉用弁体31の具体例としては、たとえば図4(a)に示すように、弁座13と対向するニードル弁体21の基部外周面22に凹溝23を形成し、この凹溝23の外側に残ったリング状の基部外周面22を使用するものがある。
【0020】
すなわち、本実施形態の流量調整弁1Aは、液体流体の流量調整を行うニードル弁20及び液体流体の流路を全閉とする開閉弁30が流入流路11、出口流路12及び弁座13を形成した筐体10の内部に収納設置されており、一方のニードル弁20は、ニードル弁体21を弁座13に対して接近離間させることで流量を調整するための往復運動部40を備えている。そして、他方の開閉弁30は、弁座13と対向するニードル弁体21の基部外周面22に凹溝23を形成して外側を全閉用弁体31とし、さらに、全閉用弁体31を弁座13に密着する流路全閉位置と弁座13から離間する流路全開位置との間で往復運動させるための全閉・全開操作部50を備えている。
【0021】
流量調整弁1Aの流入流路11は、図1から図3に示すように、紙面左側の流体入口から水平に形成され、流量調整弁1Aの軸中心CLで上向きに方向転換して弁座13に開口する円柱形状の流体流路出口11aを備えている。この流体流路出口11aは、ニードル弁体21が侵入して流路断面積(弁開度)を変化させる空間であり、往復運動部40の動作によって弁座13に接近離間するニードル弁体21の侵入量を変化させて開度調整を実施する。このようなニードル弁20の開度調整により、流量調整弁11を通過する液体流体の流量が調整される。
なお、ニードル弁20は、ニードル弁体21が流体流路出口11a内に最も侵入する最小開度において、弁座13や流体流路出口11の壁面と接触しないようになっている。
【0022】
ニードル弁20の往復運動部40は、モータMの回転出力軸Msに対し、回転運動を上下運動に変換する機構を備えている。具体的には、モータMの回転出力軸Msに対して、カップリング41を介して回転部品のトランサー42が取り付けられている。
このトランサー42は、外周部に配設した邪魔ピン43により回転が阻止された状態にあり、上端部側に形成された凹部内周面42aの内ネジと、カップリング41の下端部から突出する連結軸部41aの外ネジとが螺合することにより、カップリング41を介してモータMと連結されている。この場合の邪魔ピン43は、後述する開閉弁30の全閉・全開操作部50を構成するピストン51の内周面51aとトランサー42の外周面との間に少なくとも一対設けられている。すなわち、ピストン51は、筐体10に対して回り止めされているので、邪魔ピン43を介してピストン51に対する回り止めがなされたトランサー42も筐体10に対する回転を阻止された状態となる。なお、この場合のピストン51は、邪魔ピン43に沿って軸方向にスライド可能である。
【0023】
従って、筐体10に固定支持された往復運動部40のモータMが回動することにより、凹部内周面42aの内ネジ及び連結軸部41aの外ネジの螺合部においては、回転出力軸Msの回転運動がトランサー42の直線運動に変換される。すなわち、連結軸部41aの外ネジが同一位置で回動するため、これと螺合するトランサー42は、回転出力軸Msの回動量に応じて軸方向(上下方向)へ移動する。このため、トランサー42と後述するスライダ45を介して連動するニードル弁体21は、図1に示す全開位置及び図2に示す途中開度のように、流体流路出口11a内で軸方向へ移動して侵入量が変動する。
また、トランサー42の下端部側には、下端部側にニードル弁体21を連結した軸部である弁軸44の上端部側が遊嵌されている。
【0024】
弁軸44の中間部付近には外ネジが形成され、この外ネジ部に内ネジを螺合させてスライダ45が取り付けられている。このスライダ45は、弁軸44と一体にスライドする板状部材であり、弁軸44の外周方向へ略円盤状に存在している。また、このスライダ45は、下端部側を下部筐体10Cに支持された圧縮バネの下部バネ46により押し上げられており、常時上向きの付勢を受けている。このような下部バネ46の常時付勢により、スライダ45はトランサー42の移動に追従し、さらに、弁軸44とスライダ45との螺合部においては、トランサー42の内ネジ42aが押し上げられてカップリング41の外ネジ41aに密着するよう追従するので、螺合部にバックラッシが生じないようになっている。
なお、下部バネ46の付勢は、開閉弁31を全開とする方向の付勢力となるが、後述する上部バネ52の付勢力と比較すれば、かなり小さなものとなる。
【0025】
弁軸44の下端部側には、ニードル弁体21を備えた弁本体が螺合して取り付けられている。
このニードル弁体21は、筐体10内に形成された弁室14をダイヤフラム15により上下に分割した下部弁室14a内に配設されている。この下部弁室14aは、液体流体の流入流路11及び流出流路12に連通するとともに、弁座13となる平面部を備えている空間である。この場合、弁座13は、平面視が円形となる下部弁室14aの底面に設けられ、下部弁室14aの底面において中心位置に開口する流体流路出口11aの周辺部が弁座13の平面部となる。
また、流量調整弁1Aの流出流路12は、その入口開口12aが下部弁室14aの底面外周部に設けられている。
【0026】
ニードル弁体21は、弁本体の下端面から下向きに突出し、流体流路出口11aの開口に侵入する部材である。このニードル弁体21は、下端部側が徐々に小径となる略円錐台形状を有しているので、円柱形状とした流体流路出口11aへの侵入量に応じて流体流路の流路断面積が変化する。すなわち、流量調整弁1Aの流体流路は、上下方向へ移動するニードル弁体21が流体流路出口11aへ挿入される位置(侵入量)に応じて最小流路断面積も変化するので、オリフィス径に応じた流量調整が可能となる。
【0027】
開閉弁30の全閉・全開操作部50は、空気圧の供給を受けてピストン51を軸方向に移動させて全閉用弁体31を開閉操作する。この場合、ピストン51に空気圧が作用しない状態では、上部バネ52から下向きの付勢を受ける全閉用弁体31及びピストン51が押し下げられ、全閉用弁体31が弁座13に密着する全閉位置にある。すなわち、この場合の開閉弁30は、ノーマルクローズ型の空気圧操作弁となる。
【0028】
ピストン51は、下面側に空気圧を受けることで上方へスライドし、弁座13から離間した流路全開位置まで移動する。このとき、空気圧を受けたピストン51は、上端部を筐体10側に固定支持された上部バネによる下向きの付勢に打ち勝ち、上部バネ52を空気圧により圧縮してスライドする。なお、図中の符号53は、Oリング等でシールされた空気圧を導入するシリンダ室の空間である。
一方、上述した空気圧がなくなると、開閉弁30は、上部バネ52による下向きの付勢により、全閉用弁体31が弁座13に密着する全閉位置まで瞬時に移動する。
【0029】
スライダ45及びピストン51は、スムーズな上下動を確保するため、筐体10側に設けた上下方向のガイド溝16内に入り込む凸部45a,51bを備えている。
このような凸部45a,51bは、スライダ45及びピストン51の回り止めとして機能するだけでなく、ピストン51の凸部51bが開閉弁30の全閉位置を検出するシャットセンサ3を作動させる。このシャットセンサ3は、開閉弁30の全閉位置を検出した信号を出力し、ニードル弁20の流量制御を禁止する。この場合、ピストン51から水平方向へ突出する凸部51bが全開位置から下降してシャットセンサ3の検出位置から外れると、開閉弁30が全閉位置にあると判断した信号が出力される。
なお、図中の符号5は電源や遠隔操作用のケーブル、6は流量調整弁1Aとケーブル5との接続部である。
【0030】
すなわち、開閉弁30が全閉位置にあると、液体流体の流れが完全に遮断された状態にあるため、ニードル弁20の開度を制御する流量調整は無意味である。従って、シャットセンサ3が開閉弁30の全閉位置を検出した場合には、ニードル弁20の無用な流量制御を禁止する安全機構が動作する。このような安全機構は、たとえば制御用の基板2に書き込まれたソフトウエアによって実行される。
なお、スライダ45の凸部45aは、スライダ45及びニードル弁20のゼロ点位置を規定するニードルセンサ4を動作させる。
【0031】
このように構成された流量調整弁1Aは、流量調整を行うニードル弁20と流体流路を全閉とする開閉弁30とが同一の筐体10内に収納設置されているので、装置に組み付ける設置スペースが小さくてすむ。特に、ニードル弁20及び開閉弁30の弁座13を共用し、さらに、ニードル弁体21の周囲に全閉用弁体31を形成したので、2つの弁類が縦方向(軸方向)に配列された直列構造となり、従って、平面視の投影面積は、従来の水平配列と比較して小さくなる。すなわち、上述した流量調整弁1Aは、精密な流量調整が可能なニードル弁20を採用した流量調整メイン構造に、開閉弁30による流路の完全遮断(全閉)機能を備えた一体構造となる。
しかも、往復運動部40によるニードル弁20の流量調整及び全閉・全開操作部50による開閉弁30の全閉/全開は独立した操作となるので、応答ラグをなくして応答時間の短縮が可能になる。
【0032】
そして、上述した往復運動部40は、モータMの回転運動を軸方向の往復運動に変換するトランサー42と、トランサー42に遊嵌させたニードル弁体21の弁軸(軸部)44と螺合して一体に軸方向の往復運動をするスライダ45と、スライダ45をトランサー42に押圧する方向の付勢をする下部バネ(弾性部材)46とを備え、かつ、全閉・全開操作部50は、空気圧により軸方向上向きに押圧されてトランサー42の外周を移動するピストン51と、ピストン51を軸方向下向きに押圧して移動させる方向に付勢する上部バネ(弾性部材)52とを備え、トランサー42に追従して往復動するスライダ45がニードル弁20を弁座13に接近離間させる開度調整を行い、ピストン51がスライダ45とともに全閉用弁体31を開閉弁30の流路全閉位置に移動させる。
【0033】
すなわち、下部バネ46から上向きの付勢を受けているスライダ45は、通常の流量調整時において、トランサー42の往復運動に追従して略一体に上下動する。具体的には、トランサー42の上昇時には下部バネ46に押し上げられて追従し、トランサー42の下降時には下部バネ46を圧縮しながら移動する。
【0034】
しかし、開閉弁30を全閉にする操作が行われると、下部バネ46の付勢より大きな上部バネ52の付勢が勝つため、スライダ45はピストン51により流路全閉位置まで押し下げられる。なお、全閉・全開操作部50に供給される空気圧は、上部バネ52の付勢力より大きな押圧力を発揮するので、ピストン51は流路全開位置に押し上げられた状態が維持される。
なお、本実施形態では、空気圧のない状態で開閉弁30が全閉となるノーマルクローズ型としたが、弾性部材の付勢やピストン51に作用する空気圧の方向等を変更することにより、ノーマルオープン型の構成とすることも可能である。
【0035】
また、上述した開閉弁30の全閉用弁体31は、図4(a)に示した具体例の形状及び構成に限定されることはなく、たとえば下記の変形例を採用してもよい。
図4(b)に示す第1変形例は、ニードル弁体21Aの基部に凹溝24を形成したものである。すなわち、開閉弁30の全閉用弁体31Aから突出するニードル弁21Aには、上端部付近の全周にわたって凹溝24が形成されている。この場合、ニードル弁体21Aの基部外周面22Aは平面となり、基部外周面22Aの全面が弁座13に密着して全閉用弁体31Aを全閉とする。
【0036】
図4(c)に示す第2変形例は、上述した弁座13の内周側端部に段差部25を形成したものである。すなわち、流体流路出口11aの角部をリング状に除去した段差部25を形成し、段差部25の外周を弁座13Aとして使用するものであり、ニードル弁体21Bの基部外周面22Bは平面となり、基部外周面22Bの全面が弁座13Aに密着して全閉用弁体31Bを全閉とする。
なお、上述した凹溝23,24及び段差部25は必ずしも必要ではなく、要求される流量調整の精度が低いような場合には、ニードル弁体21の傾斜による流量調整と、平面の弁座13及び基部外周面22の密着により開閉弁30が全閉となる簡易な構造を採用してもよい。
【0037】
ところで、上述した実施形態では、モータMは筐体10に固定支持されているが、たとえば図5に示す第1変形例のように、モータMがピストン51と一体に移動するようにしてもよい。この流量調整弁1Bは、ピストン51と一体にモータMが軸方向に往復移動するように連結された構成を除いて、他の構成については上述した実施形態と実質的に同じである。
【0038】
また、上述した実施形態に代えて、たとえば図6に示すような第2変形例の流量調整弁1Cを採用してもよい。
この変形例において、往復運動部40は、上述した実施形態と同様に、モータMの回転運動を軸方向の往復運動に変換するトランサー42と、トランサー42に遊嵌させたニードル弁体21の弁軸44と螺合して一体に軸方向の往復運動をするスライダ45と、スライダ45をトランサー42に押圧する方向の付勢をする下部バネ46とを備えている。
【0039】
しかし、全閉・全開操作部50は、空気圧により軸方向の一方または他方へ押圧されてトランサー42の外周を移動する複作動型のピストン51を備え、トランサー42に追従して往復動するスライダ45がニードル弁20を弁座13に接近離間させる開度調整を行うとともに、ピストン51がスライダ45とともに全閉用弁体31を開閉弁30の流路全閉位置に移動させる。
【0040】
すなわち、下部バネ46から上向きの付勢を受けているスライダ45は、通常の流量調整時において、トランサー42の往復運動に追従して略一体に上下動するので、トランサー42の上昇時には下部バネ46に押し上げられて追従し、トランサー42の下降時には下部バネ46を圧縮しながら移動する。
しかし、開閉弁30を全閉にする操作が行われると、ピストン51より上方のシリンダ室53Aに空気圧が供給され、下部バネ46の付勢より大きな空気圧がピストン51を下向きに押圧する。この結果、スライダ45は、ピストン51により流路全閉位置まで押し下げられる。なお、開閉弁30を全開にする操作は、ピストン51より下方のシリンダ室53Bに空気圧を供給すればよい。
このような複作動型のピストン51を採用すると、開閉弁30の開閉操作を空気圧により直接操作することができるため、確実な操作が可能になる。
【0041】
また、上述した実施形態及びその変形例においては、たとえば図7に示す第3変形例のように、電気機器類を収納した筐体10内の空間にパージエア(空気)を流通させ、換気冷却を行って電機器類の温度上昇を防止することが望ましい。
図7に示す流量調整弁1Dは、図1に示した流量調整弁1Aの筐体10に、換気冷却用の空気投入口17及び空気流出口18が設けられている。図示の構成例において、空気投入口17及び空気流出口18は、モータMや基板2が収納されている上部筐体10Aの対向面に設けられている。
【0042】
この結果、空気投入口17から流入したパージエアは、上部筐体10A内を通過して空気流出口18から流出するが、このとき、発熱体であるモータM及び基板2の周辺を通過するため、内部温度の上昇を抑制することができる。従って、筐体10内に設置されている基板2等の電気機器類や電子機器類が温度上昇することを防止できるだけでなく、流量調整弁1Aを流れる薬液等の流体温度についても、伝熱による温度上昇を防止することができる。
【0043】
このように、上述した本実施形態及びその変形例によれば、ニードル弁をベースとした流量調整弁に開閉弁の機能を加えた1つの流量調整弁として操作可能であり、しかも、電気的な制御や空気圧の制御による遠隔操作も可能である。従って、ニードル弁による流量調整を細微に行うことが可能であり、しかも、流体の完全遮断(バルブの全閉)も可能になる。
また、流量調整弁及び開閉弁を直列構造としたので、流量調整弁を1台設置するスペースを確保できれば設置可能となる。
【0044】
また、従来構造の流量調整弁は、モータ開閉操作による応答ラグを生じていたが、開閉弁の動作機構を分別したことにより、繰り返しの開閉操作や瞬時の全閉操作等における応答時間を短縮できる。
また、開閉弁を全閉とした作動状態では、ニードル弁による流量調整を操作できない安全機構を備えているので、動力であるステッピングモータの脱調現象を避けることができる。
【0045】
また、ニードル弁が操作範囲内のいずれの位置にあっても、外部より空気圧で開閉弁を操作するため、流体を完全に遮断可能な全閉とすることができる。
また、上述した構成では、開閉弁を開閉操作するシリンダの内部に上下運動変換機構のトランサーを設置したので、流量調整弁の小型化が可能になる。
そして、流量調整を行うニードル弁は、ニードル弁体が弁口となる流体流路出口に接触することはなく、しかも、開閉弁の全閉用弁体も流体流出用出口に侵入及び接触しない構造を有しているので、流量調整用の弁口径状を崩すことはなく、従って、流量再現性に優れた流量調整弁となる。
なお、本発明は上述した実施形態に限定されることはなく、その要旨を逸脱しない範囲内において適宜変更することができる。
【符号の説明】
【0046】
1A〜1D 流量調整弁
10 筐体
11 流入流路
11a 流体流路出口
12 出口流路
12a 入口開口
13 弁座
14 弁室
14a 下部弁室
15 ダイヤフラム
17 空気投入口
18 空気流出口
20 ニードル弁
21 ニードル弁体
22 基部外周面
23,24 凹溝
25 段差部
30 開閉弁
31 全閉用弁体
40 往復運動部
41 カップリング
42 トランサー
44 弁軸
45 スライダ
46 下部バネ
50 全閉・全開操作部
51 ピストン
52 上部バネ
M ステッピングモータ
Ms 回転出力軸


【特許請求の範囲】
【請求項1】
液体流体の流量調整を行うニードル弁及び液体流体の流路を全閉とする開閉弁が流体流路及び弁座を形成した同一の筐体内部に収納設置され、
前記ニードル弁は、ニードル弁体を前記弁座に対して接近離間させることで前記流路を流れる液体流体の流量を調整する往復運動部を備え、
前記開閉弁は、前記弁座と対向する前記ニードル弁体の基部外周面を全閉用弁体とし、該全閉用弁体を前記弁座に密着する流路全閉位置と前記弁座から離間する流路全開位置との間で、前記ニードル弁から独立して往復運動させる全閉・全開操作部を備えていることを特徴とする流量調整弁。
【請求項2】
前記往復運動部がステッピングモータにより駆動され、かつ、前記全閉・全開操作部が空気圧により駆動されることを特徴とする請求項1に記載の流量調整弁。
【請求項3】
前記往復運動部は、前記ステッピングモータの回転運動を軸方向の往復運動に変換するトランサーと、該トランサーに遊嵌させた前記ニードル弁体の軸部と螺合して一体に軸方向の往復運動をするスライダと、該スライダを前記トランサーに押圧する方向の付勢をする弾性部材とを備え、
前記全閉・全開操作部は、空気圧により軸方向の一方へ押圧されて前記トランサーの外周を移動するピストンと、該ピストンを軸方向の他方へ押圧して移動させる方向に付勢する弾性部材とを備え、
前記トランサーに追従して往復動する前記スライダが前記ニードル弁を前記弁座に接近離間させる開度調整を行うとともに、前記ピストンが前記スライダとともに前記全閉用弁体を前記開閉弁の前記流路全閉位置に移動させることを特徴とする請求項2に記載の流量調整弁。
【請求項4】
前記ステッピングモータが前記ピストンと一体に移動することを特徴とする請求項3に記載の流量調整弁。
【請求項5】
前記往復運動部は、前記ステッピングモータの回転運動を軸方向の往復運動に変換するトランサーと、該トランサーに遊嵌させた前記ニードル弁体の軸部と螺合して一体に軸方向の往復運動をするスライダと、該スライダを前記トランサーに押圧する方向の付勢をする弾性部材とを備え、
前記全閉・全開操作部は、空気圧により軸方向の一方または他方へ押圧されて前記トランサーの外周を移動する複作動型のピストンを備え、
前記トランサーに追従して往復動する前記スライダが前記ニードル弁を前記弁座に接近離間させる開度調整を行うとともに、前記ピストンが前記スライダとともに前記全閉用弁体を前記開閉弁の前記流路全閉位置に移動させることを特徴とする請求項2に記載の流量調整弁。
【請求項6】
前記開閉弁の全閉位置を検出した場合に前記往復運動部の動作を停止させる制御部を備えていることを特徴とする請求項1から5のいずれかに記載の流量調整弁。
【請求項7】
前記筐体内に電気機器類を収納した空間に空気を流通させることを特徴とする請求項1から5のいずれかに記載の流量調整弁。


【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate


【公開番号】特開2011−247378(P2011−247378A)
【公開日】平成23年12月8日(2011.12.8)
【国際特許分類】
【出願番号】特願2010−122895(P2010−122895)
【出願日】平成22年5月28日(2010.5.28)
【出願人】(591257111)サーパス工業株式会社 (60)
【Fターム(参考)】