説明

炭化珪素単結晶の製造方法

【課題】より高純度な炭化珪素単結晶を得ることができる炭化珪素単結晶の製造方法を提供することを目的とする。
【解決手段】この発明に係る炭化珪素単結晶の製造方法は、炭化珪素多結晶インゴット形成用の坩堝1内で、珪素と炭素を原料2とする昇華再結晶法によって炭化珪素多結晶インゴット7を形成する工程と、種結晶取り付け部8cに種結晶基板11が取り付けられた炭化珪素単結晶形成用の坩堝8内で、昇華再結晶法によって炭化珪素多結晶インゴット7を昇華させて炭化珪素単結晶インゴット12を形成する工程と、を備えた

【発明の詳細な説明】
【技術分野】
【0001】
この発明は、パワーデバイス等の製造に用いられる高品質な炭化珪素単結晶の製造方法に関するものである。
【背景技術】
【0002】
炭化珪素(SiC)は、熱的、化学的に優れた特性を有し、禁制帯幅が珪素(Si)に比べて大きく、電気的にも優れた特性を有する半導体材料である。特に、電子移動度や飽和電子速度が大きいことから、パワーデバイス向け半導体材料として実用化されつつある。炭化珪素パワーデバイスを作製するためには、より高品質な、即ち、結晶欠陥密度が低い炭化珪素単結晶を得ることが好ましい。結晶中に不純物が存在すると、結晶成長時に結晶欠陥を生じさせる原因となるため、結晶欠陥密度の低い炭化珪素単結晶を得るためには、高純度な炭化珪素単結晶を製造することが好ましい。
【0003】
従来の炭化珪素単結晶の製造方法では、昇華再結晶法(改良レーリー法)自体が持つ炭化珪素結晶の高純度化作用を利用し、別途昇華再結晶法により成長した炭化珪素単結晶または多結晶を粉砕したものを原料として、昇華再結晶法により炭化珪素単結晶を製造していた。(例えば、特許文献1参照)
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開2005−239496号公報(第4〜6頁)
【発明の概要】
【発明が解決しようとする課題】
【0005】
このような炭化珪素単結晶の製造方法にあっては、炭化珪素単結晶を製造するための原料として、炭化珪素単結晶または多結晶を粉砕したものを用いるため、例えば粉砕用の工具による汚染など、粉砕時に不純物が混入することは避けられない。そして、粉砕時に混入した不純物を除去することは非常に困難であるという問題点があった。
【0006】
この発明は、上述のような問題を解決するためになされたもので、より高純度な炭化珪素単結晶を得ることができる炭化珪素単結晶の製造方法を提供することを目的とする。
【課題を解決するための手段】
【0007】
この発明に係る炭化珪素単結晶の製造方法は、炭化珪素インゴット形成用の坩堝内で、珪素と炭素を原料とする昇華再結晶法によって炭化珪素インゴットを形成する工程と、種結晶取り付け部に種結晶が取り付けられた炭化珪素単結晶形成用の坩堝内で、昇華再結晶法によって炭化珪素インゴットを昇華させて炭化珪素単結晶を形成する工程と、を備えたものである。
【発明の効果】
【0008】
この発明に係る炭化珪素単結晶の製造方法によれば、より高純度な炭化珪素単結晶を得ることができる。
【図面の簡単な説明】
【0009】
【図1】この発明の実施の形態1における炭化珪素単結晶の製造方法を示すフローチャートである。
【図2】この発明の実施の形態1における炭化珪素単結晶の製造方法の一部を示す断面図である。
【図3】この発明の実施の形態1における炭化珪素単結晶の製造方法の一部を示す断面図である。
【図4】この発明の実施の形態1における炭化珪素単結晶の製造方法の一部を示す断面図である。
【図5】この発明の実施の形態1における炭化珪素単結晶の製造方法の一部を示す断面図である。
【図6】この発明の実施の形態1における炭化珪素多結晶インゴットを形成する工程における加熱炉内の温度および圧力の時間変化を示す図である。
【図7】この発明の実施の形態1における炭化珪素多結晶インゴットを示す断面図である。
【図8】この発明の実施の形態1における炭化珪素単結晶インゴットを形成する工程における加熱炉内の温度および圧力の時間変化を示す図である。
【発明を実施するための形態】
【0010】
実施の形態1.
図1は、この発明の実施の形態1における炭化珪素単結晶の製造方法を示すフローチャートである。図2〜図5は、この発明の実施の形態1における炭化珪素単結晶の製造方法の一部を示す断面図である。図1〜図5を参照して、この発明の実施の形態1における炭化珪素単結晶の製造方法について説明する。
【0011】
まず、図2に示すように、炭化珪素多結晶インゴット形成用の坩堝1内に、原料2である珪素および炭素を収容する(S1)。
【0012】
ここで、炭化珪素多結晶インゴット形成用の坩堝1は、原料2を収容する本体部1aと、蓋部1bと、を備えている。蓋部1bには、炭化珪素多結晶が成長して炭化珪素多結晶インゴットが形成される部位であるインゴット成長部3が取り外し可能に固定されている。
【0013】
坩堝1は、等方性黒鉛で形成されているが、等方性黒鉛は無数の空孔を有しているため、珪素が表面に付着すると、空孔内に珪素が浸み込み、冷却時に割れてしまうことがある。これを防ぐために、坩堝1のインゴット成長部3は、高密度な等方性黒鉛で形成される。インゴット成長部3の等方性黒鉛の密度は、例えば1.9〜2.0g/cm程度とすると、空孔が少なく、効果的である。
【0014】
また、効率良く加熱を行うために、坩堝1の外周は断熱材(図示せず)で覆われている。さらに、坩堝1のインゴット成長部3の外側で、インゴット成長部3の上方には、熱反射板6を配置し、インゴット成長部3での温度分布ができるだけ均一になるようにする。熱反射板6としては、例えば、黒鉛板、熱分解炭素で被覆した黒鉛板、ガラス状炭素で被覆した黒鉛板、黒鉛シート(例えば、東洋炭素製PERMA−FOIL)などが用いられ、熱の放射率が50%以下のものが好ましい。また、図2では、熱反射板6を2枚設置したが、熱反射板6の枚数はこれに限ることはないが、1枚で用いるよりも複数枚で用いる方がより効果的である。
【0015】
原料2は、単体の珪素および炭素である。珪素と炭素は、できるだけ不純物を含まないものを用いることが好ましい。珪素融液中への炭素の溶解度が小さいため、炭素の粒径は小さい方が、原料2の量に対する炭化珪素の収率を増加させることができる。また、珪素は炭素よりも蒸気圧が高いため、昇温中に珪素が蒸気になってしまい、炭素と反応する珪素の量が減少してしまう。よって、例えば、モル比でSi:C=1.2:1となるように、珪素を炭素よりも過剰に収容しておくことが好ましい。
【0016】
次に、坩堝1を、誘導加熱装置(図示せず)を備えた加熱炉(図示せず)内に設置し、誘導加熱によって加熱する。これにより、昇華再結晶法によって、インゴット成長部3に炭化珪素多結晶が成長し、図3に示すように、炭化珪素多結晶インゴット7が形成される(S2)。尚、ここでは、加熱方法は誘導加熱としたが、抵抗加熱あるいは他の加熱方式であってもよい。
【0017】
次に、図4に示すように、炭化珪素多結晶インゴット7が形成されたインゴット成長部3を、炭化珪素多結晶インゴット形成用の坩堝1内から、炭化珪素単結晶形成用の坩堝8内へ移動させる(S3)。ここでは、炭化珪素多結晶インゴット7の、成長時に原料2に近い側の面(図3における下側の面)が上方を向くように坩堝8の底部にインゴット成長部3を設置する。
【0018】
炭化珪素単結晶形成用の坩堝8は、インゴット成長部3を収容する本体部8aと、蓋部8bと、を備えている。そして、蓋部8bは、炭化珪素単結晶基板である種結晶基板11を取り付けるための種結晶取り付け部8cを有している。
【0019】
坩堝8は、等方性黒鉛で形成される。ただし、種結晶基板11上に炭化珪素単結晶が成長するときに、炭化珪素の種結晶基板11と坩堝8の種結晶取り付け部8cとの熱膨張係数の差によって種結晶基板11に応力が働き、炭化珪素単結晶に結晶欠陥が生じる原因となるため、坩堝8は炭化珪素と熱膨張係数が近い方がよい。具体的には、密度が1.75〜1.85g/cm程度であって、かつ、室温における炭化珪素との熱膨張係数の差が0.2×10−6/K以下の等方性黒鉛を用いることが好ましい。尚、室温における炭化珪素の熱膨張係数は、3.09×10−6/K程度である。
【0020】
また、効率良く加熱を行うために、坩堝8の外周は断熱材(図示せず)で覆われている。さらに、図4では図示していないが、坩堝8の種結晶取り付け部8cの外側で、種結晶取り付け部8cの上方に、熱反射板6を配置してもよい。
【0021】
次に、坩堝8を、誘導加熱装置(図示せず)を備えた加熱炉(図示せず)内に設置し、誘導加熱によって加熱する。これにより、昇華再結晶法によって、炭化珪素多結晶インゴット7を昇華させて、種結晶基板11上に炭化珪素単結晶を成長させ、図5に示すように、炭化珪素単結晶インゴット12が形成される(S4)。尚、ここでは、加熱方法は誘導加熱としたが、抵抗加熱あるいは他の加熱方式であってもよい。
【0022】
以上で説明した炭化珪素単結晶の製造方法により、高純度かつ高品質な(結晶欠陥密度が低い)炭化珪素単結晶インゴット12を製造できる。また、炭化珪素単結晶インゴット12を製造する原料として、粉末状の原料2ではなく、炭化珪素多結晶インゴット7を用いたことにより、原料の充填率が上がるため、炭化珪素単結晶形成用の坩堝8の長さを短くすることができる。
【0023】
次に、具体的な実施例を参照し、炭化珪素多結晶インゴット7を形成する工程(S2)と、炭化珪素単結晶インゴット12を形成する工程(S4)と、について詳細に説明する。
【0024】
まず、炭化珪素多結晶インゴット7を形成する工程(S2)について説明する。図6は、この発明の実施の形態1における炭化珪素多結晶インゴット7を形成する工程における加熱炉内の温度および圧力の時間変化を示す図である。
【0025】
はじめに、原料2を収容した炭化珪素多結晶インゴット形成用の坩堝1を、誘導加熱装置(図示せず)を備えた加熱炉(図示せず)内に設置する。
【0026】
ここで、原料2として、珪素は、平均粒径が4mm程度、純度が99.999999999%(イレブンナイン)のフレーク状のものを用いた。また、炭素は、平均粒径が10μm、炭化珪素の主要な不純物であるアルミニウム、ホウ素、鉄、モリブデンなどの金属不純物の混入量が0.01ppm未満である粉末状のものを用いた。そして、モル比でSi:C=1.2:1と珪素を炭素よりも過剰になるように珪素と炭素を混合した7500gの原料2を坩堝1内に収容した。
【0027】
坩堝1は、アルミニウム、ホウ素、鉄、モリブデンなどの不純物の混入量が0.01ppm未満である等方性黒鉛で形成されたものを用いた。尚、この坩堝1は、使用前に、圧力1.3Pa未満のアルゴンなどの不活性ガス雰囲気で、約2300℃で、10時間熱処理を行って純化を行っておいた。このとき、坩堝1内には、原料2として用いる炭素粉末を収容しておき、同時に純化を行った。また、坩堝1の内径は160mmとした。
【0028】
次に、図6に示すように、加熱炉内を6.5×10−4Pa未満まで真空引きする。その後、加熱炉内をアルゴンガスで満たして加熱炉内の圧力を80kPaとし、その後、再び6.5×10−4Pa未満まで真空引きする。
【0029】
次に、ガスを流さずに加熱炉内を真空引きした状態で、1100℃まで加熱し、10時間保持する。これにより、坩堝1や断熱材(図示せず)に吸着した不純物を取り除く純化を行う。
【0030】
次に、加熱炉内の圧力を93kPaまで上昇させ、圧力を保持したまま、温度を1800℃まで上昇させ、20時間保持する。これにより、珪素と炭素が反応する。
【0031】
次に、原料2が収容された坩堝1底部が2400℃、インゴット成長部3が取り付けられた坩堝1上部が2200℃となるように加熱する。尚、図6では、坩堝1底部の温度である2400℃で示している。そして、坩堝1の温度を安定化するために、これらの温度で1時間保持する。その後、加熱炉内の圧力を93kPaから6.7kPaへ2時間かけて減圧する。
【0032】
ここで、加熱炉内の温度を2400℃程度、圧力を6.7kPaとしたのは、坩堝1底部で原料2である珪素と炭素が反応して炭化珪素になったものが昇華する条件とし、インゴット成長部3に炭化珪素多結晶を成長させ、炭化珪素多結晶インゴット7を形成するためである。ここで、加熱炉内の圧力が低過ぎると、蒸気圧が高い珪素のみが坩堝1の外部へ漏れ易くなり、圧力が高過ぎると、炭化珪素多結晶の成長速度が遅くなる。このため、炭化珪素多結晶成長時の加熱炉内の圧力は、4.0〜13.3kPaに設定することが好ましく、より好ましくは5.3〜8.0kPaと設定するのがよい。また、加熱炉内の温度、坩堝1底部と坩堝1上部との温度差についても成長速度などを考慮して適宜設定すればよい。
【0033】
加熱炉内の圧力が6.7kPaになった時点で成長開始とし、そこから100時間、炭化珪素多結晶を成長させた。このとき、炭化珪素多結晶の成長速度は、50g/hであり、5000gの炭化珪素多結晶インゴット7が形成された。尚、炭化珪素多結晶を成長させる時間は、必要な炭化珪素多結晶インゴット7の重量によって適宜調整すればよい。
【0034】
その後、加熱炉内にアルゴンガスを充填し、加熱炉内の圧力を93kPaに上昇させ、温度を室温まで15時間かけて降温する。そして、得られた炭化珪素多結晶インゴット7をインゴット成長部3ごと坩堝1外へ取り出す。
【0035】
図7は、この発明の実施の形態1における炭化珪素多結晶インゴット7を示す断面図である。尚、図7において、炭化珪素多結晶インゴット7の上側の面は、炭化珪素多結晶インゴット7の成長時に原料2に近い側の面(図3における下側の面)である。図7に示すように、得られた炭化珪素多結晶インゴット7の形状は、中心部の高さHよりも外周部の高さhの方が低くなる。これは、インゴット成長部3の中心部と外周部とで温度差があるため、炭化珪素多結晶の成長速度に差が生じるからである。
【0036】
炭化珪素多結晶インゴット7の中心部の高さHと外周部の高さhとで差があると、この炭化珪素多結晶インゴット7を炭化珪素単結晶形成用の坩堝8の底部に配置したときに、炭化珪素多結晶インゴット7の上面と種結晶基板11との距離にばらつきが生じる。種結晶基板11は、原料である炭化珪素多結晶インゴット7からの輻射によって主に加熱されるため、炭化珪素多結晶インゴット7の上面と種結晶基板11との距離にばらつきがあると、輻射熱にばらつきが生じ、種結晶基板11の面内の温度分布が不均一となって、種結晶基板11に歪みが生じる。種結晶基板11に歪みが生じると、種結晶基板11上に成長する炭化珪素単結晶に結晶欠陥を生じさせる原因となる。
【0037】
この発明の実施の形態1では、炭化珪素多結晶インゴット形成用の坩堝1の外周を断熱材(図示せず)で覆い、インゴット成長部3の上方に熱反射板6を配置したことにより、インゴット成長部3の中心部と外周部の温度差を小さくすることができ、インゴット成長部3の中心部と外周部とで炭化珪素多結晶が成長する速度の差を小さくすることができる。これにより、炭化珪素多結晶インゴット7の形状を、(中心部の高さH/外周部の高さh)が、0.95〜1.1の範囲内に、より好ましくは1.0〜1.05の範囲内とすることができる。
【0038】
ここで、以上で説明した方法と同じ条件で予備実験を行い、形成された炭化珪素多結晶インゴット7の不純物の分析を行った結果について説明する。予備実験で得られた炭化珪素多結晶インゴット7をウエハ状にスライスし、二次イオン質量分析法(SIMS)によって不純物を分析した。炭化珪素の主要な不純物である窒素、アルミニウム、ホウ素の濃度は、いずれも3×1016cm−3未満であった。これにより、この発明の実施の形態1における炭化珪素多結晶インゴット7を形成する工程(S2)によって、高純度の炭化珪素多結晶が成長していることが確認できた。
【0039】
次に、炭化珪素単結晶インゴット12を形成する工程(S4)について説明する。図8は、この発明の実施の形態1における炭化珪素単結晶インゴット12を形成する工程における加熱炉内の温度および圧力の時間変化を示す図である。
【0040】
まず、炭化珪素単結晶インゴット12を形成する工程(S4)の前に、炭化珪素多結晶インゴット7が形成されたインゴット成長部3を、炭化珪素多結晶インゴット形成用の坩堝1内から、炭化珪素単結晶形成用の坩堝8内へ移動させる工程(S3)を行う。
【0041】
炭化珪素多結晶インゴット7の、成長時に原料2に近い側の面(図3における下側の面、図7における上側の面)が上方を向くように坩堝8の底部にインゴット成長部3を設置する。炭化珪素単結晶を成長させる前の状態で、炭化珪素多結晶インゴット7の上面の中心部と種結晶基板11の表面との距離が110mmとなるように設置した。
【0042】
坩堝8は、アルミニウム、ホウ素、鉄、モリブデンなどの不純物の混入量が0.01ppm未満で、密度が1.82g/cm、かつ、熱膨張係数が炭化珪素とほぼ等しい等方性黒鉛で形成されたものを用いた。尚、この坩堝8は、使用前に、圧力1.3Pa未満のアルゴンなどの不活性ガス雰囲気で、約2300℃で、10時間熱処理を行って純化を行っておいた。また、坩堝8の内径は160mm、長さLは230mmとした。尚、ここで坩堝8の長さLとは、図4に示すように、種結晶取り付け部8cに取り付けた種結晶基板11の厚み方向の長さであって、坩堝8の底面から上面までの全長のことである。
【0043】
種結晶基板11としては、直径が100mmで、ポリタイプが4H型の炭化珪素単結晶基板を用いた。原料は、上述の通り、炭化珪素多結晶インゴット7を形成する工程(S2)で形成された炭化珪素多結晶インゴット7であって、その重量は5000gである。
【0044】
インゴット成長部3を炭化珪素単結晶形成用の坩堝8内へ移動させる工程(S3)を行った後、炭化珪素単結晶インゴット12を形成する工程(S4)を行う。まず、インゴット成長部3が設置された炭化珪素単結晶形成用の坩堝8を、誘導加熱装置(図示せず)を備えた加熱炉(図示せず)内に設置する。
【0045】
次に、図8に示すように、加熱炉内を6.5×10−4Pa未満まで真空引きする。その後、加熱炉内をアルゴンガスで満たして加熱炉内の圧力を80kPaとし、その後、再び6.5×10−4Pa未満まで真空引きする。
【0046】
次に、ガスを流さずに加熱炉内を真空引きした状態で、1350℃まで加熱し、10時間保持する。これにより、坩堝8や断熱材(図示せず)に吸着した不純物を取り除く純化を行う。
【0047】
次に、加熱炉内をアルゴンガスで満たして加熱炉内の圧力を80kPaとし、圧力を保持したまま、アルゴンガスの流量を200sccmとし、原料である炭化珪素多結晶インゴット7が収容された坩堝8底部が2400℃、種結晶基板11が取り付けられた坩堝8上部が2300℃となるように加熱する。尚、図8では、坩堝8底部の温度である2400℃で示している。そして、坩堝8の温度を安定化するために、これらの温度で1時間保持する。その後、加熱炉内の圧力を80kPaから0.33kPaへ90分かけて減圧する。
【0048】
ここで、加熱炉内の温度を2400℃程度、圧力を0.33kPaとしたのは、原料である炭化珪素多結晶インゴット7が昇華する条件とし、種結晶基板11上に4H型の炭化珪素単結晶を形成するためである。炭化珪素単結晶成長時の加熱炉内の温度および圧力は、炭化珪素単結晶のポリタイプや成長速度などを考慮して適宜設定すればよい。
【0049】
加熱炉内の圧力が0.33kPaになった時点で成長開始とし、そこから130時間、炭化珪素単結晶を成長させた。このとき、炭化珪素単結晶の成長速度は、20g/h(0.78mm/h)であり、重量が2600g、高さ(種結晶基板11の厚み方向の長さ)が101mmの炭化珪素単結晶インゴット12が形成された。尚、炭化珪素単結晶を成長させる時間は、必要な炭化珪素単結晶インゴット12の量によって適宜調整すればよい。
【0050】
炭化珪素単結晶の成長開始から130時間後、加熱炉内にアルゴンガスを充填し、加熱炉内の圧力を1時間かけて93kPaまで上昇させる。その後、加熱炉内の温度を20時間かけて室温まで降温する。そして、坩堝8を加熱炉外へ取り出し、炭化珪素単結晶インゴット12を坩堝8外へ取り出す。
【0051】
得られた炭化珪素単結晶インゴット12の不純物の分析を行った結果について説明する。以上で説明した炭化珪素単結晶の製造方法を用いて製造した炭化珪素単結晶インゴット12をウエハ状にスライスし、二次イオン質量分析法(SIMS)によって不純物を分析した。炭化珪素の主要な不純物である窒素、アルミニウム、ホウ素の濃度は、いずれも1×1016cm−3未満であった。これにより、この発明の実施の形態1における炭化珪素単結晶の製造方法によって、高純度の炭化珪素単結晶を製造できることが確認できた。
【0052】
次に、比較例として行った実験の結果について説明する。
【0053】
まず、上述した炭化珪素多結晶インゴット形成用の坩堝1内に原料2である珪素および炭素を収容する工程(S1)および炭化珪素多結晶インゴット7を形成する工程(S2)と同様の条件で、炭化珪素多結晶インゴットを製造した。
【0054】
次に、炭化珪素多結晶インゴットを平均粒径が90μm程度の粉末状に粉砕した。そして、この粉末状の炭化珪素を炭化珪素単結晶形成用の坩堝内に収容した。ここで、5000gの粉末状の炭化珪素を内径が160mmの坩堝に収容するためには、坩堝の長さLが320mm必要であった。
【0055】
次に、上述した炭化珪素単結晶インゴット12を形成する工程(S4)と同様の条件で、炭化珪素結晶を成長させた。しかし、成長後の炭化珪素結晶内には粒界が発生しており、結晶欠陥密度の低い高品質な炭化珪素単結晶を得ることはできなかった。これは、炭化珪素多結晶インゴットを粉砕した際に、例えば粉砕用の工具による汚染などによって原料に不純物が混入したことによって、成長させた結晶にも不純物が混入して単結晶の成長が阻害されたことや、炭化珪素単結晶形成用の坩堝の長さが長くなったために、種結晶基板付近の温度制御が困難となったことなどが原因であると考えられる。
【0056】
この発明の実施の形態1では、以上のようにしたことにより、より高純度な炭化珪素単結晶インゴット12を得ることができる。結晶中に不純物が存在すると、結晶成長時に結晶欠陥を生じさせる原因となるため、より高純度な炭化珪素単結晶インゴット12が得られることによって、結晶欠陥密度がより低い炭化珪素単結晶インゴット12を得ることができる。
【0057】
また、炭化珪素単結晶インゴット12を形成するための原料として、粉砕していない炭化珪素多結晶インゴット7を用いたことにより、粉末状の原料を使用した場合と比較して原料の充填率が高くなるため、炭化珪素単結晶形成用の坩堝8の長さLを短くすることができる。坩堝8の長さLを短くすると、種結晶基板11周辺の温度分布の制御が容易となるため、種結晶基板11に歪みが生じることや炭化珪素単結晶の成長速度に面内で差が生じることを抑制することができる。よって、結晶欠陥密度がより低い炭化珪素単結晶インゴット12を得ることができる。また、坩堝8の長さLを短くすることにより、坩堝8のコストを下げることができる。
【0058】
具体的には、直径が100mm以上の種結晶基板11を使用し、高さが100mm以上の炭化珪素単結晶インゴット12を形成する際に、炭化珪素単結晶形成用の坩堝8の長さLを230mm以下とすることができる。つまり、より短い長さの坩堝8で、大口径で長尺な炭化珪素単結晶インゴット12を形成することができる。
【0059】
また、炭化珪素単結晶インゴット12を形成するための原料として、多結晶のインゴット7を形成したことにより、単結晶やアモルファスと比べて容易に大量の原料のインゴットを形成することができる。
【0060】
炭化珪素多結晶インゴット形成用の坩堝1からインゴット成長部3が取り外し可能であることにより、炭化珪素多結晶インゴット7が形成されたインゴット成長部3を炭化珪素単結晶形成用の坩堝8内へ移動させる工程(S3)を容易に行うことができる。また、インゴット成長部3を炭化珪素単結晶形成用の坩堝8内へ移動させる工程(S3)によって、炭化珪素多結晶インゴット7に何ら手を加えることなく、インゴット成長部3を移動させるだけで、炭化珪素単結晶インゴット12を形成するための原料を設置することができる。よって、炭化珪素単結晶インゴット12を形成するための原料に不純物が混入することを抑制することができる。
【0061】
インゴット成長部3を、密度が1.9〜2.0g/cmの高密度な等方性黒鉛で形成したことにより、低密度な黒鉛で形成された場合と比べて、インゴット成長部3が有する空孔を減らすことができる。これにより、空孔内に珪素が浸み込むことを抑制することができ、炭化珪素多結晶インゴット7形成後に冷却した際に、インゴット成長部3が割れてしまうことを防ぐことができる。
【0062】
炭化珪素単結晶形成用の坩堝8を、密度が1.75〜1.85g/cmで、かつ、室温における炭化珪素との熱膨張係数の差が0.2×10−6/K以下の等方性黒鉛で形成したことにより、坩堝8と種結晶基板11との熱膨張係数の差が小さくなり、熱膨張係数の差によって種結晶基板11に応力が働くことを抑制することができる。これにより、種結晶基板11に歪みが生じることを抑制できるため、種結晶基板11の歪みに起因して炭化珪素単結晶の成長時に結晶欠陥が生じることを抑制することができる。
【0063】
炭化珪素多結晶インゴット形成用の坩堝1のインゴット成長部3の外側に、断熱材および熱反射板6を配置したことにより、インゴット成長部3の中心部と外周部の温度差を小さくすることができ、インゴット成長部3の中心部と外周部とで炭化珪素多結晶が成長する速度の差を小さくすることができる。これにより、炭化珪素多結晶インゴット7の中心部の高さをH、外周部の高さをhとして、H/hが、0.95〜1.1の範囲内に、より好ましくは1.0〜1.05の範囲内とすることができる。
【0064】
炭化珪素多結晶インゴット7の中心部の高さHと外周部の高さhとで差があると、炭化珪素多結晶インゴット7の上面と種結晶基板11との距離にばらつきが生じ、原料である炭化珪素多結晶インゴット7からの輻射熱にばらつきが生じ、種結晶基板11の面内の温度分布が不均一となって、種結晶基板11に歪みが生じることとなる。しかし、この発明の実施の形態1では上述のように炭化珪素多結晶インゴット7の上面をより平坦に形成できるため、これを抑制できる。これにより、種結晶基板11上に成長する炭化珪素単結晶に結晶欠陥が生じることを抑制できる。
【0065】
尚、この発明の実施の形態1では、炭化珪素多結晶インゴット7を形成し、この炭化珪素多結晶インゴット7を、炭化珪素単結晶インゴット12を形成する原料とした。しかし、炭化珪素単結晶インゴット12を形成する原料としては、炭化珪素多結晶に限ることはなく、単結晶やアモルファスでもよい。
【0066】
また、この発明の実施の形態1では、炭化珪素多結晶インゴット形成用の坩堝1の蓋部1bに取り外し可能なインゴット成長部3を設けた。しかし、特にインゴット成長部3を設けずに、坩堝1の蓋部1b全体をインゴット成長部3と見なし、インゴット成長部3を炭化珪素単結晶形成用の坩堝8内へ移動させる工程(S3)では、蓋部1bごと炭化珪素単結晶形成用の坩堝8内へ移動させてもよい。この場合は、蓋部1bを密度が1.9〜2.0g/cmの高密度な等方性黒鉛で形成すればよい。
【0067】
この発明の実施の形態1では、インゴット成長部3の全体を密度が1.9〜2.0g/cmの高密度な等方性黒鉛で形成した。しかし、炭化珪素多結晶が接触する部位であるインゴット成長部3の内面だけを上記の高密度な等方性黒鉛で形成しても一定の効果が得られる。蓋部1bをインゴット成長部3として用いる場合は、蓋部1bの内面を上記の高密度な等方性黒鉛とすればよい。
【0068】
また、密度が1.9〜2.0g/cmの等方性黒鉛に限ることはなく、熱分解炭素膜で被覆された等方性黒鉛で形成してもよい。熱分解炭素はきわめて緻密であるため、珪素が付着しても冷却時にインゴット成長部3が割れにくくなる。尚、この場合、等方性黒鉛の密度は、より低密度のものでもよく、坩堝1の蓋部1bと同じ密度の等方性黒鉛を使用するとインゴット成長部3と蓋部1bとで熱膨張係数の差がなくなるので、より割れにくくなる。もちろん、インゴット成長部3の少なくとも内面が熱分解炭素膜で被覆されていれば効果が得られる。
【0069】
また、熱分解炭素膜の代わりに、ガラス状炭素膜や炭化珪素膜を用いても同様の効果が得られる。尚、炭化珪素膜を用いる場合は、被覆対象である等方性黒鉛として、密度が1.75〜1.85g/cmで、かつ、室温における炭化珪素との熱膨張係数の差が0.2×10−6/K以下の等方性黒鉛を用いてもよい。この場合、インゴット成長部3に形成される炭化珪素多結晶インゴット7とインゴット成長部3との熱膨張係数の差が小さくなるため、インゴット成長部3が割れにくくなる。
【0070】
尚、この発明の実施の形態1では、炭化珪素単結晶形成用の坩堝8を、密度が1.75〜1.85g/cmで、かつ、室温における炭化珪素との熱膨張係数の差が0.2×10−6/K以下の等方性黒鉛で形成した。しかし、坩堝8の少なくとも種結晶取り付け部8cが上記の等方性黒鉛で形成されていれば一定の効果が得られる。
【0071】
この発明の実施の形態1では、炭化珪素多結晶インゴット形成用の坩堝1のインゴット成長部3の外側に、断熱材および熱反射板6を配置した。しかし、断熱材と熱反射板6のいずれか一方のみを配置しても一定の効果が得られる。
【0072】
実施の形態2.
この発明の実施の形態2における炭化珪素単結晶の製造方法は、p型の炭化珪素多結晶インゴット7を形成し、このp型の炭化珪素多結晶インゴット7を原料として、p型の炭化珪素単結晶インゴット12を形成する点が、この発明の実施の形態1と相違している。
【0073】
図1〜図5を参照して、この発明の実施の形態2における炭化珪素単結晶の製造方法について詳細に説明する。
【0074】
まず、炭化珪素多結晶インゴット形成用の坩堝1内に原料2を収容する工程(S1)において、珪素と炭素に加えて、p型の不純物となる元素を含む炭化物を原料2として坩堝1内に収容する。
【0075】
p型の不純物となる元素としては、例えばホウ素やアルミニウムなどのIII族元素が用いられ、この炭化物としては、炭化ホウ素(BC)や炭化アルミニウム(Al)などが用いられる。III族元素と炭素の化合物を用いることにより、p型の不純物以外の不純物の混入を防止することができる。
【0076】
尚、炭化ホウ素の方が炭化アルミニウムよりも熱的に安定であり、炭化珪素との融点の差が小さいことから、炭化ホウ素を用いる方が、炭化珪素多結晶インゴット7により均一な濃度でp型の不純物を添加することが可能となる。また、III族元素を含む炭化物を用いる代わりにIII族元素の単体を用いてもよい。
【0077】
そして、上述の原料2を用いて、p型の炭化珪素多結晶インゴット7を形成する(S2)。その後、p型の炭化珪素多結晶インゴット7が形成されたインゴット成長部3を炭化珪素単結晶形成用の坩堝8内へ移動させ(S3)、p型の炭化珪素多結晶インゴット7を原料としてp型の炭化珪素単結晶インゴット12を形成する(S4)。S2〜S4については、この発明の実施の形態1と同様であるため説明を省略する。
【0078】
炭化珪素単結晶インゴット12への不純物の添加量が多過ぎると、結晶欠陥が形成され易く、添加量が少な過ぎると、炭化珪素単結晶インゴット12の抵抗率が大きくなるため、炭化珪素単結晶インゴット12への不純物の添加量は、5×1018〜8×1019cm−3の範囲内とすることが好ましい。炭化珪素単結晶インゴット12への添加量を上記の範囲内とするためには、炭化珪素多結晶インゴット7への不純物の添加量は、5×1019〜2×1020cm−3の範囲内とすることが好ましい。炭化珪素多結晶インゴット形成用の坩堝1内に原料2を収容する工程(S1)では、炭化珪素多結晶インゴット7への不純物の添加量が上記の範囲内となるように原料2を調整しておく。
【0079】
原料2に炭化ホウ素を加え、S1〜S4をこの発明の実施の形態1で説明した実施例と同様の条件で行い、得られた炭化珪素単結晶インゴット12をウエハ状にスライスし、二次イオン質量分析法(SIMS)によって不純物を分析した。その結果、ホウ素の濃度は、1×1019cm−3であり、窒素とアルミニウムの濃度は、いずれも1×1016cm−3未満であった。
【0080】
この発明の実施の形態2では、以上のようにしたことにより、p型の不純物以外の不純物が少なく、結晶欠陥密度がより低い、p型の炭化珪素単結晶インゴット12を得ることができる。
【0081】
尚、この発明の実施の形態2では、p型の不純物となる元素の単体またはp型の不純物となる元素を含む炭化物を原料2に加えて、炭化珪素多結晶インゴット7を形成した。しかし、原料2にp型の不純物となる元素の単体やp型の不純物となる元素を含む炭化物を加える代わりに、原料2は珪素と炭素のみを使用して、炭化珪素多結晶インゴット7を形成する工程(S2)において、p型の不純物となるIII族元素を含むガスを雰囲気に混入させてもよい。III族元素を含むガスとしては、例えばジボラン(B)やトリメチルアルミニウム(Al(CH)などが用いられる。
【0082】
p型の不純物の添加方法として、III族元素を含むガスを用いる場合、炭化珪素多結晶インゴット7を形成する工程(S2)でIII族元素を含むガスを雰囲気に混入させる代わりに、炭化珪素単結晶インゴット12を形成する工程(S4)でIII族元素を含むガスを雰囲気に混入させてもよい。
【0083】
尚、この発明の実施の形態2では、この発明の実施の形態1と相違する部分について説明し、同一または対応する部分についての説明は省略した。
【0084】
実施の形態3.
この発明の実施の形態3における炭化珪素単結晶の製造方法は、n型の炭化珪素多結晶インゴット7を形成し、このn型の炭化珪素多結晶インゴット7を原料として、n型の炭化珪素単結晶インゴット12を形成する点が、この発明の実施の形態1および2と相違している。
【0085】
原料2は珪素と炭素のみを使用し、炭化珪素多結晶インゴット7を形成する工程(S2)において、n型の不純物となるV族元素を含むガスを雰囲気に混入させる。V族元素を含むガスとしては、例えば窒素などが用いられる。S3〜S4については、この発明に実施の形態1と同様であるため説明を省略する。
【0086】
この発明の実施の形態3では、以上のようにしたことにより、n型の不純物以外の不純物が少なく、結晶欠陥密度がより低い、n型の炭化珪素単結晶インゴット12を得ることができる。
【0087】
尚、炭化珪素多結晶インゴット7を形成する工程(S2)でV族元素を含むガスを雰囲気に混入させる代わりに、炭化珪素単結晶インゴット12を形成する工程(S4)でV族元素を含むガスを雰囲気に混入させてもよい。
【0088】
尚、この発明の実施の形態3では、この発明の実施の形態1および2と相違する部分について説明し、同一または対応する部分についての説明は省略した。
【符号の説明】
【0089】
1 炭化珪素多結晶インゴット形成用の坩堝
1b 炭化珪素多結晶インゴット形成用の坩堝の蓋部
2 原料
3 インゴット成長部
6 熱反射板
7 炭化珪素多結晶インゴット
8 炭化珪素単結晶形成用の坩堝
8c 種結晶取り付け部
11 種結晶基板
12 炭化珪素単結晶インゴット

【特許請求の範囲】
【請求項1】
炭化珪素インゴット形成用の坩堝内で、珪素と炭素を原料とする昇華再結晶法によって炭化珪素インゴットを形成する工程と、
種結晶取り付け部に種結晶が取り付けられた炭化珪素単結晶形成用の坩堝内で、昇華再結晶法によって前記炭化珪素インゴットを昇華させて炭化珪素単結晶を形成する工程と、
を備えた炭化珪素単結晶の製造方法。
【請求項2】
炭化珪素インゴットを形成する工程では、炭化珪素多結晶のインゴットを形成することを特徴とする請求項1記載の炭化珪素単結晶の製造方法。
【請求項3】
炭化珪素インゴット形成用の坩堝は、炭化珪素インゴットが形成される部位であるインゴット成長部が取り外し可能であり、
前記炭化珪素インゴットが形成された前記インゴット成長部を炭化珪素単結晶形成用の坩堝内へ移動させる工程を備えたことを特徴とする請求項1または請求項2のいずれかに記載の炭化珪素単結晶の製造方法。
【請求項4】
インゴット成長部の炭化珪素多結晶インゴットが形成される面は、密度が1.9〜2.0g/cmの等方性黒鉛で形成された層を有することを特徴とする請求項3記載の炭化珪素単結晶の製造方法。
【請求項5】
インゴット成長部は、等方性黒鉛で形成され、
前記インゴット成長部の炭化珪素多結晶インゴットが形成される面は、熱分解炭素、ガラス状炭素または炭化珪素で被覆されたことを特徴とする請求項3記載の炭化珪素単結晶の製造方法。
【請求項6】
種結晶取り付け部は、密度が1.75〜1.85g/cmで、かつ、室温における炭化珪素との熱膨張係数の差が0.2×10−6/K以下の等方性黒鉛で形成されたことを特徴とする請求項1ないし請求項5のいずれか1項に記載の炭化珪素単結晶の製造方法。
【請求項7】
種結晶取り付け部には、直径が100mm以上の種結晶基板を取り付け、
炭化珪素単結晶形成用の坩堝の、前記種結晶基板の厚み方向の長さが230mm以下であり、
炭化珪素単結晶を形成する工程では、前記種結晶基板の厚み方向の長さが100mm以上の前記炭化珪素単結晶を形成することを特徴とする請求項1ないし請求項6のいずれか1項に記載の炭化珪素単結晶の製造方法。
【請求項8】
炭化珪素インゴット形成用の坩堝のインゴット成長部の外側には、断熱材と熱反射部材の少なくとも一方が配置され、
炭化珪素インゴットを形成する工程では、炭化珪素インゴットの中心の高さをH、前記炭化珪素インゴットの外周部の高さをhとして、H/hが1〜1.05となるように前記炭化珪素インゴットを形成することを特徴とする請求項1ないし請求項7のいずれか1項に記載の炭化珪素単結晶の製造方法。
【請求項9】
炭化珪素インゴットを形成する工程では、珪素と炭素に加えて、p型の不純物となる元素の単体またはp型の不純物となる元素を含む炭化物を原料として、p型の炭化珪素インゴットを形成することを特徴とする請求項1ないし請求項8のいずれか1項に記載の炭化珪素単結晶の製造方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate


【公開番号】特開2012−136391(P2012−136391A)
【公開日】平成24年7月19日(2012.7.19)
【国際特許分類】
【出願番号】特願2010−290233(P2010−290233)
【出願日】平成22年12月27日(2010.12.27)
【出願人】(000006013)三菱電機株式会社 (33,312)
【Fターム(参考)】