説明

画像処理方法、画像処理装置、プログラム、記録媒体、画像形成装置

【課題】階調区間に応じて誤差拡散処理とディザ処理を切り換える複合型中間調処理における画像品質の劣化を低減する。
【解決手段】原稿画像(入力画像)が網点原稿か連続調原稿かを判定し、網点原稿であれば、網点数、出力解像度から第1のサイズの閾値マトリクスセットを選定し、連続調原稿であれば、出力解像度から第2のサイズの閾値マトリクスセットを選定し、階調がディザ処理区間であるか否かを判別し、ディザ処理区間であれば、選定マトリクスセットの中のディザ処理閾値を使用しディザ処理を行い、誤差拡散処理区間あれば、選定マトリクスセットの中の誤差拡散処理閾値を使用し誤差拡散処理を行う。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は画像処理方法、画像処理装置、プログラム、記録媒体、画像形成装置に関する。
【背景技術】
【0002】
プリンタ、ファクシミリ、複写装置、これらの複合機等の画像形成装置として、例えば、記録液(液体)の液滴を吐出する液体吐出ヘッド(液滴吐出ヘッド)で構成した記録ヘッドを含む液体吐出装置を用いて、媒体(以下「用紙」ともいうが材質を限定するものではなく、また、被記録媒体、記録媒体、転写材、記録紙なども同義で使用する。)を搬送しながら、液体としての記録液(以下、インクという。)を用紙に付着させて画像形成(記録、印刷、印写、印字も同義語で用いる。)を行なうものがある。また、画像形成装置としては電子写真プロセスを用いて画像形成を行うものもある。
【0003】
なお、液体吐出方式の画像形成装置は、紙、糸、繊維、布帛、皮革、金属、プラスチック、ガラス、木材、セラミックス等の媒体に液体を吐出して画像形成を行う装置を意味し、また、「画像形成」とは、文字や図形等の意味を持つ画像を媒体に対して付与することだけでなく、パターン等の意味を持たない画像を媒体に付与することをも意味し、捺染装置や金属配線を形成する装置なども含みものである。また、液体とは画像形成を行うことができる液体であれば特に限定されるものではない。
【0004】
このような画像形成装置においては、閾値を用いて多階調画像を入力データよりも少ない多値数(3値以上)の出力データに変換する中間調処理として、ディザ処理や誤差拡散処理が用いられている。
【0005】
この場合、原稿画像を読取る画像読取装置を備えたものにおいて、コピー処理を行う場合、入力される画像データは、全てイメージデータとして取り込まれるため、高品位な出画像を得るために、一度、イメージデータを像域分離し、入力原稿の各要素(文字なのか、連続調なのか、網点なのか)に応じた補正処理を施すようにしている(特許文献1ないし3)。
【0006】
しかしながら、スタンドアロンで使用されることが前提であるコピー機(複写装置)では、画像処理を複写装置に搭載されたコントローラで行わなければならないため、誤差拡散処理の重さは無視できない課題であることから、これを解決するために、粒状性が余り問題とならないシャドー部において、分散型のディザ処理へと切り換える方法が知られている(特許文献4)。
【先行技術文献】
【特許文献】
【0007】
【特許文献1】特許第3164400号公報
【特許文献2】特開平06−176144号公報
【特許文献3】特開2006−157331号公報
【特許文献4】特開2008−162197号公報
【発明の概要】
【発明が解決しようとする課題】
【0008】
しかしながら、上述したように誤差拡散処理と分散ディザを組み合わせた複合型中間調処理を行った場合、処理原稿画像(網点あるいは連続調)によっては、原稿の網点と中間調処理が干渉してモアレが発生し、コピー画像の粒状感が悪化してしまうという課題が生じることが確認された。
【0009】
本発明は上記の課題に鑑みてなされたものであり、中間調処理を切替えることによる演算負荷を低減しつつ、複合型中間調処理におけるモアレ、ぼそつきなどの画像品質の劣化を低減することを目的とする。
【課題を解決するための手段】
【0010】
上記の課題を解決するため、本発明に係る画像処理方法は、
閾値を用いて多階調画像を入力データよりも少ない3値以上の多値数の出力データに変換する中間調処理方法において、
前記多値数のうち最小の出力値のみで表現されるハイライト部及び前記多値数のうち最大の出力値のみで表現されるシャドー部に対しては、入力値と閾値マトリクスの一対比較により量子化を行うディザ処理を適用し、
前記最小の出力値よりも一段階以上大きい出力値であって、かつ前記最大の出力値より一段階以上小さい出力値で表現されるミドル部に対しては、着目画素周辺の量子化誤差を加えて量子化を行う誤差拡散処理を適用し、
入力画像の網点ピッチ又は網点の有無に応じて、誤差拡散処理及びディザ処理に使用する分散閾値マトリクスのサイズを切り換える
構成とした。
【0011】
ここで、入力画像に対して入力画像が網点画像か否かを判定する画像判定処理を行い、
前記判定処理の結果、前記入力画像が網点画像であるときには、次の第1のサイズの分散型閾値マトリクスを、前記入力画像が網点画像でないときには、次の第2のサイズの分散型閾値マトリクスを、誤差拡散処理及びディザ処理閾値として各々使用し、
前記第1のサイズ=(網点ピッチ/出力解像度ピッチ)に最も近い整数、
前記第2のサイズ=(1mm/出力解像度ピッチ)に最も近い整数、
である構成とできる。
【0012】
また、前記画像判定処理は、外部からの入力又は入力画像の周波数特性に基づいて判定する構成とできる。
【0013】
また、前記誤差拡散処理における量子化判定に使用する閾値マトリクスがg×h(g、hともに2以上の整数)のサイズを有し、当該閾値マトリクスのサイズ及び閾値配置順とディザ処理における閾値マトリクスのサイズ及び閾値配置順とが共通化されている構成とできる。
【0014】
また、
入力値が0又は誤差拡散処理を行う階調範囲以外の場合には、ディザ処理の結果にかかわらず、着目画素の量子化誤差値を0とする構成とできる。
【0015】
本発明に係る画像処理装置は、
閾値を用いて多階調画像を入力データよりも少ない3値以上の多値数の出力データに変換する中間調処理を行う画像処理装置において、
前記多値数のうち最小の出力値のみで表現されるハイライト部及び前記多値数のうち最大の出力値のみで表現されるシャドー部に対しては、入力値と閾値マトリクスの一対比較により量子化を行うディザ処理を適用し、
前記最小の出力値よりも一段階以上大きい出力値であって、かつ前記最大の出力値より一段階以上小さい出力値で表現されるミドル部に対しては、着目画素周辺の量子化誤差を加えて量子化を行う誤差拡散処理を適用し、
入力画像の網点ピッチ又は網点の有無に応じて、誤差拡散処理及びディザ処理に使用する分散閾値マトリクスのサイズを切り換える手段を備えている
構成とした。
【0016】
本発明に係るプログラムは、
閾値を用いて多階調画像を入力データよりも少ない3値以上の多値数の出力データに変換する中間調処理をコンピュータに行わせるプログラムにおいて、
前記多値数のうち最小の出力値のみで表現されるハイライト部及び前記多値数のうち最大の出力値のみで表現されるシャドー部に対しては、入力値と閾値マトリクスの一対比較により量子化を行うディザ処理を適用し、
前記最小の出力値よりも一段階以上大きい出力値であって、かつ前記最大の出力値より一段階以上小さい出力値で表現されるミドル部に対しては、着目画素周辺の量子化誤差を加えて量子化を行う誤差拡散処理を適用し、
入力画像の網点ピッチ又は網点の有無に応じて、誤差拡散処理及びディザ処理に使用する分散閾値マトリクスのサイズを切り換える処理を前記コンピュータに行わせる
構成とした。
【0017】
本発明に係る記録媒体は、本発明に係るプログラムを記録したものである。
【0018】
本発明に係る画像形成装置は、
閾値を用いて多階調画像を入力データよりも少ない3値以上の多値数の出力データに変換する中間調処理を行って画像を形成する画像形成装置において、
前記多値数のうち最小の出力値のみで表現されるハイライト部及び前記多値数のうち最大の出力値のみで表現されるシャドー部に対しては、入力値と閾値マトリクスの一対比較により量子化を行うディザ処理を適用し、
前記最小の出力値よりも一段階以上大きい出力値であって、かつ前記最大の出力値より一段階以上小さい出力値で表現されるミドル部に対しては、着目画素周辺の量子化誤差を加えて量子化を行う誤差拡散処理を適用し、
入力画像の網点ピッチ又は網点の有無に応じて、誤差拡散処理及びディザ処理に使用する分散閾値マトリクスのサイズを切り換える手段を備えている
構成とした。
【発明の効果】
【0019】
本発明に係る画像処理方法、画像処理装置、プログラム、記憶媒体、画像形成装置によれば、多値数のうち最小の出力値のみで表現されるハイライト部及び多値数のうち最大の出力値のみで表現されるシャドー部に対しては、入力値と閾値マトリクスの一対比較により量子化を行うディザ処理を適用し、最小の出力値よりも一段階以上大きい出力値であって、かつ最大の出力値より一段階以上小さい出力値で表現されるミドル部に対しては、着目画素周辺の量子化誤差を加えて量子化を行う誤差拡散処理を適用し、入力画像の網点ピッチ又は網点の有無に応じて、誤差拡散処理及びディザ処理に使用する分散閾値マトリクスのサイズを切り換える構成としたので、中間調処理を切替えることによる演算負荷を低減しつつ、複合型中間調処理における画像品質の劣化を低減することができる。
【図面の簡単な説明】
【0020】
【図1】本発明に係る画像処理方法を行う本発明に係る画像処理装置及びプログラムを含む本発明に係る画像形成装置の一例を示す外観斜視説明図である。
【図2】同装置の機構部の側面説明図である。
【図3】同じく平面説明図である。
【図4】同装置の制御部の概要を示すブロック図である。
【図5】一般的なコピーモードにおける画像処理の流れの説明に供する説明図である。
【図6】一般的なディザ処理の説明に供する説明図である。
【図7】網点画像とディザマトリクスの基調が一致した場合のモアレの発生の説明に供する説明図である。
【図8】一般的な誤差拡散処理の説明に供する説明図である。
【図9】ミドル階調部の出力ドットパターンの一例を示す説明図である。
【図10】多値ディザの説明に供する説明図である。
【図11】ハイライト部における入力画像と誤差拡散処理後画像、ディザ処理後画像の説明に供する説明図である。
【図12】本発明における階調区間と中間調処理の切替えの説明に供する説明図である。
【図13】誤差拡散処理における閾値マトリクスのパターン傾向と画像劣化の説明に供する説明図である。
【図14】網点画像の拡大説明図である。
【図15】階調表現における線数と水平画素ピッチの説明に供する説明図である。
【図16】閾値マトリクスによる分散性が高められている場合と不足している場合の画像の説明に供する説明図である。
【図17】本発明に係る中間調処理の全体的な流れの説明に供するフロー図である。
【発明を実施するための形態】
【0021】
以下、本発明の実施の形態について添付図面を参照して説明する。本発明に係る画像処理方法を行う本発明に係る画像処理装置及びプログラムを含む本発明に係る画像形成装置の一例について図1ないし図3を参照して説明する。なお、図1は同画像形成装置の外観斜視説明図、図2は同装置の機構部の側面説明図、図3は同じく平面説明図である。
【0022】
この画像形成装置は、図1に示すように、画像形成を行う装置本体1の上部に画像を読取る画像読取り手段(スキャナ手段)2を備えている。装置本体1には、機構部に給紙する用紙をストックする給紙カセット3が着脱自在に装着され、給紙カセット3の上方には画像が形成されて排出される用紙をストックする排紙トレイ4が装着されている。また、装置本体1の前面側にはインクカートリッジを装着するカートリッジ装着部5を有し、更に各種操作信号の入力や表示情報を表示する操作/表示部(操作パネル)6が配置されている。
【0023】
そして、装置本体1の内部には、図2及び図3に示すように、装置本体1の左右の側板21A、21Bに横架したガイド部材である主従のガイドロッド31、32でキャリッジ33を主走査方向に摺動自在に保持し、図示しない主走査モータによってタイミングベルトを介して矢示方向(キャリッジ主走査方向)に移動走査する。
【0024】
このキャリッジ33には、イエロー(Y)、シアン(C)、マゼンタ(M)、ブラック(K)の各色のインク滴を吐出するための液体吐出ヘッドからなる記録ヘッド34a、34b(区別しないときは「記録ヘッド34」という。)を複数のノズルからなるノズル列を主走査方向と直交する副走査方向に配列し、インク滴吐出方向を下方に向けて装着している。
【0025】
記録ヘッド34は、それぞれ2つのノズル列を有し、記録ヘッド34aの一方のノズル列はブラック(K)の液滴を、他方のノズル列はシアン(C)の液滴を、記録ヘッド34bの一方のノズル列はマゼンタ(M)の液滴を、他方のノズル列はイエロー(Y)の液滴を、それぞれ吐出する。なお、記録ヘッド34としては、1つのノズル面に複数のノズルを並べた各色のノズル列を備えるものなどを用いることもできる。
【0026】
また、キャリッジ33には、記録ヘッド34のノズル列に対応して各色のインクを供給するための第2インク供給部としてのサブタンクであるサブタンク35a、35b(区別しないときは「サブタンク35」という。)を搭載している。このサブタンク35には、カートリッジ装填部4に着脱自在に装着される各色のインクカートリッジ(メインタンク)10y、10m、10c、10kから、供給ポンプユニット24によって各色の供給チューブ36を介して、各色の記録液が補充供給される。
【0027】
一方、給紙トレイ2の用紙積載部(圧板)41上に積載した用紙42を給紙するための給紙部として、用紙積載部41から用紙42を1枚ずつ分離給送する半月コロ(給紙コロ)43及び給紙コロ43に対向し、摩擦係数の大きな材質からなる分離パッド44を備え、この分離パッド44は給紙コロ43側に付勢されている。
【0028】
そして、この給紙部から給紙された用紙42を記録ヘッド34の下方側に送り込むために、用紙42を案内するガイド部材45と、カウンタローラ46と、搬送ガイド部材47と、先端加圧コロ49を有する押さえ部材48とを備えるとともに、給送された用紙42を静電吸着して記録ヘッド34に対向する位置で搬送する搬送ベルト51を備えている。
【0029】
この搬送ベルト51は、無端状ベルトであり、搬送ローラ52とテンションローラ53との間に掛け渡されて、ベルト搬送方向(副走査方向)に周回するように構成している。また、この搬送ベルト51の表面を帯電させるための帯電手段である帯電ローラ56を備えている。この帯電ローラ56は、搬送ベルト51の表層に接触し、搬送ベルト51の回動に従動して回転するように配置されている。この搬送ベルト51は、図示しない副走査モータによってタイミングを介して搬送ローラ52が回転駆動されることによってベルト搬送方向に周回移動する。
【0030】
さらに、記録ヘッド34で記録された用紙42を排紙するための排紙部として、搬送ベルト51から用紙42を分離するための分離爪61と、排紙ローラ62及び排紙コロである拍車63とを備え、排紙ローラ62の下方に排紙トレイ3を備えている。
【0031】
また、装置本体1の背面部には両面ユニット71が着脱自在に装着されている。この両面ユニット71は搬送ベルト51の逆方向回転で戻される用紙42を取り込んで反転させて再度カウンタローラ46と搬送ベルト51との間に給紙する。
【0032】
さらに、キャリッジ33の走査方向一方側の非印字領域には、記録ヘッド34のノズルの状態を維持し、回復するための維持回復機構81を配置している。この維持回復機構81には、記録ヘッド34の各ノズル面をキャピングするための各キャップ部材(以下「キャップ」という。)82a、82b(区別しないときは「キャップ82」という。)と、ノズル面をワイピングするためのワイパ部材(ワイパブレード)83と、増粘した記録液を排出するために記録に寄与しない液滴を吐出させる空吐出を行うときの液滴を受ける空吐出受け84と、キャリッジ33をロックするキャリッジロック87などとを備えている。また、このヘッドの維持回復機構81の下方側には維持回復動作によって生じる廃液を収容するための廃液タンク100が装置本体に対して交換可能に装着される。
【0033】
また、キャリッジ33の走査方向他方側の非印字領域には、記録中などに増粘した記録液を排出するために記録に寄与しない液滴を吐出させる空吐出を行うときの液滴を受ける空吐出受け88を配置し、この空吐出受け88には記録ヘッド34のノズル列方向に沿った開口部89などを備えている。
【0034】
このように構成したこの画像形成装置においては、給紙トレイ2から用紙42が1枚ずつ分離給紙され、略鉛直上方に給紙された用紙42はガイド45で案内され、搬送ベルト51とカウンタローラ46との間に挟まれて搬送され、更に先端を搬送ガイド37で案内されて先端加圧コロ49で搬送ベルト51に押し付けられ、略90°搬送方向を転換される。そして、帯電された搬送ベルト51に用紙42が吸着され、搬送ベルト51の周回移動によって用紙42が副走査方向に搬送される。
【0035】
そこで、キャリッジ33を移動させながら画像信号に応じて記録ヘッド34を駆動することにより、停止している用紙42にインク滴を吐出して1行分を記録し、用紙42を所定量搬送後、次の行の記録を行う。記録終了信号又は用紙42の後端が記録領域に到達した信号を受けることにより、記録動作を終了して、用紙42を排紙トレイ3に排紙する。
【0036】
そして、記録ヘッド34のノズルの維持回復を行うときには、キャリッジ33をホーム位置である維持回復機構81に対向する位置に移動して、キャップ部材82によるキャッピングを行ってノズルからの吸引を行うノズル吸引、画像形成に寄与しない液滴を吐出する空吐出などの維持回復動作を行うことにより、安定した液滴吐出による画像形成を行うことができる。
【0037】
次に、この画像形成装置の制御部の概要について図4を参照して説明する。なお、同図は同制御部の全体ブロック説明図である。
この制御部500は、この装置全体の制御を司る本発明に係る中間調処理に係る制御を行う手段を兼ねたCPU511と、CPU511が実行する本発明に係る中間調処理を行うプログラムを含むプログラム、その他の固定データを格納するROM502と、画像データ等を一時格納するRAM503と、装置の電源が遮断されている間もデータを保持するための書き換え可能な不揮発性メモリ504と、画像データに対する各種信号処理、並び替え等を行う画像処理やその他装置全体を制御するための入出力信号を処理するASIC505、スキャナ手段2を制御するスキャナ制御部516とを備えている。
【0038】
また、記録ヘッド34を駆動制御するためのデータ転送手段、駆動信号発生手段を含む印刷制御部508と、キャリッジ33側に設けた記録ヘッド34を駆動するためのヘッドドライバ(ドライバIC)509と、キャリッジ33を移動走査する主走査モータ554、搬送ベルト51を周回移動させる副走査モータ555、維持回復機構81の維持回復モータ556を駆動するためのモータ駆動部510と、帯電ローラ56にACバイアスを供給するACバイアス供給部511などを備えている。
【0039】
また、この制御部500には、この装置に必要な情報の入力及び表示を行うための操作パネル514が接続されている。
【0040】
この制御部500は、ホスト側とのデータ、信号の送受を行うためのI/F506を持っていて、パーソナルコンピュータ等の情報処理装置、デジタルカメラなどの撮像装置などのホスト600側から、ケーブル或いはネットワークを介してI/F506で受信する。また、スキャナ2からの原稿画像の読取り情報をスキャナ制御部516を介して取り込む。
【0041】
そして、制御部500のCPU501は、ホスト側からの受信データに関しては、I/F506に含まれる受信バッファ内の印刷データを読み出して解析し、ASIC505にて必要な画像処理、データの並び替え処理等を行い、この画像データを印刷制御部508に転送する。なお、画像出力するためのドットパターンデータの生成はホスト600側のプリンタドライバ601で行っている。また、スキャナ2からの原稿画像の読取りデータについては、後述するように必要な入力補正処理、出力処理を行って画像データを生成し、印刷制御部508に転送する。
【0042】
印刷制御部508は、上述した画像データをヘッドドライバ509にシリアルデータで転送するとともに、この画像データの転送及び転送の確定などに必要な転送クロックやラッチ信号、制御信号などをヘッドドライバ509に出力する以外にも、ROM502に格納されている駆動パルスのパターンデータをD/A変換するD/A変換器及び電圧増幅器、電流増幅器等で構成される駆動信号生成部を含み、1の駆動パルス或いは複数の駆動パルスで構成される駆動信号をヘッドドライバ509に対して出力する。
【0043】
ヘッドドライバ509は、シリアルに入力される記録ヘッド34の1行分に相当する画像データに基づいて印刷制御部508から与えられる駆動信号を構成する駆動パルスを選択的に記録ヘッド34の液滴を吐出させるエネルギーを発生する駆動素子(例えば圧電素子)に対して印加することで記録ヘッド7を駆動する。このとき、駆動信号を構成する駆動パルスを選択することによって、例えば、大滴、中滴、小滴など、大きさの異なるドットを打ち分けることができる。
【0044】
I/O部513は、装置に装着されている各種のセンサ群515からの情報を取得し、プリンタの制御に必要な情報を抽出し、印刷制御部508やモータ制御部510、ACバイアス供給部511の制御に使用する。センサ群515は、用紙の位置を検出するための光学センサや、機内の温度を監視するためのサーミスタ、帯電ベルトの電圧を監視するセンサ、カバーの開閉を検出するためのインターロックスイッチなどがあり、I/O部513は様々のセンサ情報を処理することができる。
【0045】
次に、この画像形成装置における本発明に係る画像処理方法について説明する。
先ず、一般的に画像読取装置(スキャナ)で原稿画像を読み取って画像形成装置(プリンタ部)で出力するまでの画像処理の流れは、図5に示すように、スキャナ11で読み取った原稿画像データに対し、入力補正処理部401において、スキャナγ補正部411、RGB→YUV変換部412、平滑化部413、エッジ強調部414、YUV→RGB変換部415、地肌除去部416、エッジ強調部417によって、入力される原稿画像データ(入力画像)に対する補正を行う。
【0046】
つまり、原稿画像を複写してプリント出力するコピーの場合、入力される画像データは、全て「イメージ」データとして取り込まれるが、このとき、スキャナの性能、入力原稿の状態(記録品質、汚れや破損、表面光沢)などにより、原稿よりも劣化した状態でデータが取り込まれることになる。そこで、入力補正処理部401では、スキャナから取り込まれた画像データを、像域分離によりオブジェクト要素毎に分解し、エッジ強調や地肌除去、色補正等、様々な補正処理を適用している。なお、オブジェクト要素とは、入力された画像データが、「文字」、「細線」、「イメージ」、「グラフィックス」の何れに分類されるのかを指す。
【0047】
この入力補正処理部401から出力される補正後の画像データを入力する出力処理部402においては、色空間への変換(RGB表色系→CMY表色系)を行なうCMM処理部421、CMYの値から黒生成/下色除去を行なうBG/UCR処理部422、解像度に合わせて拡大処理を行なう変倍処理部423、装置の特性やユーザーの嗜好を反映した入出力補正を行なうプリンタγ補正部424、画像データを画像形成装置から噴射するドットのパターン配置に置き換えるディザマトリクスを含む中間調処理部425によって、所要の処理を行ない、図示しないが、中間調処理で得られた印刷画像データであるドットパターンデータを各スキャン毎のデータに分割し、更に記録を行なう各ノズル位置に合わせてデータ展開するラスタライジングを行って、印刷制御部508(プリンタ出力)に送出する。
【0048】
この出力処理部402におけるB/UCR処理部422、プリンタγ補正部423、中間調処理部425では像域分離部218の分離結果に応じた処理が行なわれる。
【0049】
ところで、像域分離部418による像域分離の結果は、上述した入力補正処理部401や出力処理部402の処理をなす上で重要な情報となり、像域分離結果が間違っていると、そのまま間違った処理が行われて、結果として異常画像の発生に繋がることから、像域分離を行う部分には高い処理能力と性能が要求される。
【0050】
このように像域分離を高速で正確に行うことができるかは画像処理コントローラの性能に左右され、十分な処理能力を備えていない画像処理コントローラを用いた場合には、パターンマッチングや周波数解析等を駆使する像域分離の演算は負荷が大きく、スループットが大きく低下してしまうことになるが、他方、十分な処理能力を備える画像処理コントローラを備えることは画像形成装置や画像処理装置などのコストが高くなるという問題を生じる。
【0051】
そこで、低コスト化を図る画像形成装置では、像域分離を省略し、最低限の補正処理(弱い平滑化や、地肌除去程度)のみを適用する構成が採用され、更に、出力処理側でも中間調処理部425においても、中間調処理として、入力補正処理の低さを誤差拡散処理で補うようにしている。
【0052】
ディザ処理は、図6に示すように、同図(a)に示す入力された多値画像データを、同図(b)に示すディザマトリクスの閾値と比較し、同図(c)に示すようにドットパターンの配置に置き換える処理である。ディザ処理は、ディザマトリクスと入力データの一対比較でドットのON/OFFを決定することから、非常に処理が軽く、演算に必要なメモリも少量で済む。
【0053】
しかしながら、コピーモードにおいて、ディザ処理を採用した場合、原稿の網点パターンとの干渉によるモアレが発生する。つまり、図6に示したように、原稿画像上にいくらデータが存在したとしても、ディザマトリクスの閾値を超えない限り、ドットは生成されない。網点原稿のようにデータの分布が規則的な配置で構成されている場合、ディザ処理によるドットの欠損が逆に規則性を持ち、モアレとして現れる可能性がある。例えば図7(a)に示すような網点の原稿データを、万線基調を有するディザマトリクスでディザ処理を行なった場合、同図(b)に示すように、そのまま万線基調との干渉によるモアレが出力画像に現出することになる。
【0054】
これに対して、誤差拡散処理は、例えば図8に示す処理を行うものであり、ドットのON/OFFの判定に周辺の量子化誤差を反映して演算を行うため、画素単位で入力原稿との差が生じても、その差が周辺の画素におけるドットの発生し易さとして反映される結果、ドットの欠け等も補填され、優れた画像再現性が得られる。しかしながら、反面、演算数が多く処理速度への影響が大きくなる。
【0055】
この場合、コンピュータ処理能力の向上により、画像処理装置をホストPC上で構成して、画像形成装置は単にプリンタとして利用するだけであれば、誤差拡散処理自体、それほど重い処理とは言えなくなってきているが、スタンドアロンで使用されることが前提のコピー機としての画像形成装置では、装置本体に搭載されたコントローラで処理する必要があり、誤差拡散処理の重さは無視できない課題となっている。
【0056】
そこで、本発明における複合型中間調処理では、まず、階調区間毎にディザ処理と誤差拡散処理を切り替えることで演算負荷を軽減している。
ここでは、階調区間を、多値数のうち最小の出力値のみで表現されるハイライト部と、値数のうち最大の出力値のみで表現されるシャドー部と、最小の出力値よりも一段階以上大きい出力値であって、かつ最大の出力値より一段階以上小さい出力値で表現されるミドル部に分けている。
【0057】
そして、ハイライト部及びシャドー部に対しては、入力値と閾値マトリクスの一対比較により量子化を行うディザ処理を適用し、ミドル部に対しては、着目画素周辺の量子化誤差を加えて量子化を行う誤差拡散処理を適用している。
【0058】
まず、図9に2値誤差拡散処理によるシャドー階調部の出力ドットパターン例を示しているが、濃い階調を表現するためにドットが密に発生することで、紙面が埋め尽くされるため、原稿のパターン(網点原稿等)との干渉(モアレ)も目立ちにくくなる。
【0059】
また、出力ドットサイズや濃淡インクを切り替える多値出力可能な画像形成装置では、異なったサイズや濃度のドットを入れ替えて階調を表現することになり、よりモアレを目立ち難くすることができる。
【0060】
次に、図10を参照して、大中小の3種類のドットサイズとディザ処理を用いて、多値を表現する方法について説明すると、滴サイズに応じて、それぞれ再現階調区間を設定し、ディザマトリクスの閾値の順序に応じてドットを配置して階調表現を行う。なお、以下では、ドットサイズを切り換える多値化方式について説明するが、濃度の異なる色剤を切り換える多値化方式でも同様である。
【0061】
この場合、小ドットに割り当てられた階調区間が、「0<小ドット区間≦階調レベルn」の場合、階調レベルnでは、小ドットで紙面が埋め尽くされることになる。そして、階調レベルn+1では、埋め尽くされた小ドットの何れかが中ドットに置き換わり、階調の上昇に合わせて中ドットの比率が高くなっていく(中ドットと大ドットの切替も同じである。)。
【0062】
上記の様な多値による中間調処理を用いれば、大ドットが適用されるようなシャドー側の階調レベルでは、元々の白地以外の部分では必ずいずれかのサイズのドットが割り当てられることになり、モアレはドットの密度の中に埋もれてしまう。
【0063】
また、最小ドットしか使用しないハイライト部においては、仮に原稿画像の規則性があったとしても、誤差拡散処理及びディザ処理のいずれでも、完全に原稿画質を再現するのは困難である。これは、入力データが小さく且つ範囲が狭いデータ(例えば図12(a)に示す小網点等のデータ)に対しては、誤差拡散処理では、十分に誤差の蓄積ができずに(図12(b))、ディザ処理ではディザ閾値マトリクスと同期しないパターンは強制的にOFFとなる(図12(c))ため、狭い画像ほど出力時に欠落し易くなるからである。
【0064】
すなわち、個々のドットの分散性が目立たない階調では、モアレが画質に及ぼす影響が小さくなるため、モアレに弱いディザ処理であっても使用することが可能となり、ディザ処理及び誤差拡散処理の何れを使っても画質的に大差がないハイライト部においても、ディザ処理を使用することが可能である。
【0065】
そこで、本発明では、このハイライト部及びシャドー部に対して多値ディザ処理を適用すると共に、その間の階調に対しては、多値誤差拡散処理を適用することで、大幅な処理の高速化を図っている。
【0066】
例えば、図12(a)に示す例は4値の場合であり、同図(b)に示す例は5値の場合である。5値の場合には、中区間1と中区間2に分けている。
【0067】
このとき、入力値が0の場合とディザ処理が適用される階調区間では、誤差値の演算は省略(誤差値=0)とする。入力が0の場合は、元々画像が無い部分であるため、余計な演算処理を省くと共に、原画像にないドットが生成されて画質が低下することを防止する。
【0068】
また、シャドー部では着目画素の入力値自体が十分な大きさを持ち、周辺画素へ量子化誤差を伝搬させても影響が小さく、ハイライト部では蓄積される誤差自体が小さく、やはり周辺画素へ伝搬させても影響が出にくいため、ディザ処理が適用されるハイライト部及びシャドー部においても、誤差値の演算は省略する。これによって更なる高速化が図れる。
【0069】
また、連続した階調の中で異なる中間調処理を使用する場合、処理の切替え部分でドットパターンの連続性が途絶え、トーンジャンプとして目についてしまう場合がある。
【0070】
このような問題を改善する方法として、誤差拡散処理内部で使用する閾値をマトリクス化し、ミドル部、シャドー部で切り替えを行うディザ処理におけるディザマトリクスと同じサイズ、且つ、閾値の割り振りの規則性を同じにすることでトーンジャンプを目立たなくすることができる。
【0071】
これは、誤差拡散処理の分散性に閾値マトリクスの規則性が影響を及ぼすためであり、閾値の振幅に応じて、ディザの規則性の顕現状態をコントロールすることも可能である。切り替えを行うべきディザ処理のディザマトリクスと閾値マトリクスの規則性を揃えておくことで、切り替え階調付近では、ディザ処理を行った場合とほぼ同じドット配置を形成することが可能となり、ディザ処理パターンへの連結がスムーズに行われることになる。
【0072】
ただし、このように閾値マトリクスのパターン傾向が強くなると、本来、誤差拡散処理では改善されたハズの原稿網点との干渉が、再度、問題となってくる。ランダム性の高い分散マトリクスを使用することで、特定の干渉パターンが発生するモアレこそ防ぐことができるが、ランダムにドットが配置されるため、本来網点があるべき所でドットが欠落することがあり、粒状感が悪化して、ぼそついた画像となってしまう。例えば図13(a)に示す網点画像を分散マトリクス閾値による誤差拡散処理を行った場合、画像は同図(b)に示すようになる。
【0073】
これは、ランダム性を確保するためにはある程度のマトリクスサイズ(好ましくは256×256画素程度)が必要であり、そのマトリクスサイズ全域を使ってドットを分散させようとすると、網点が形成されるべき位置でドットがONとなる確率が小さくなってしまうためである。もちろん、網点では無い連続調原稿の場合は、規則性が見えない方が滑らかな画像が再現できるため、閾値マスクサイズは大きければ大きい程良い。
【0074】
そこで、本発明では、原稿画像(入力)が網点画像であるか否か、ここでは、網点画像であるか連続調画像であるかによって、サイズの異なる分散閾値マトリクスを、誤差拡散処理の閾値並びにディザ処理の閾値に適用することで、粒状感を改善している。
【0075】
図14は600dpiにおける原稿網点画像の部分拡大説明図である(ただし、K版、スクリーン角45°)。網点原稿(網点画像)は、特定のピッチで配置されたドットが徐々に大きくなることで、階調を表現する。配置されるピッチは、600dpiの出力解像度で計算すると、図15に示すようになる。一般的な印刷では、175線が良く使用されるが、この場合だと一つの網点が被覆する領域は、ほぼ5×5画素分となる。この網点を過不足なく出力ドットに置き換えるには、5×5画素分をカバーする閾値マトリクスがあれば良い。これ以上サイズが大きくなると、ドットを分散させる特性から、網点部が欠ける可能性が高まる(図16(a))。また、小さくなると分散性が低くなり、誤差拡散処理において幾何学的なテクスチャが発生しやすくなる(図16(b))。
【0076】
そこで、原稿画像(入力画像)が網点画像であるときには、次の第1サイズの分散型閾値マトリクスを、誤差拡散処理及びディザ処理の閾値として使用する。
第1のサイズ=(網点ピッチ/出力解像度ピッチ)に最も近い整数
【0077】
例えば、175線網点原稿(画像)を出力解像度600dpiの画像形成装置で出力する場合、
閾値マトリクスサイズ=(25.4/175×√2)/(25.4/600)
=4.84873
となり、これに最も近い整数である5画素のマトリクスサイズのマトリクスを用いる。
【0078】
一方、網点との干渉を考慮しなくて良い連続調画像においては、第1のサイズで規定される閾値マトリクスでは、やはりドットの分散性が低下する。
【0079】
そこで、入力画像が連続調画像であるときには、次の第2のサイズの分散型閾値マトリクスを、誤差拡散処理及びディザ処理の閾値として使用する。
第2のサイズ=(1mm/出力解像度ピッチ)に最も近い整数
【0080】
例えば、連続調原稿(画像)出力解像度600dpiの画像形成装置で出力する場合、
閾値マトリクスサイズ= 1/(25.4/600)
=23.622
となり、これに最も近い整数である24画素のマトリクスサイズのマトリクスを用いる。
【0081】
網点画像に対しては、網点ピッチに近いマトリクスサイズとすることで、マトリクスの特性によって分散処理が行われても、それは本来網点が成長する範囲内での分散となり、原稿の網点の再現性が高まり、網点の欠落によるモアレやぼそつきが改善される。
【0082】
また、連続調画像に対しては、基本的にモアレは考慮する必要が無く、粒状性を向上させるには、閾値マトリクスは大きければ大きい程良い。つまり、ドットがランダム且つ均等に分散している程、粒状性は良好になるため、サイズが大きい方が、ドット配置の自由度が高まるのである。
【0083】
しかし、実際には装置やシステムに搭載する以上、サイズの制限はあり、演算速度やメモリ容量から、大きなサイズの閾値マトリクスは搭載し難い。その場合、閾値マトリクスの品質次第では、かえって閾値マトリクスのサイズ周期でテクスチャが発生してしまう場合がある。
【0084】
そこで、連続調原稿時には、人間の視覚感度が落ち込む1mm以下の第2のサイズに閾値マスクサイズを設定することでで、閾値マトリクスの品質が多少悪くても、周期的なテクスチャが目に付かない様にすることができる。
【0085】
これらの第1のサイズの閾値マトリクスと第2のサイズの閾値マトリクスとの切替えは上述したように入力画像が網点画像であるか否か(網点画像か連続調画像)によって行う。
【0086】
ここで、入力画像が網点画像であるか連続調画像であるかは、入力画像の周波数特性に基づいて判別(判定)することができる。網点画像であれば、網点ピッチの周期成分が突出し、逆に連続調画像であれば、明確な周期性は発生し難いためである。なお、元々周期的な画像を取り込んだ場合は、連続調画像であっても網点画像と同様の特性を持つ事になるため、網点画像として処理してよい。また、周波数特性の周期性から網点線数も解析できるので、入力された入力画像に対してフーリエ変換等を行い、自動的に周波数特性を解析して網点画像処理(又は線数指定)と連続調画像処理を切り換えるようにしてもよい。
【0087】
また、175線よりも低い線数であれば、肉眼でも容易に網点画像であるか否かを見分けることができるので、オペレーターの目視判定により、操作パネル514などからの入力によって網点画像処理と連続調画像処理を切り換えるようにすることもできる。
【0088】
この場合、網点線数の測定には線数メータ等の測定器具が必要になるが、一般的に使用される網点線数は限られるので、目の細かい印刷は175線、目の粗い画像は100線のように、大まかに分類して選択するようにしてもよい。
【0089】
さらに、スキャナから入力した画像データではなく、例えばアプリケーションソフト上で作成した画像データであっても、透明化処理やハッチング処理等の機能によって、網点状に画像が間引かれる場合がある。
【0090】
このような場合には、画像は網点画像のような規則性を持つことになるため、アプリケーション毎や、図形や写真といった画像オブジェクト毎に、透明化やハッチング処理のような特殊な処理が適用されているか否かを判定(例えば周波数解析や、アプリケーションソフトからの情報に基づいて判定)し、網点画像処理と連続調画像処理を切り換えるようにすることもできる。
【0091】
次に、上述した中間調処理について図17のフロー図を参照して全体的な流れを説明する。
まず、原稿データがセットされると、網点解析部にて前述したように原稿画像(入力画像)の自動解析を行って網点原稿か連続調原稿かを判定する(あるいは、外部入力を取り込んで判定する。)。
【0092】
ここで、網点原稿であれば、網点数、出力解像度から第1のサイズの閾値マトリクスセットを選定し、網点原稿でなければ(連続調原稿であれば)、出力解像度から第2のサイズの閾値マトリクスセットを選定する。
【0093】
そして、階調がディザ処理区間であるか否かを判別し、ディザ処理区間であれば、選定マトリクスセットの中のディザ処理閾値を使用しディザ処理を行い、ディザ処理区間でなければ(誤差拡散処理区間)あれば、選定マトリクスセットの中の誤差拡散処理閾値を使用し誤差拡散処理を行う。
【0094】
そして、全ての原稿データの中間調処理が終了したときに、この処理を抜ける。
【0095】
このように、多値数のうち最小の出力値のみで表現されるハイライト部及び多値数のうち最大の出力値のみで表現されるシャドー部に対しては、入力値と閾値マトリクスの一対比較により量子化を行うディザ処理を適用し、最小の出力値よりも一段階以上大きい出力値であって、かつ最大の出力値より一段階以上小さい出力値で表現されるミドル部に対しては、着目画素周辺の量子化誤差を加えて量子化を行う誤差拡散処理を適用し、入力画像の網点ピッチ又は網点の有無に応じて、誤差拡散処理及びディザ処理に使用する分散閾値マトリクスのサイズを切り換える構成とすることで、中間調処理を切替えることによる演算負荷を低減しつつ、複合型中間調処理における画像品質の劣化を低減することができる。
【0096】
なお、上述した画像処理はインクジェット記録方式や電子写真方式などの画像形成装置における画像処理や、画像形成装置と画像処理装置を組み合わせた画像形成システムを構成し、画像処理装置で画像処理を行う場合にも同様に適用することができる。
【0097】
また、本発明における画像処理(中間調処理)は、ハードウエアとして搭載するだけでなく、前述したように、プログラムとして、例えばプリンタモード用の中間調処理としてプリンタドライバへ組み込むことができる。これによって演算負荷を軽減することができ、特に、上記実施形態のようなコピーモードを有する画像形成装置における処理だけでなく、ホスト側からの画像データを印刷出力する画像形成装置に適用した場合、より早くホストコンピュータを印刷タスクから開放することができる。さらに、画像形成装置に対して印刷データを送出する情報処理装置側にも適用することができる(この場合の情報処理装置は本発明に係る画像処理装置でもある。)。
【0098】
なお、ホストコンピュータの高処理能力を当てにして、コンピュータ上でソフトウエア処理するシステムにおいても、本発明における画像処理は適用可能である。また、別の中間調処理と本発明における誤差拡散処理とを切り替えて使用することも可能である。本発明で課題とした演算負荷という点では劣るものの、連続調原稿に対しては、より高品質な出力が可能な中間調処理は幾つか存在する。これらの中間調処理をモード別に、例えば、網点原稿の使用頻度が高いコピー/FAXモードでは本発明の高速誤差拡散処理を含む画像処理を、連続調原稿が主となるプリンタモードでは他の中間調処理を使用することで、高品質な画像再現が可能である。これらの処理の切替は、モードの選択に合わせて自動的に切り替えても、あるいは、ユーザーの指示といった外部からの入力によって切り替える構成とできる。
【0099】
さらに、「Scan to E−mail 」と呼ばれる機能を有し、スキャナで取り込んだ画像データを、ネットワークを通じて配信する複合機として画像形成装置もある。このように、外部のスキャナで取り込まれた画像であっても、元が網点原稿であれば、出力時にモアレやぼそつきが発生する可能性があるため、本発明を適用することは効果的である。
【0100】
また、本発明では演算負荷の小さい処理となるが、例えば、画像処理専用演算ユニットが後付可能な場合や、PCに接続して画像処理の一部もしくは全部をソフトウエア的に処理することが可能な場合には、より高度な演算処理が可能となる。このような外部演算処理装置が活用できる場合は、像域分離や周波数解析処理を含めた高度な入力補正処理や中間調処理を高速に実行することが可能になるので、本発明における中間調処理からより高度な処理に切換えることでで、高画質なコピー画像を作成することが可能となる。これに関しても、外部演算処理装置の検出にあわせて自動的に切り換えても良いし、ユーザーの指示といった外部からの入力によって切換える様にしても良い。
【符号の説明】
【0101】
1 装置本体
2 画像読取り装置(スキャナ)
32 キャリッジ
34 記録ヘッド
425 中間調処理部
501 主制御部
516 スキャナ制御部

【特許請求の範囲】
【請求項1】
閾値を用いて多階調画像を入力データよりも少ない3値以上の多値数の出力データに変換する中間調処理方法において、
前記多値数のうち最小の出力値のみで表現されるハイライト部及び前記多値数のうち最大の出力値のみで表現されるシャドー部に対しては、入力値と閾値マトリクスの一対比較により量子化を行うディザ処理を適用し、
前記最小の出力値よりも一段階以上大きい出力値であって、かつ前記最大の出力値より一段階以上小さい出力値で表現されるミドル部に対しては、着目画素周辺の量子化誤差を加えて量子化を行う誤差拡散処理を適用し、
入力画像の網点ピッチ又は網点の有無に応じて、誤差拡散処理及びディザ処理に使用する分散閾値マトリクスのサイズを切り換える
ことを特徴とする画像処理方法。
【請求項2】
入力画像に対して入力画像が網点画像か否かを判定する画像判定処理を行い、
前記判定処理の結果、前記入力画像が網点画像であるときには、次の第1のサイズの分散型閾値マトリクスを、前記入力画像が網点画像でないときには、次の第2のサイズの分散型閾値マトリクスを、誤差拡散処理及びディザ処理閾値として各々使用し、
前記第1のサイズ=(網点ピッチ/出力解像度ピッチ)に最も近い整数、
前記第2のサイズ=(1mm/出力解像度ピッチ)に最も近い整数、
であることを特徴とする請求項1に記載の画像処理方法。
【請求項3】
前記画像判定処理は、外部からの入力又は入力画像の周波数特性に基づいて判定することを特徴とする請求項2に記載の画像処理方法。
【請求項4】
前記誤差拡散処理における量子化判定に使用する閾値マトリクスがg×h(g、hともに2以上の整数)のサイズを有し、当該閾値マトリクスのサイズ及び閾値配置順とディザ処理における閾値マトリクスのサイズ及び閾値配置順とが共通化されていることを特徴とする請求項1ないし3のいずれかに記載の画像処理方法。
【請求項5】
入力値が0又は誤差拡散処理を行う階調範囲以外の場合には、ディザ処理の結果にかかわらず、着目画素の量子化誤差値を0とすることを特徴とする請求項1ないし4のいずれかに記載の画像処理方法。
【請求項6】
閾値を用いて多階調画像を入力データよりも少ない3値以上の多値数の出力データに変換する中間調処理を行う画像処理装置において、
前記多値数のうち最小の出力値のみで表現されるハイライト部及び前記多値数のうち最大の出力値のみで表現されるシャドー部に対しては、入力値と閾値マトリクスの一対比較により量子化を行うディザ処理を適用し、
前記最小の出力値よりも一段階以上大きい出力値であって、かつ前記最大の出力値より一段階以上小さい出力値で表現されるミドル部に対しては、着目画素周辺の量子化誤差を加えて量子化を行う誤差拡散処理を適用し、
入力画像の網点ピッチ又は網点の有無に応じて、誤差拡散処理及びディザ処理に使用する分散閾値マトリクスのサイズを切り換える手段を備えている
ことを特徴とする画像処理装置。
【請求項7】
閾値を用いて多階調画像を入力データよりも少ない3値以上の多値数の出力データに変換する中間調処理をコンピュータに行わせるプログラムにおいて、
前記多値数のうち最小の出力値のみで表現されるハイライト部及び前記多値数のうち最大の出力値のみで表現されるシャドー部に対しては、入力値と閾値マトリクスの一対比較により量子化を行うディザ処理を適用し、
前記最小の出力値よりも一段階以上大きい出力値であって、かつ前記最大の出力値より一段階以上小さい出力値で表現されるミドル部に対しては、着目画素周辺の量子化誤差を加えて量子化を行う誤差拡散処理を適用し、
入力画像の網点ピッチ又は網点の有無に応じて、誤差拡散処理及びディザ処理に使用する分散閾値マトリクスのサイズを切り換える処理を前記コンピュータに行わせる
ことを特徴とするプログラム。
【請求項8】
請求項7に記載のプログラムを記録したことを特徴とする記録媒体。
【請求項9】
閾値を用いて多階調画像を入力データよりも少ない3値以上の多値数の出力データに変換する中間調処理を行って画像を形成する画像形成装置において、
前記多値数のうち最小の出力値のみで表現されるハイライト部及び前記多値数のうち最大の出力値のみで表現されるシャドー部に対しては、入力値と閾値マトリクスの一対比較により量子化を行うディザ処理を適用し、
前記最小の出力値よりも一段階以上大きい出力値であって、かつ前記最大の出力値より一段階以上小さい出力値で表現されるミドル部に対しては、着目画素周辺の量子化誤差を加えて量子化を行う誤差拡散処理を適用し、
入力画像の網点ピッチ又は網点の有無に応じて、誤差拡散処理及びディザ処理に使用する分散閾値マトリクスのサイズを切り換える手段を備えている
ことを特徴とする画像形成装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate


【公開番号】特開2011−15241(P2011−15241A)
【公開日】平成23年1月20日(2011.1.20)
【国際特許分類】
【出願番号】特願2009−158269(P2009−158269)
【出願日】平成21年7月2日(2009.7.2)
【出願人】(000006747)株式会社リコー (37,907)
【Fターム(参考)】