説明

真空蒸着装置

【課題】蒸発源から蒸発材料が無くなった場合も、真空を破らずに蒸発源の交換を可能にすることが出来る真空蒸着装置を提供する。
【解決手段】複数の蒸発源と蒸気放出部を配管とバルブで接続し、バルブは蒸発源側配管側に形成された中空コーン部に超弾性β系チタン合金による弾性シール100を配置した構成をシール部とし、弁体にはステンレスによるコーン状弁体120を用いる。超弾性β系チタン合金による弾性シールは、弾性係数が非常に小さく、コーン状弁体の形状に対してフレキシブルに変形することが出来、変形後も元の形に復帰するという性質を有するので、シールの信頼性を上げることが出来る。また、繰り返し変形を受けても硬化あるいは、塑性変形をしないという性質があるので、シール部として繰り返し使用することが出来る。したがって、バルブの信頼性の向上と蒸着工程のタクトタイムを向上することが出来る。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は有機EL表示装置の製造装置に係り、複数の蒸発源と蒸気放出部を配管とバルブで接続し、真空を破らずに蒸発源の交換を可能にすることが出来る真空蒸着装置に関する。
【背景技術】
【0002】
有機EL表示装置では下部電極と上部電極との間に有機EL層を挟持し、上部電極に一定電圧を印加し、下部電極にデータ信号電圧を印加して有機EL層の発光を制御する。有機EL層は複数の層から構成され、これらの複数の層および上部電極は、真空を破らず、連続して蒸着によって形成される。蒸着は、素子基板に対して蒸着マスクを用いて行われる。
【0003】
素子基板への蒸着は、素子基板が当該蒸発源の位置に来たときに、例えば、蒸発源に対するシャッターを開いて所定の時間蒸着することによって行われる。しかし、安定した蒸着膜を形成するために、蒸発源は連続して加熱され、一定温度に保たれるので、蒸着材料は蒸発し続ける。したがって、坩堝内の蒸発材料は所定の時間で蒸発し尽くしてしまうので、蒸発材料を供給する必要がある。
【0004】
有機EL表示装置では、多数の蒸着膜を形成するので、各蒸発源の材料を交換するために真空装置の真空を破っていたのでは、製品の品質の安定性を損ねるとともに、製造効率を低下させる。そこで、各蒸発材料毎に複数の蒸発源を用意し、1個の蒸発源の蒸発材料が無くなったら、真空を破らずに、同じ蒸発材料が収容された他の蒸発源を利用することが行われる。
【0005】
この場合、真空を破らずに、蒸発源を交換するために、真空配管とバルブが必要であるが、バルブにおけるリークが問題となる。「特許文献1」には、真空装置ではないが、ガスの流路を変換するためのバルブにおけるシール材料としてメタルシールを用いずに、金属ガラスをシールとして用いることによってガスのリークを抑えることが記載されている。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】特開2007−292089号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
同一の蒸発材料の入った蒸発源を真空装置の真空を破らずに交換するためには、蒸気を放出する蒸気放出部と複数の蒸発源との間を配管とバルブで接続する必要がある。この場合、高温の蒸気を確実に遮断する必要があるとともに、真空に対するリークを生じないことが重要である。特に、蒸発材料がバルブ付近において、析出し、堆積することを防止するために、配管およびバルブも300℃以上に加熱しておく必要があるので、該バルブは耐熱性も必要になる。
【0008】
図6は、この部分において、従来用いられていたバルブの例である。図6において、大気と配管内部のガス流路との間は、ベローズ150によって遮断されている。ベローズ150の内側は大気となっており、ベローズ150の内側には、円柱状の弁体押し付け機構130が配置されている。弁体押し付け機構130の下側は、円柱状弁体160となっている。ベローズ150は、上部配管フランジ502と円柱状弁体160とに取り付けられ、バルブの内部と大気との間の気密を保っている。蒸発源側配管70には、段部71が形成され、段部71には、メタルOリング165が配置されている。メタルOリング165によって蒸発源からの蒸気の流れを遮断している。
【0009】
メタルOリング165の表面に対しては、サファイアコーティング等の表面硬化処理が行われる。メタルOリング165は寿命が短く、数回の使用、例えば、5回程度の使用によって交換する必要がある。このように、頻繁に交換が必要であるということは、作業時間の増大をもたらし、有機EL表示装置の製造コストを押し上げる。
【0010】
図7は、この部分において、従来用いられていたバルブの他の例である。図7において、大気と配管内部のガス流路との間は、ベローズ150によって遮断されていることは図6と同じである。ベローズ150の内側には、円柱状の弁体押し付け機構130が配置されている。弁体押し付け機構130の下側は、球状弁体170となっている。球状弁体170が、蒸発源側配管70の段部71に形成された円孔に押し付けられることによって、蒸発源からの蒸気がバルブにおいて遮断される。
【0011】
しかし、図7の機構は、球状弁体170と円孔との位置ずれが生ずると、ガス漏洩が発生する。また、球状弁体170と蒸発源側段部71はステンレスで形成されているが、球状弁体170を段部71の円孔に繰り返し押し付けることによって、ステンレス材の塑性変形が進行し、シール機能が低下するという問題がある。
【0012】
「特許文献」1におけるシール材として金属ガラスを用いる方法も、繰り返しの使用による塑性変形、あるいは、広い温度範囲にわたって弾性係数を十分に小さくすることが難しいという問題がある。
【0013】
本発明の課題は、複数の蒸発源を用いるためにガスの流路を変更するバルブにおいて、高温に耐え、シール性能に優れ、かつ、寿命の長いバルブを実現し、これによって、高能率で、安定した品質の有機EL表示装置を製作することが可能な真空蒸着装置を実現することである。
【課題を解決するための手段】
【0014】
本発明は上記課題を解決するものであり、主な具体的な手段は次のとおりである。すなわち、真空装置内に基板に真空蒸着をするための蒸気放出部を有し、前記真空装置の外側に第1の蒸発源と第2の蒸発源を有し、前記蒸気放出部と前記第1の蒸発源と前記第2の蒸発源を配管で接続した真空蒸着装置であって、前記第1の蒸発源と前記蒸気放出部との間には第1のバルブが配置され、前記第2の蒸発源と前記蒸気放出部との間には第2のバルブが配置され、前記第1のバルブおよび前記第2のバルブは、弁部と、弁部と対応するシール部を有し、前記シール部の前記弁部と接触する部分には、超弾性β系チタン合金による弾性シールが配置されていることを特徴とする真空蒸着装置である。
【0015】
また、前記弁部と対応する前記シール部は、中空コーン形状の金属部に、前記超弾性β系チタン合金による弾性シールが配置された構成であることを特徴とする。さらに、前記弁体はコーン状弁体であると効果的である。
【発明の効果】
【0016】
本発明のバルブに使用され、超弾性β系チタン合金は、弾性係数が非常に小さく、コーン状弁体の形状に対してフレキシブルに変形することが出来る。そして、変形後も元の形に復帰するという性質を有するので、シール部の信頼性を向上させることが出来る。
【0017】
また、超弾性β系チタン合金による弾性シールは、繰り返し変形を受けても硬化あるいは、塑性変形をしないという性質があるので、シール部として繰り返し使用することが出来る。したがって、バルブの交換頻度を少なくすることが出来る。
【0018】
本発明のバルブを用いることによって、蒸発源内に蒸着材料が無くなった場合でも、真空を破ることなく、同じ蒸発材料の入った蒸発源に交換することが出来る。また、本発明のバルブを用い、同じ蒸発材料を有する複数の蒸発源を用いることによって、蒸発レートをきめ細かく制御することが出来る。さらに本発明のバルブを用い、異なった蒸発材料を有する複数の蒸発源を用いて共蒸着を行うことによって、所望の成分の蒸着膜を精度よく基板上に形成することが出来る。
【図面の簡単な説明】
【0019】
【図1】本発明による蒸着装置の模式図である。
【図2】本発明によるバルブが開となっている状態を示す断面図である。
【図3】本発明によるバルブが閉となっている状態を示す断面図である。
【図4】超弾性β系チタン合金によるシール材の斜視図である。
【図5】本発明のバルブにおけるシール部の断面図である。
【図6】従来例によるバルブの断面図である。
【図7】従来例による他のバルブの断面図である。
【発明を実施するための形態】
【0020】
以下、実施例によって本発明の内容を詳細に説明する。
【実施例1】
【0021】
図1は本発明による有機EL表示装置の製造工程における蒸着工程を示す断面模式図である。図1において、搬送ローラ90の上に蒸着マスク20、素子基板10、押さえ板30が積層されたものが載置されている。蒸着マスク20は素子基板10に画素を形成するための多数の孔が空けられたシートマスク21がマスクフレーム22に取り付けられたものである。シートマスク21は短径が10μm程度の小さな孔があけられるために、板厚は、10μm以下の厚さとなっている。したがって、シートマスク21は剛性が無いので、マスクフレーム22によってテンションがかけられ、平面を保っている。マスクフレーム22はシートマスク21にテンションをかけるための強度を得るために、25mm程度と厚く形成されている。
【0022】
蒸着マスク20の上には素子基板10が配置されている。素子基板10は、多数の有機EL表示パネルを取得することができるよう、大きなマザー基板となっている。素子基板10はガラスで形成され、厚さは0.5mm程度である。素子基板10と蒸着マスク20とが位置ずれを起こさないように素子基板10の上には押さえ板30が積載されている。押さえ板30は、ステンレスで形成され、厚さは10mm程度である。蒸着マスク20、素子基板10、押さえ板30の組は、搬送ローラ90が回転することによって図1の紙面垂直方向に移動する。
【0023】
図1において、蒸着マスク20の下側には、蒸発材料85の蒸気を放出する蒸気放出部40が配置されている。蒸気放出部40には複数のノズルが線状に配置されている。図1における矢印は、蒸気が放出されている状態を示している。ノズルは線状に配置されているので、蒸着マスク20および素子基板10が紙面垂直方向に移動することによって、素子基板10に均一な膜厚で蒸着膜が形成される。
【0024】
蒸発材料85の蒸気を安定して放出し続けるためには、蒸発源は常に加熱され、高温の状態を保ち続ける必要がある。したがって、蒸発源内の蒸発材料85は、所定の時間経過すると、蒸発しきってしまう。蒸発材料85を供給するために、真空装置200の真空を破ると、生産効率を低下させる。
【0025】
図1においては、同じ蒸発材料85を有する2個の蒸発源を真空装置200の外側に配置し、蒸気放出部40に配管によって蒸発材料85の蒸気を供給している。例えば、第1蒸発源80から蒸気を蒸気放出部40に供給している間は第1バルブ60を開き、第2バルブ61は閉じておく。第1蒸発源80の蒸発材料85を使い切った場合、第1バルブ60を閉じ、第2バルブ61を開いて蒸発材料85の蒸気を第2蒸発源81から供給する。第1蒸発源80と第2蒸発源81を切り換える時に、配管内の真空度が低下するので、第3バルブ62を開き、真空ポンプ65によって配管内の真空度を上げる。ただし、第3バルブは通常の蒸着を行っているときは閉じておく。
【0026】
図1において、蒸気は、蒸発源から配管を通って蒸気放出部40に送られる。本実施例では、蒸発源からバルブまでの配管を蒸発源側配管70と称し、バルブから蒸気放出部40までの配管を蒸着側配管50という。蒸発源から高温の蒸発材料85の蒸気が蒸気放出部40に送られるので、蒸発源側配管70、バルブ、蒸着側配管50のいずれも、温度が低いと内部に蒸発材料85が析出して堆積し、孔を塞いでしまう。したがって、蒸発源側配管70、バルブ、蒸着側配管50のすべてを外部からヒータによって加熱しておく必要がある。すなわち、図1における各バルブは、300℃以上の高温で動作しなければならないという特徴を有する。
【0027】
図2および図3は本発明によるバルブの断面図であり、図2はバルブが開いた状態、図3はバルブが閉じた状態を示す。図2および図3のバルブは、図1における第1バルブ60、第2バルブ61、第3バルブ62のいずれにも使用することが出来る。図2および図3において、下側が蒸発源側であり、蒸着側配管50側が蒸気放出部40側である。
【0028】
図2において、弁体押し付け機構130が上側に移動しており、コーン状弁体120は蒸発源側配管70の中空コーン部から離れた状態になっている。なお、コーン状弁体120は、円錐台弁体のことである。この時、ベローズ150は縮んだ状態になっている。なお、弁体押し付け機構130とコーン状弁体120は一体となっている。ベローズ150は上側で上部配管フランジ502と接続し、下側で弁体押し付け機構130と接続して、バルブの内部を真空に保っている。
【0029】
図2において、蒸発源からの蒸発材料85の蒸気はコーン状弁体120と蒸発源側配管70側の中空コーン部との隙間を通って蒸気放出部40側に流れる。この時、蒸気が配管等に析出し、蒸発材料85が配管内部あるいはバルブ内部に堆積して、つまりを生ずることを防止するために、配管およびバルブ部分の外側にはヒータが配置され、これらの部分を加熱する。したがって、本発明におけるバルブは300℃〜500℃の高温下においても安定して動作することが必要になる。
【0030】
本発明の特徴は、蒸発源側配管70側の中空コーン部に超弾性β系チタン合金による弾性シール100を用いることである。超弾性β系チタン合金は通称ゴムメタルと称され、500℃程度までの耐熱性を有する。また、マグネシウム合金並みの非常に低いヤング率を有している。さらに、繰り返し、変形を受けても硬化、あるいは、塑性変形しないという性質を有する。以後超弾性β系チタン合金をゴムメタルとも言う。
【0031】
図3は、弁体押し付け機構130を下方に押し下げ、コーン状弁体120を蒸発源側配管70の中空コーン部に挿入して、バルブを閉じた状態を示す断面図である。中空コーン部には超弾性β系チタン合金による弾性シール100が配置されている。図3において、ステンレス製のコーン状弁体120が超弾性β系チタン合金による弾性シール100に接触してシールをしている。超弾性β系チタン合金による弾性シール100は、弾性係数が非常に小さく、コーン状弁体120の形状に対してフレキシブルに変形することが出来る。そして、変形後も元の形に復帰するという性質を有する。
【0032】
また、超弾性β系チタン合金は、繰り返し変形を受けても硬化あるいは、塑性変形をしないという性質があるので、シール部として繰り返し使用することが出来る。図3において、コーン状シール部と超弾性β系チタン合金による弾性シール100が接触しているが、超弾性β系チタン合金による弾性シール100は、フレキシブルに弾性変形するので、シールの気密性は非常に高くすることが出来る。
【0033】
図4は、蒸発源側配管70の中空コーン部に配置される超弾性β系チタン合金による弾性シール100の形状の例を示す斜視図である。図4は図2および図3の弾性シール100とは反対の向きとなっている。図4において、超弾性β系チタン合金による弾性シール100をコーン状シール部に配置するために、にフランジ110が形成されている。フランジ部110には、固定するためのネジ孔111が形成されている。
【0034】
図5は超弾性β系チタン合金による弾性シール100を蒸発源側配管70の中空コーン部に取り付けた状態を示す断面図である。図5では、コーン状弁体120は省略されている。図5において、弾性シール100のフランジ部は蒸発源側配管70と下部配管フランジ501との間にネジ112を介して挟持されている。フランジ部におけるシールをより確実にするためには、下部配管フランジ501と弾性シール100のフランジ110の、間あるいは、弾性シール100のフランジ110と蒸発源側配管70と間に金属薄板のガスケットを配置してもよい。
【0035】
図5において、超弾性β系チタン合金による弾性シール100の厚さは1mm〜2mm程度である。弾性シール100は必要に応じて3mm程度までの厚さに形成することが出来る。蒸発源側配管70における、弾性シール100を取り付ける前の、中空コーン部の小径φ1は、例えば24mm、大径φ2は、例えば、40mm、中空コーン部の垂直方向に対する傾斜θは、例えば20度である。
【0036】
以上説明したように、バルブの弾性シール100として超弾性β系チタン合金を用いることによって、高温度の環境において、優れたシール特性を有し、かつ、繰り返し使用に耐えるバルブを得ることが出来る。このシールを有機EL表示装置を製造するための真空蒸着装置のバルブに用いることによって、製造効率を低下させることなく、安定した特性の蒸着膜を得ることが出来る、
【実施例2】
【0037】
実施例1では、蒸着材料を使いきった場合にも真空を破らずに、他の蒸発源と交換することが出来る構成を記載した。本実施例は、図1に示す構成によって、基板に蒸着する蒸着レートを制御する構成である。有機EL表示装置における有機EL層は蒸着によって形成するが、有機EL層を構成する有機材料は複雑な分子構造を持っており、所定の温度より高い温度で蒸着すると、材料が分解し、所定の材料構成を得られない場合が多い。
【0038】
したがって、蒸発源の温度によって、蒸着レートを変えることは難しい。しかし、製造工程のタクトタイムの制約から、蒸着レートを早くしたい場合がある。このような場合、2個の蒸発源を用いることによって、蒸発レートを上げることが出来る。また、第1のバルブおよび第2のバルブの開き具体によって蒸着レートを制御することが出来る。
【0039】
このような場合、第1のバルブおよび第2のバルブは、開閉動作を頻繁に行うことになる。従来のバルブでは、数回のバルブの開閉によってシールの信頼性が低下するので、このような使用は問題を生じていた。
【0040】
これに対して、図2および図3で説明した、本発明によるバルブでは、中空コーン部に超弾性β系チタン合金による弾性シール100を用いており、繰り返し変形を受けても硬化あるいは、塑性変形をしないという性質があるので、シール部として繰り返し使用することが出来る。したがって、本発明によるバルブは、本実施例2のような使用方法に非常に適している。
【実施例3】
【0041】
有機EL層を構成する有機材料は複雑な分子構造を持っており、1個の蒸発源から蒸着するよりも、複数の蒸発源を用い、各蒸発源から別な材料を蒸発させ、基板上で所定の成分の蒸着膜を形成するほうが効率的である場合もある。例えば、第1の蒸発源からメインの材料であるホスト材料を蒸着し、第2の蒸発源からは、ホスト材料に特殊な性質を与えるためのドーパント材料を蒸着する場合等である。
【0042】
このような場合、蒸発源の温度は所定の温度に保ったほうがよい場合が多い。しかし、ドーパントの量は、一般には、ホストの量に比べてはるかに小さい場合が多い。このような場合、例えば、第1の蒸発源からホスト材料を蒸発させ、第2の蒸発源からドーパント材料を蒸発させる。図1において、第1のバルブ60の開く量を第2のバルブ61の開く量よりも大きくすることによって、第1の蒸発源80および第2の蒸発源81の温度を最適に保ったまま、ホストとドーパントの蒸着量を制御することが出来る。
【0043】
この場合も、第1のバルブ60と第2のバルブ61は頻繁に開閉を繰り返す必要が生ずる。図6および図7に示すような従来のシール方法では、シールが劣化するので、バルブの開閉を頻繁に繰り返すことは困難である。これに対して、図2おおび図3に示す本発明によるバルブであれば、中空コーン部に超弾性β系チタン合金による弾性シール100を用いており、繰り返し変形を受けても硬化あるいは、塑性変形をしないという性質があるので、バルブの交換頻度を少なくすることが出来る。したがって、本発明によるバルブは、本実施例のような使用方法に対しても非常に適している。
【0044】
以上の説明では、蒸発源側配管70の中空部はコーン形状であり、弁体もコーン形状であるとして説明した。しかし、本発明は、このような形状に限定される必要はない。たとえば、弁体は球状として、蒸発源側配管70側の形状を中空コーンとしてもよい。また、弁体はコーン状あるいは円錐台には限らず、円錐状としてもよい。また、図1では蒸発源は2個であるが、必要に応じて1個の場合でも3個以上でもよい。
【符号の説明】
【0045】
10…素子基板、 20…蒸着マスク、 21…シートマスク、 22…マスクフレーム、 30…押さえ板、40…蒸気放出部、 50…蒸着側配管、 60…第1バルブ、 61…第2バルブ、 62…第3バルブ、 65…真空ポンプ、70…蒸発源側配管、 71…段部、 80…第1蒸発源、 81…第2蒸発源、 85…蒸発材料、 90…搬送ローラ、100…弾性シール、 110…弾性シールフランジ、111…ネジ用孔、 112…ネジ、 120…コーン状弁体、 130…弁体押し付け機構、 150…ベローズ、 160…円柱状弁体、 165…メタルOリング、 170…球状弁体、 200…真空装置、 501…下部配管フランジ、 502…上部配管フランジ。

【特許請求の範囲】
【請求項1】
真空装置内に基板に真空蒸着をするための蒸気放出部を有し、前記真空装置の外側に少なくとも1つの蒸発源を有し、前記蒸気放出部と前記蒸発源を配管で接続した真空蒸着装置であって、
前記蒸発源と前記蒸気放出部との間にはバルブが配置され、
前記バルブは、弁部と、弁部と対応するシール部を有し、前記シール部の前記弁部と接触する部分には、超弾性β系チタン合金による弾性シールが配置されていることを特徴とする真空蒸着装置。
【請求項2】
前記弁部と対応する前記シール部は、中空コーン形状の金属部に、前記超弾性β系チタン合金による弾性シールが配置された構成であることを特徴とする請求項1に記載の真空蒸着装置。
【請求項3】
前記弁体はコーン状弁体であることを特徴とする請求項2に記載の真空蒸着装置。
【請求項4】
真空装置内に基板に真空蒸着をするための蒸気放出部を有し、前記真空装置の外側に少なくとも1つの蒸発源を有し、前記蒸気放出部と前記蒸発源は配管で接続され、前記配管が真空ポンプと接続している真空蒸着装置であって、
前記配管にはバルブが配置され、
前記バルブは、弁部と、弁部と対応するシール部を有し、前記シール部の前記弁部と接触する部分には、超弾性β系チタン合金による弾性シールが配置されていることを特徴とする真空蒸着装置。
【請求項5】
前記弁部と対応する前記シール部は、中空コーン形状の金属部に、前記超弾性β系チタン合金による弾性シールが配置された構成であることを特徴とする請求項4に記載の真空蒸着装置。
【請求項6】
真空装置内に基板に真空蒸着をするための蒸気放出部を有し、前記真空装置の外側に第1の蒸発源と第2の蒸発源を有し、前記蒸気放出部と前記第1の蒸発源と前記第2の蒸発源を配管で接続した真空蒸着装置であって、
前記第1の蒸発源と前記蒸気放出部との間には第1のバルブが配置され、
前記第2の蒸発源と前記蒸気放出部との間には第2のバルブが配置され、
前記第1のバルブおよび前記第2のバルブは、弁部と、弁部と対応するシール部を有し、前記シール部の前記弁部と接触する部分には、超弾性β系チタン合金による弾性シールが配置されていることを特徴とする真空蒸着装置。
【請求項7】
前記弁部と対応する前記シール部は、中空コーン形状の金属部に、前記超弾性β系チタン合金による弾性シールが配置された構成であることを特徴とする請求項6に記載の真空蒸着装置。
【請求項8】
前記弁体はコーン状弁体であることを特徴とする請求項7に記載の真空蒸着装置。
【請求項9】
真空装置内に基板に真空蒸着をするための蒸気放出部を有し、前記真空装置の外側に第1の蒸発源と第2の蒸発源を有し、前記蒸気放出部と前記第1の蒸発源とは第1の配管で接続され、前記蒸気放出部と前記第2の蒸発源とは第2の配管で接続され、前記第1の配管と前記第2の配管と接続して第3の配管が真空ポンプと接続している真空蒸着装置であって、
前記第1の配管には第1のバルブが配置され、
前記第2の配管には第2のバルブが配置され、
前記第3の配管には第3のバルブが配置され、
前記第1のバルブ、前記第2のバルブおよび前記第3のバルブは、弁部と、弁部と対応するシール部を有し、前記シール部の前記弁部と接触する部分には、超弾性β系チタン合金による弾性シールが配置されていることを特徴とする真空蒸着装置。
【請求項10】
前記弁部と対応する前記シール部は、中空コーン形状の金属部に、前記超弾性β系チタン合金による弾性シールが配置された構成であることを特徴とする請求項9に記載の真空蒸着装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate


【公開番号】特開2012−92373(P2012−92373A)
【公開日】平成24年5月17日(2012.5.17)
【国際特許分類】
【出願番号】特願2010−238754(P2010−238754)
【出願日】平成22年10月25日(2010.10.25)
【出願人】(502356528)株式会社 日立ディスプレイズ (2,552)
【出願人】(000001007)キヤノン株式会社 (59,756)
【Fターム(参考)】