説明

窒化物半導体発光素子

【課題】半導体リッジから来るキャリアの横広がりを低減可能な構造を有する窒化物半導体発光素子を提供できる。
【解決手段】{20−21}面上の半導体レーザではホールバンドにおいてこのヘテロ接合に二次元ホールガスが生成される。二次元ホールガスを生成するヘテロ接合が、半導体リッジから外れて位置するとき、この二次元ホールガスは、p側の半導体領域においてキャリアの横広がりを引き起こしている。一方、c面上の半導体レーザでは、ホールバンドにおいてこのヘテロ接合に二次元ホールガスが生成されない。ヘテロ接合HJが半導体リッジに含まれるとき、半導体リッジから流れ出たキャリアには、二次元ホールガスの働きによる横広がりがない。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、窒化物半導体発光素子に関する。
【背景技術】
【0002】
特許文献1には、窒化ガリウム系半導体レーザ素子に係る。この窒化ガリウム系半導体レーザ素子においては、窒化物半導体よりなる多重量子井戸構造活性層は2層の量子井戸層を含み、各量子井戸層の厚さが10nm以下である。これによって、すべての量子井戸層に電子と正孔とを均一に分布させることができる。再結合によって電子・正孔が消滅した量子井戸層内への電子と正孔の注入が効果的に行われるので、量子井戸層内に存在する電子と正孔の密度が効果的に変調される。その結果、その光出力も変調されることが可能となり、光ディスク用としての使用においてデータの読み出し時にエラーを発生しない窒化ガリウム系半導体レーザ素子を実現する。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開2008−177624号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
特許文献1は窒化ガリウム系半導体レーザ素子を開示している。窒化ガリウム系半導体レーザ素子は、サファイア基板、SiC基板、スピネル基板、MgO基板、Si基板又はGaAs基板を用いて作製され、窒化ガリウム系半導体レーザ素子の作製では、基板上に成長された極性c面上にレーザのための半導体層を成長する。エピ成長の最後に0.7μm厚のp型クラッド層及び0.2μm厚のコンタクト層を成長する。この後に、p型コンタクト層及びp型クラッド層をエッチングして、リッジ構造を形成している。リッジ形成に際して、光ガイド層がエッチングされていない。このリッジ構造では、エッチングされたp型クラッド層の残膜は、0.05μmから0.5μmの範囲にある。
【0005】
半極性面上に活性層が設けられた窒化物半導体レーザでは、半極性面上の井戸層のピエゾ分極が負、つまりc面上の井戸層のピエゾ分極と逆向きであるとき、発明者らの知見によれば、半導体レーザの特性に違いが生じる。リッジ構造を有する窒化物半導体レーザを半極性面上に作製するとき、発明者らの実験は、半極性面を用いる窒化物半導体レーザのしきい値電流がc面を用いる窒化物半導体レーザに比べて大きくなることを示す。これは、井戸層のピエゾ分極がp型クラッド層からn型クラッド層への方向に向くような半極性面上に作製される半導体リッジでは、半導体リッジから来るキャリアの横広がりが、c面上に設けられた半導体リッジに比べて大きいことを示唆している。
【0006】
発明者らの知見によれば、c面の窒化物半導体レーザに係る技術を半極性面の窒化物半導体レーザに適用できないことが多く、逆向きピエゾ分極に係る技術は一例である。
【0007】
本発明は、このような事情を鑑みて為されたものであり、半導体リッジから来るキャリアの横広がりを低減可能な構造を有する窒化物半導体発光素子を提供することを目的とする。
【課題を解決するための手段】
【0008】
本発明に係る窒化物半導体発光素子は、(a)n型クラッド層及び第1内側半導体層を含む第1のIII族窒化物半導体領域と、(b)前記第1のIII族窒化物半導体領域の前記第1内側半導体層の上に設けられた活性層と、(c)p型クラッド層及び第2内側半導体層を含み前記活性層の上に設けられた第2のIII族窒化物半導体領域と、(d)前記第2のIII族窒化物半導体領域の上に設けられた電極とを備える。前記第1のIII族窒化物半導体領域、前記活性層及び前記第2のIII族窒化物半導体領域は、ある積層軸に沿って順に配列され、前記第1内側半導体層は前記活性層と前記n型クラッド層との間に設けられ、前記第2内側半導体層は前記活性層と前記p型クラッド層との間に設けられ、前記第1内側半導体層、前記活性層及び前記第2内側半導体層はコア領域を構成し、前記n型クラッド層、前記コア領域及び前記p型クラッド層は光導波路構造を構成し、前記活性層と前記第1のIII族窒化物半導体領域の前記第1内側半導体層とは第1ヘテロ接合を構成し、前記n型クラッド層はIII族窒化物半導体からなり、前記第1ヘテロ接合は、前記n型クラッド層の前記III族窒化物半導体のc面に沿って延在する基準面に対して、ゼロより大きい傾斜角で傾斜しており、前記活性層は、窒化ガリウム系半導体からなり圧縮歪みを内包する井戸層を含み、前記井戸層のピエゾ分極の向きは前記p型クラッド層から前記n型クラッド層への方向に向き、前記井戸層はInGaN層を含み、前記活性層の前記井戸層と前記第2のIII族窒化物半導体領域の前記第2内側半導体層とは第2ヘテロ接合を構成し、前記第2のIII族窒化物半導体領域は半導体リッジを有し、前記半導体リッジは、前記第2内側半導体層と前記p型クラッド層との間の第3ヘテロ接合を含み、前記第2内側半導体層は、前記活性層の前記井戸層に前記第2ヘテロ接合を成す第1部分と、前記第3ヘテロ接合から前記半導体リッジの底までの第2部分と、前記第1部分と前記第2部分との間の第3部分とを含み、前記第1部分、前記第3部分及び前記第2部分は、前記積層軸に沿って順に配列され、前記半導体リッジの前記底と前記第2ヘテロ接合との距離は200nm以下である。
【0009】
この窒化物半導体発光素子によれば、活性層は、第1のIII族窒化物半導体領域の第1内側半導体層とヘテロ接合(第1ヘテロ接合)を成し、このヘテロ接合はn型クラッド層のIII族窒化物半導体のc面に沿って延在する基準面に対して、ゼロより大きい傾斜角で傾斜する。これ故に、活性層は、いわゆる半極性面上に設けられる。この活性層が圧縮歪みを内包する井戸層を含むとき、該井戸層のピエゾ分極の向きがp型クラッド層からn型クラッド層への方向に向くような半極性面上に作製される半導体リッジでは、半導体リッジから来るキャリアの横広がりが、c面上に設けられた半導体リッジからのキャリアの横広がりに比べて大きい。半導体リッジの底と第2ヘテロ接合との距離は200nm以下であるとき、半導体リッジから来るキャリアの横広がりの増加が低減されて、光導波路構造における光分布とキャリア分布とのミスマッチに起因する導波ロスを低減できる。このため、しきい値電流の増加が低減される。
なお、半導体リッジの底と第2ヘテロ接合との距離は30nm以上が好ましい。半導体リッジの底と第2ヘテロ接合との距離が30nmより短くなると、リッジ加工のダメージが活性層に及んで、発光効率が低下する可能性がある。
【0010】
また、本発明に係る窒化物半導体発光素子は、(a)n型クラッド層及び第1内側半導体層を含む第1のIII族窒化物半導体領域と、(b)前記第1のIII族窒化物半導体領域の前記第1内側半導体層の上に設けられた活性層と、(c)p型クラッド層及び第2内側半導体層を含み前記活性層の上に設けられた第2のIII族窒化物半導体領域と、(d)前記第2のIII族窒化物半導体領域の上に設けられた電極とを備える。前記第1のIII族窒化物半導体領域、前記活性層及び前記第2のIII族窒化物半導体領域は、ある積層軸に沿って順に配列され、前記第1内側半導体層は前記活性層と前記n型クラッド層との間に設けられ、前記第2内側半導体層は前記活性層と前記p型クラッド層との間に設けられ、前記活性層と前記第1のIII族窒化物半導体領域の前記第1内側半導体層とは第1ヘテロ接合を構成し、前記n型クラッド層はIII族窒化物半導体からなり、前記第1ヘテロ接合は、前記n型クラッド層の前記III族窒化物半導体のc面に沿って延在する基準面に対して、ゼロより大きい傾斜角で傾斜しており、前記活性層は、窒化ガリウム系半導体からなり圧縮歪みを内包する井戸層を含み、前記井戸層のピエゾ分極の向きは前記p型クラッド層から前記n型クラッド層への方向に向き、前記活性層と前記第2のIII族窒化物半導体領域の前記第2内側半導体層とは第2ヘテロ接合を構成し、前記第2のIII族窒化物半導体領域は半導体リッジを有し、前記半導体リッジは、前記第2内側半導体層と前記p型クラッド層との間の第3ヘテロ接合を含み、前記第2内側半導体層は、前記第2ヘテロ接合から前記積層軸の方向に規定された80nm以内であり前記活性層に前記第2ヘテロ接合を成す第1部分と、前記第3ヘテロ接合から前記半導体リッジの底までの第2部分と、前記第1部分と前記第2部分との間の第3部分とを含み、前記第1部分、前記第3部分及び前記第2部分は、前記積層軸に沿って順に配列され、前記第2内側半導体層の前記第3部分はヘテロ接合を含まない。
【0011】
この窒化物半導体発光素子によれば、活性層は、第1のIII族窒化物半導体領域の第1内側半導体層とヘテロ接合(第1ヘテロ接合)を成し、このヘテロ接合はn型クラッド層のIII族窒化物半導体のc面に沿って延在する基準面に対して、ゼロより大きい傾斜角で傾斜する。これ故に、活性層は、いわゆる半極性面上に設けられる。この活性層が圧縮歪みを内包する井戸層を含むとき、該井戸層のピエゾ分極の向きがp型クラッド層からn型クラッド層への方向に向くような半極性面上に作製される半導体リッジでは、半導体リッジから来るキャリアの横広がりが、c面上に設けられた半導体リッジからのキャリアの横広がりに比べて大きい。
【0012】
この活性層が第2内側半導体層にヘテロ接合(第2ヘテロ接合)を形成する構造に関する発明者検討によれば、第2のIII族窒化物半導体領域の半導体リッジは、第2内側半導体層とp型クラッド層との間のヘテロ接合(第3ヘテロ接合)を含む一方で、第2内側半導体層の第3部分、換言すれば、第2ヘテロ接合から積層軸の方向に80nmを超え半導体リッジの底まで半導体部分は、ヘテロ接合を含まない。この半導体部分がヘテロ接合を含まないとき、ホールバンドにおけるディップによるキャリア横広がりが抑制され、光分布とキャリア分布のミスマッチが低減されるので、しきい値電流の増加が低減される。
【0013】
さらに、本発明に係る窒化物半導体発光素子は、(a)n型クラッド層及び第1内側半導体層を含む第1のIII族窒化物半導体領域と、(b)前記第1のIII族窒化物半導体領域の前記第1内側半導体層の上に設けられた活性層と、(c)p型クラッド層及び第2内側半導体層を含み前記活性層の上に設けられた第2のIII族窒化物半導体領域と、(d)前記第2のIII族窒化物半導体領域の上に設けられた電極とを備える。前記第1のIII族窒化物半導体領域、前記活性層及び前記第2のIII族窒化物半導体領域は、ある積層軸に沿って順に配列され、前記第1内側半導体層は前記活性層と前記n型クラッド層との間に設けられ、前記第2内側半導体層は前記活性層と前記p型クラッド層との間に設けられ、前記活性層と前記第1のIII族窒化物半導体領域の前記第1内側半導体層とは第1ヘテロ接合を構成し、前記n型クラッド層はIII族窒化物半導体からなり、前記第1ヘテロ接合は、前記n型クラッド層の前記III族窒化物半導体のc面に沿って延在する基準面に対して、ゼロより大きい傾斜角で傾斜しており、前記活性層は、窒化ガリウム系半導体からなり圧縮歪みを内包する井戸層を含み、前記井戸層のピエゾ分極の向きは前記p型クラッド層から前記n型クラッド層への方向に向き、前記活性層と前記第2のIII族窒化物半導体領域の前記第2内側半導体層とは第2ヘテロ接合を構成し、前記第2のIII族窒化物半導体領域は半導体リッジを有し、前記半導体リッジは、前記第2内側半導体層と前記p型クラッド層との間の第3ヘテロ接合を含み、前記第2内側半導体層は、前記第2ヘテロ接合から前記積層軸の方向に規定された80nm以内であり前記活性層に前記第2ヘテロ接合を成す第1部分と、前記第3ヘテロ接合から前記半導体リッジの底までの第2部分と、前記第1部分と前記第2部分との間の第3部分とを含み、前記第1部分、前記第3部分及び前記第2部分は、前記積層軸に沿って順に配列され、前記第2内側半導体層の前記第3部分はヘテロ接合を含まず、前記第2内側半導体層は、第1光ガイド層及び第2光ガイド層を含み、前記第1光ガイド層のバンドギャップは第2光ガイド層のバンドギャップより大きく、前記第1光ガイド層は前記p型クラッド層と前記第2光ガイド層との間に設けられ、前記第1光ガイド層は前記第2光ガイド層に前記半導体リッジ内においてヘテロ接合を成す。
【0014】
この窒化物半導体発光素子によれば、活性層は、第1のIII族窒化物半導体領域の第1内側半導体層とヘテロ接合(第1ヘテロ接合)を成し、このヘテロ接合はn型クラッド層のIII族窒化物半導体のc面に沿って延在する基準面に対して、ゼロより大きい傾斜角で傾斜する。これ故に、活性層は、いわゆる半極性面上に設けられる。この活性層が圧縮歪みを内包する井戸層を含むとき、該井戸層のピエゾ分極の向きがp型クラッド層からn型クラッド層への方向に向くような半極性面上に作製される半導体リッジでは、半導体リッジから来るキャリアの横広がりが、c面上に設けられた半導体リッジからのキャリアの横広がりに比べて大きい。
【0015】
この活性層が第2内側半導体層にヘテロ接合(第2ヘテロ接合)を形成する構造に関する発明者検討によれば、第2のIII族窒化物半導体領域の半導体リッジは、第2内側半導体層とp型クラッド層との間のヘテロ接合(第3ヘテロ接合)を含む一方で、第2内側半導体層の第3部分、つまり、第2ヘテロ接合から積層軸の方向に80nmを超え半導体リッジの底までの半導体部分は、ヘテロ接合を含まない。
【0016】
また、第1光ガイド層と第2光ガイド層との屈折率差により光閉じ込め性能を向上できる。第1光ガイド層と第2光ガイド層はヘテロ接合を構成し、このヘテロ接合が半導体リッジ内に位置するので、このヘテロ接合に起因するホールバンドにおけるディップにより、半導体リッジから流れ出たキャリアの横広がりが生じることはなく、しきい値電流の増加が低減される。
【0017】
さらにまた、本発明に係る窒化物半導体発光素子は、(a)n型クラッド層及び第1内側半導体層を含む第1のIII族窒化物半導体領域と、(b)前記第1のIII族窒化物半導体領域の前記第1内側半導体層の上に設けられた活性層と、(c)p型クラッド層及び第2内側半導体層を含み前記活性層の上に設けられた第2のIII族窒化物半導体領域と、(d)前記第2のIII族窒化物半導体領域の上に設けられた電極とを備える。前記第1のIII族窒化物半導体領域、前記活性層及び前記第2のIII族窒化物半導体領域は、ある積層軸に沿って順に配列され、前記第1内側半導体層は前記活性層と前記n型クラッド層との間に設けられ、前記第2内側半導体層は前記活性層と前記p型クラッド層との間に設けられ、前記活性層と前記第1のIII族窒化物半導体領域の前記第1内側半導体層とは第1ヘテロ接合を構成し、前記n型クラッド層はIII族窒化物半導体からなり、前記第1ヘテロ接合は、前記n型クラッド層の前記III族窒化物半導体のc面に沿って延在する基準面に対して、ゼロより大きい傾斜角で傾斜しており、前記活性層は、窒化ガリウム系半導体からなり圧縮歪みを内包する井戸層を含み、前記井戸層のピエゾ分極の向きは前記p型クラッド層から前記n型クラッド層への方向に向き、前記活性層と前記第2のIII族窒化物半導体領域の前記第2内側半導体層とは第2ヘテロ接合を構成し、前記第2のIII族窒化物半導体領域は半導体リッジを有し、前記半導体リッジは、前記第2内側半導体層と前記p型クラッド層との間の第3ヘテロ接合を含み、前記第2内側半導体層は、前記第2ヘテロ接合から前記積層軸の方向に規定された80nm以内にあり前記活性層に前記第2ヘテロ接合を成す第1部分と、前記第3ヘテロ接合から前記半導体リッジの底までの第2部分と、前記第1部分と前記第2部分との間の第3部分とを含み、前記第1部分、前記第3部分及び前記第2部分は、前記積層軸に沿って順に配列され、前記第2内側半導体層の前記第3部分は、前記第2内側半導体層の材料の組成が前記n型クラッド層から前記p型クラッド層への方向に単調に変化する領域を含む。
【0018】
この窒化物半導体発光素子によれば、活性層は、第1のIII族窒化物半導体領域の第1内側半導体層とヘテロ接合(第1ヘテロ接合)を成し、このヘテロ接合はn型クラッド層のIII族窒化物半導体のc面に沿って延在する基準面に対して、ゼロより大きい傾斜角で傾斜する。これ故に、活性層は、いわゆる半極性面上に設けられる。この活性層が圧縮歪みを内包する井戸層を含むとき、該井戸層のピエゾ分極の向きがp型クラッド層からn型クラッド層への方向に向くような半極性面上に作製される半導体リッジでは、半導体リッジから来るキャリアの横広がりが、c面上に設けられた半導体リッジからのキャリアの横広がりに比べて大きい。
【0019】
この活性層が第2内側半導体層にヘテロ接合(第2ヘテロ接合)を形成する構造に関する発明者検討によれば、第2のIII族窒化物半導体領域の半導体リッジは、第2内側半導体層とp型クラッド層との間のヘテロ接合(第3ヘテロ接合)を含む一方で、第2内側半導体層の第3部分、つまり、第2ヘテロ接合から積層軸の方向に規定された80nmを超え半導体リッジの底までの半導体部分は、組成傾斜を含むけれどもヘテロ接合を含まない。この半導体部分がヘテロ接合を含まないとき、ホールバンドにおけるディップによるキャリア横広がりが生じないので、しきい値電流の増加が低減される。
【0020】
本発明に係る上記の窒化物半導体発光素子では、前記p型クラッド層のバンドギャップは、前記第3ヘテロ接合において前記第2内側半導体層の前記第2部分のバンドギャップより大きく、前記傾斜角は、50度以上80度以下又は130度以上170度以下の範囲にあることができる。
【0021】
この窒化物半導体発光素子によれば、上記の傾斜角の範囲では、p型クラッド層のバンドギャップは第3ヘテロ接合において第2内側半導体層のバンドギャップより大きいので、上記の傾斜角の範囲では、第2内側半導体層のホールバンドにおいて第3ヘテロ接合の近傍にディップが形成される。ホールバンドにおけるディップは正孔の横広がりを引き起こす。しかしながら、第3ヘテロ接合は半導体リッジ内に位置するので、第3ヘテロ接合内においてはキャリアの横広がりは、半導体リッジ幅に限定される。
【0022】
本発明に係る上記の窒化物半導体発光素子では、前記第2内側半導体層の前記第1部分は、前記第2ヘテロ接合から前記積層軸の方向に規定された80nm以内にあり、前記第2内側半導体層の前記第3部分は、ヘテロ接合を含まない。
【0023】
この窒化物半導体発光素子によれば、III族窒化物半導体(小さいバンドギャップ)とIII族窒化物半導体(大きなハンドギャップ)とが、ヘテロ接合を成すように配列されるとき、発明者らの検討によれば、このヘテロ接合において、第2内側半導体層のホールバンドにディップが形成され、ホールバンドにおけるディップは正孔の横広がりを引き起こす。しかしながら、第2内側半導体層の第3部分がヘテロ接合を含まないので、ホールバンドにおけるディップによるキャリア横広がりの発生を避けることができる。
【0024】
また、発明者らの検討によれば、第2ヘテロ接合から積層軸の方向に規定された80nm以内の部分では、ホールバンドにおけるディップを生成するようなヘテロ接合によるキャリア広がりの影響は小さい。
【0025】
本発明に係る上記の窒化物半導体発光素子では、前記第2内側半導体層は、第1光ガイド層及び第2光ガイド層を含み、前記第1光ガイド層の材料は前記第2光ガイド層の材料と異なり、前記第2内側半導体層の前記第2部分は、前記第1光ガイド層と前記第2光ガイド層とからなる接合を含むことができる。
【0026】
この窒化物半導体発光素子によれば、第1光ガイド層は第2光ガイド層と互いに異なる材料からなるので、第2内側半導体層内に屈折率分布を生成でき、光閉じ込めを良好にできる。一方、第2内側半導体層の第2部分が第1光ガイド層と第2光ガイド層とからなるヘテロ接合を含む。このヘテロ接合により、ホールバンドにディップが形成される。しかしながら、このヘテロ接合は半導体リッジに含まれるので、ホールバンドにおけるディップによるキャリア横広がりの発生を避けることができる。
【0027】
本発明に係る上記の窒化物半導体発光素子では、前記第2内側半導体層の前記第3部分は、前記第2内側半導体層の材料の組成が前記n型クラッド層から前記p型クラッド層への方向に単調に変化する傾斜組成領域を含むことができる。
【0028】
この窒化物半導体発光素子によれば、傾斜組成領域は、第2内側半導体層内に屈折率分布を提供でき、またホールバンドにディップを生成しない。
【0029】
本発明に係る上記の窒化物半導体発光素子では、前記第2内側半導体層の前記第2部分及び前記第3部分は、第1光ガイド層及び第2光ガイド層を含み、前記第2光ガイド層のバンドギャップは前記第1光ガイド層のバンドギャップより大きく、前記第2内側半導体層の前記第2部分及び前記第3部分は、前記第2内側半導体層の材料の組成が前記n型クラッド層から前記p型クラッド層への方向に単調に変化する組成傾斜領域を更に含み、前記第1光ガイド層は実質的に一定の組成を有し、前記第2光ガイド層は実質的に一定の組成を有することができる。
【0030】
この窒化物半導体発光素子によれば、傾斜組成領域は、第1光ガイド層と第2光ガイド層とを繋いで第2内側半導体層内に屈折率分布を生成できる。一方で、傾斜組成領域のおかげで、第1光ガイド層と第2光ガイド層とはヘテロ接合を形成しない。これ故に、第2内側半導体層は、互いに異なる屈折率の第1光ガイド層及び第2光ガイド層を含むけれども、第2内側半導体層におけるホールバンドにディップを生成しない。
【0031】
本発明に係る上記の窒化物半導体発光素子では、前記第2内側半導体層の前記第1部分は電子ブロック層を含むことができる。
【0032】
この窒化物半導体発光素子によれば、第2内側半導体層の第1領域が電子ブロック層を含むので、第1領域はヘテロ接合を含む。このヘテロ接合は、第1領域のホールバンドにディップを生成する。しかしながら、第2内側半導体層の第1領域は、活性層に接合を成す程度に活性層に近いので、電子ブロック層に係るヘテロ接合によるキャリア広がりの影響は小さい。
【0033】
本発明に係る上記の窒化物半導体発光素子では、前記第1部分は、前記電子ブロック層と前記活性層との間に設けられた光ガイド層と、該光ガイド層と前記電子ブロック層との第4のヘテロ接合を含み、前記第4のヘテロ接合は、前記第2ヘテロ接合から前記積層軸の方向に規定された10nm以上の距離で離れることができる。
【0034】
この窒化物半導体発光素子によれば、第4のヘテロ接合に係る半導体層にはドーパントが添加される可能性がある。上記10nm以上の距離は、ドーパント拡散の影響を活性層に及ぼさないことを可能にする。
【0035】
本発明に係る上記の窒化物半導体発光素子は、III族窒化物半導体からなる半極性主面を有する基板を更に備えることができる。前記半極性主面と前記基準面との成す角度は、50度以上80度以下又は130度以上170度以下の範囲にあり、前記第1のIII族窒化物半導体領域、前記活性層及び前記第2のIII族窒化物半導体領域は前記半極性主面上に設けられる。
【0036】
この窒化物半導体発光素子によれば、上記の基板上にエピタキシャル成長されるIII族窒化物半導体層がヘテロ接合を成すとき、そのヘテロ接合では、ホールバンドにディップが形成される。
【0037】
本発明に係る上記の窒化物半導体発光素子では、前記基板はGaNからなることができる。この窒化物半導体発光素子によれば、GaN基板上にコヒーレントにエピタキシャル成長されるInGaN層には、圧縮歪みが内包される。
【0038】
本発明に係る上記の窒化物半導体発光素子では、前記第1内側半導体層の厚さは200nm以上500nm以下であり、前記第1内側半導体層は、前記n型クラッド層と前記活性層との間に設けられた第1光ガイド領域を含み、前記第2内側半導体層の厚さは200nm以上500nm以下であり、前記第2内側半導体層は、前記p型クラッド層と前記活性層との間に設けられた第2光ガイド領域を含むことができる。
【0039】
この窒化物半導体発光素子によれば、緑色レーザといった長波長発光のレーザでは、屈折率の波長分散に起因して光ガイド層とクラッド層の屈折率差が大きくできない。光閉じ込め性を大きくするために、厚い光ガイド層を利用することが有効である。しかしながら、光ガイド層のトータル膜厚が500nmを超えると、第2内側半導体層については、活性層からアノード電極までの半導体領域における素子直列抵抗が無視できい程度に大きくなり、これは駆動電圧の上昇を招く。また、第1内側半導体層については、光ガイド層のトータル膜厚が500nmを超えると、光ガイド層の歪み増大や結晶性の悪化を招くことがある。
【0040】
本発明に係る上記の窒化物半導体発光素子では、前記第2内側半導体層は前記第2光ガイド領域を含み、前記第2光ガイド領域は、アンドープInGa1−XN層(0<X<1)と、MgドープInGa1−XN層(0<X<1)とを含み、前記アンドープInGa1−XN層は前記活性層と前記MgドープInGa1−XN層との間に設けられ、前記アンドープInGa1−XN層及び前記MgドープInGa1−XN層の合計膜厚は、前記第2ヘテロ接合と前記半導体リッジの底との間の距離より大きく、前記アンドープInGa1−XN層と前記MgドープInGa1−XN層との接合は、前記第2ヘテロ接合と前記半導体リッジの底との間にあることができる。
【0041】
この窒化物半導体発光素子によれば、アンドープInGa1−XN層とMgドープInGa1−XN層は同じIn組成を有するので、これらの層はヘテロ界面を構成せず、ホールバンドにおけるディップによるキャリア横広がりを避けることができる。活性層に近いInGa1−XN層は吸収ロス低減のために、アンドープであることが好ましい。また、アンドープInGa1−XN層が活性層とMgドープInGa1−XN層との間に設けられるので、光ガイド層から活性層へMg拡散を防止できる。
【0042】
本発明に係る上記の窒化物半導体発光素子では、前記第2内側半導体層は前記第2光ガイド領域を含み、前記第2光ガイド領域は、アンドープInX1Ga1−X1N層(0<X1<1)と、MgドープInX1Ga1−X1N層(0<X1<1)と、MgドープInX2Ga1−X2N層(0≦X2<X1<1)とを含み、前記アンドープInX1Ga1−X1N層、前記MgドープInX1Ga1−X1N層、及び前記MgドープInX2Ga1−X2N層は、前記n型クラッド層から前記p型クラッド層への方向に順に配置されており、前記MgドープInX2Ga1−X2N層は前記MgドープInX1Ga1−X1N層と接合を成し、前記アンドープInX1Ga1−X1N層及び前記MgドープInX1Ga1−X1N層の合計の厚さは、前記第2ヘテロ接合と前記半導体リッジの底との距離より大きいことができる。
【0043】
この窒化物半導体発光素子によれば、アンドープInX1Ga1−X1N層及びMgドープInX1Ga1−X1N層の合計の厚さが第2ヘテロ接合と半導体リッジの底との距離より大きいので、MgドープInX2Ga1−X2N層とMgドープInX1Ga1−X1N層との接合は半導体リッジ内に位置する。よって、この接合はホールバンドのディップを形成するけれども、キャリアの横方向広がりを避けることができる。高In組成の半導体層と低In組成(ゼロを含む)の半導体から光ガイド領域を構成できるので、光ガイド領域の光閉じ込め機能を大きく損なうことなく、結晶品質を良好にでき、また光ガイド領域上に成長されるクラッド及びコンタクト層の結晶品質を劣化させることがない。
【0044】
本発明に係る窒化物半導体発光素子では、前記第2内側半導体層は前記第2光ガイド領域を含み、前記第2光ガイド領域は、アンドープInX1Ga1−X1N層(0<X1<1)と、MgドープInX1Ga1−X1N層(0<X1<1)と、Mgドープ組成傾斜InGa1−XN層と、MgドープInX2Ga1−X2N層(0≦X2<X1<1)とを含み、前記アンドープInX1Ga1−X1N層、前記MgドープInX1Ga1−X1N層、Mgドープ組成傾斜InGa1−XN層、及び前記MgドープInX2Ga1−X2N層は、前記n型クラッド層から前記p型クラッド層への方向に順に配置されており、前記Mgドープ組成傾斜InGa1−XN層におけるIn組成Xは、前記MgドープInX1Ga1−X1N層と前記Mgドープ組成傾斜InGaN層との界面において組成X1であり、前記Mgドープ組成傾斜InGaN層と前記MgドープInX2Ga1−X2N層との界面において組成X2であり、前記組成X1から前記組成X2まで単調に変化し、前記Mgドープ組成傾斜InGa1−XN層は、前記第2ヘテロ接合と前記半導体リッジの底との間に位置することができる。
【0045】
この窒化物半導体発光素子によれば、Mgドープ組成傾斜InGa1−XN層におけるIn組成Xが、組成X1から組成X2まで単調に変化する。このMgドープ組成傾斜InGa1−XN層が第2ヘテロ接合と半導体リッジの底との間に位置する。よって、ホールバンドにおけるディップによるキャリア横広がりを避けながら、良好な光ガイド機能を提供できる。
【0046】
本発明に係る窒化物半導体発光素子では、前記傾斜角は63度以上80度以下の範囲にあることができる。
【0047】
この窒化物半導体発光素子によれば、上記の傾斜角の半極性面は、均質なIn取り込み及び高In組成の窒化ガリウム系半導体の成長を可能にする。この特徴は、傾斜がm軸方向のときにより顕著である。また、基板の半極性主面と基準面との成す角度が63度以上80度以下の範囲にあることができる。
【0048】
本発明に係る窒化物半導体発光素子では、前記活性層は、500nm以上550nm以下の範囲内に発振ピーク波長を有する発光スペクトルを生成するように設けられることができる。
【0049】
この窒化物半導体発光素子によれば、半極性面を利用して、500nm以上550nm以下の範囲内に発振ピーク波長を有する発光スペクトルを生成する活性層が作製される。この窒化物半導体発光素子に該活性層を適用するに際して、ヘテロ接合に起因するキャリアの広がりを避けることができる。
【0050】
本発明に係る窒化物半導体発光素子では、前記活性層では、前記井戸層は前記第2内側半導体層に接合を成すことができる。
【発明の効果】
【0051】
以上説明したように、本発明によれば、半導体リッジから来るキャリアの横広がりを低減可能な構造を有する窒化物半導体発光素子を提供できる。
【図面の簡単な説明】
【0052】
【図1】図1は、本実施の形態に係る窒化物半導体発光素子に係る構造を示す図面である。
【図2】図2は、実施例1に係るリッジ型窒化物半導体レーザの構造を模式的に示す図面である。
【図3】図3は、{20−21}面及びc面上の半導体レーザにパルス通電を行って測定したしきい値電流Ith及び距離Dとの関係を示す図面である。
【図4】図4は、{20−21}面及びc面のバンドダイアグラムを示す図面である。
【図5】図5は、実施例2に係るリッジ型窒化物半導体レーザの構造を模式的に示す図面である。
【図6】図6は、リッジ型窒化物半導体レーザに適用可能な構造を模式的に示す図面である。
【図7】図7は、半導体リッジの形状の例示を示す図面である。
【図8】図8は、ピエゾ分極とバンドダイアグラムとの関係を示す図面である。
【図9】図9は、ピエゾ分極とバンドダイアグラムとの関係を示す図面である。
【発明を実施するための形態】
【0053】
引き続いて、添付図面を参照しながら、本発明の窒化物半導体発光素子、及び窒化物半導体発光素子を作製する方法に係る実施の形態を説明する。可能な場合には、同一の部分には同一の符号を付する。
【0054】
図1は、本実施の形態に係る窒化物半導体発光素子に係る構造を示す図面である。図1には、XYZ座標系S及び結晶座標系CRが記載されている。結晶座標系CRはc軸、a軸及びm軸を有する。
【0055】
窒化物半導体発光素子11は、第1のIII族窒化物半導体領域13、活性層15、第2のIII族窒化物半導体領域17及び電極19を含む。第1のIII族窒化物半導体領域13は、第1内側半導体層21及びn型クラッド層23を含む。活性層15は、第1内側半導体層21上に設けられる。第1内側半導体層21はn型クラッド層23上に設けられる。第2のIII族窒化物半導体領域17は、第2内側半導体層25及びp型クラッド層27を含み、p型クラッド層27は第2内側半導体層25上に設けられる。第2のIII族窒化物半導体領域17は、活性層15上に設けられる。第1内側半導体層21は活性層15とn型クラッド層23との間に設けられる。第2内側半導体層25は活性層15とp型クラッド層27との間に設けられる。電極19は、第2のIII族窒化物半導体領域17上に設けられる。第1のIII族窒化物半導体領域13、活性層15及び第2のIII族窒化物半導体領域17は、積層軸Ax(座標系SのZ軸の方法)に沿って順に配列される。
【0056】
第1内側半導体層21、活性層15及び第2内側半導体層23はコア領域31を構成し、コア領域31はn型クラッド層23とp型クラッド層27との間に設けられる。n型クラッド層23、コア領域31及びp型クラッド層27は光導波路構造を構成する。
【0057】
活性層15と第1内側半導体層21とは第1ヘテロ接合HJ1を構成する。n型クラッド層23はIII族窒化物半導体からなり、第1ヘテロ接合HJ1は、n型クラッド層23のIII族窒化物半導体のc面に沿って延在する基準面Scに対して、ゼロより大きい傾斜角Angleで傾斜する。図1では、n型クラッド層23における基準面は、結晶座標系CRのc軸の方向を示す軸(ベクトルVCで示される軸)に直交する。活性層15は、少なくとも1つの井戸層33aを含み、この井戸層33aは例えば窒化ガリウム系半導体からなる。井戸層33aは圧縮歪みを内包する。井戸層33aのピエゾ分極はp型クラッド層27からn型クラッド層23への方向に向く成分を有する。半極性面上におけるこのピエゾ分極の向きはc面上のピエゾ分極の向きと逆である。井戸層33aは例えばInGaN層を含むことができる。
【0058】
活性層15は、必要な場合には、複数の井戸層33a及び少なくとも1つの障壁層33bを含むことができる。隣り合う井戸層33aの間には障壁層33bが設けられる。活性層15の最外層は、井戸層からなることができる。活性層15の井戸層33aと第2内側半導体層25とは第2ヘテロ接合HJ2を構成する。
【0059】
第2のIII族窒化物半導体領域17は半導体リッジ35を有する。本実施例では、半導体リッジ35は、n型クラッド層23のIII族窒化物半導体のc軸及びm軸によって規定される面にそって延在する。窒化物半導体発光素子11は端面37a及び37bを含み、一実施例では、端面37a及び37bは光共振器を構成することができる。この半導体リッジ35は、第2内側半導体層25とp型クラッド層27との第3ヘテロ接合HJ3を含む。第3ヘテロ接合HJ3は、半導体リッジ35の側面35bで終端する。半導体リッジ35は上端TOP及び底BOTTOMを有する。半導体リッジ35の上面35aは電極19に接合J0を成す。半導体リッジ35の底BOTTOMと第2ヘテロ接合HJ2との距離Dは200nm以下である。
【0060】
第2内側半導体層25は、第1部分25a、第2部分25b及び第3部分25cを含む。第1部分25a、第3部分25c及び第2部分25bは積層軸Axに沿って順に配列される。第1部分25aは、活性層15の井戸層33aに第2ヘテロ接合HJ2を成す。第2部分25bは、第3ヘテロ接合HJ3から半導体リッジ35の底BOTTOMまでの領域である。第3部分25cは第1部分25aと第2部分25bとの間に位置する。
【0061】
半導体リッジ35は、第2内側半導体層25の一部と、p型クラッド層27と、p型コンタクト層29とを含む。第2内側半導体層25は光ガイド層として働き、この光ガイド層上にp型クラッド層27が設けられ、このp型クラッド層27上にp型コンタクト層29が設けられる。
【0062】
この窒化物半導体発光素子11によれば、活性層15は、第1のIII族窒化物半導体領域13の第1内側半導体層21とヘテロ接合(第1ヘテロ接合HJ1)を成す。このヘテロ接合HJ1はn型クラッド層23のIII族窒化物半導体のc面に沿って延在する基準面Scに対して、ゼロより大きい傾斜角Angleで傾斜し、これ故に、活性層15はいわゆる半極性面上に設けられる。この活性層15が、圧縮歪みの井戸層33aを含むとき、該井戸層33aのピエゾ分極の向きがp型クラッド層からn型クラッド層への方向に向くような半極性面上に作製される半導体リッジ35では、半導体リッジ35から来るキャリアの横広がりが、c面上に設けられた半導体リッジからのキャリアの横広がりに比べて大きい。半導体リッジ35の底BOTTOMと第2ヘテロ接合HJ2との距離は200nm以下であるとき、半導体リッジ35から来るキャリアの横広がりの増加が低減されて、光導波路構造における光分布とキャリア分布とのミスマッチに起因する導波ロスを低減できる。このため、しきい値電流の増加が低減される。
【0063】
(実施例1)
c面に作製されるリッジ型窒化物半導体レーザでは、p型窒化物半導体領域が高い抵抗であることもあって半導体リッジ構造の幅に電流の狭窄が所望の程度に達成されている。これは、c面に作製されるリッジ型窒化物半導体レーザでは、キャリア分布と光分布とマッチングの程度が受け入れ可能な程度にあることを意味する。
【0064】
一方、一部の半極性面上に作製されるリッジ型窒化物半導体レーザでは、電流狭窄の不足が、c面上では所望の電流狭窄を達成しているリッジ深さにおいて生じている。電流狭窄の不足は、しきい値電流の増加として現れる。このリッジ型窒化物半導体レーザでは、キャリア分布と導波光分布とのミスマッチに起因する導波ロスにより、レーザ特性が悪化する。発明者らの検討によれば、ピエゾ分極の向きがc面上に対して反対になる半極性面上では、p型窒化物半導体領域において電流の横広がりがc面上のp型窒化物半導体領域に比べて、しきい値電流増加を引き起こしている。
【0065】
半極性GaN基板を準備する。この半極性GaN基板の主面は{20−21}面を有する。{20−21}面では、基板のGaNのc軸はこのGaNのm軸の方向に75度の角度で傾斜している。GaN基板のサーマルクリーニングを行う。サーマルクリーニングは、アンモニア(NH)及び水素(H)を含む雰囲気中で行われ、熱処理温度は、摂氏1050度である。この前処理の後に、まず、第1のIII族窒化物半導体領域を成長する。GaN基板の半極性主面上に、n型GaN層を成長する。成長温度は摂氏1050度である。基板温度を摂氏840度に下げた後に、このn型GaN層上にn型クラッド層を成長する。本実施例では、n型クラッド層として、厚さ2μmのn型InAlGaNクラッド層を成長する。このn型InAlGaNクラッド層のIn組成は0.03であり、Al組成は0.14である。摂氏840度の基板温度において、n型InAlGaNクラッド層上に、n型GaN光ガイド層を成長すると共に、n型InGaN光ガイド層を成長する。このInGaN層のIn組成は0.03である。これらの光ガイド層からなるn側の内側半導体層を形成した後に、この内側半導体層上に活性層を成長する。この実施例では、活性層として、摂氏790度の基板温度においてInGaN層を成長する。このInGaN層のIn組成は0.30であり、InGaN層の厚さは3nmである。活性層上に、第2のIII族窒化物半導体領域を成長する。例えば、基板温度を摂氏840度に上昇した後に、活性層上にアンドープInGaN光ガイド層を成長すると共に、p型GaN光ガイド層を成長する。このInGaN層のIn組成は0.03である。これらの光ガイド層からなるp側の内側半導体層を形成した後に、この内側半導体層上に厚さ400nmのp型InAlGaNクラッド層を成長する。このp型InAlGaNクラッド層のIn組成は0.02であり、Al組成は0.07である。基板温度を摂氏1000度に上昇した後に、p型InAlGaNクラッド層上に、厚さ50nmのp型GaNコンタクト層を成長する。これらの工程によりエピタキシャル基板を作製できる。
【0066】
このエピタキシャル基板にフォトリソグラフィ、ドライエッチング及び真空蒸着を適用して、幅2μmの半導体リッジ及び長さ600μmの光共振器のリッジ型窒化ガリウム系半導体レーザを作製する。
【0067】
この作製において、第2のIII族窒化物半導体領域をエッチングして半導体リッジを形成する。半導体リッジの加工は、ドライエッチングにより行われる。ドライエッチングによるエッチング量を変化させて、異なる半導体リッジの高さを有する複数の半導体レーザを作製する。半導体リッジの加工において、活性層と光ガイド層との界面から半導体リッジの底までの距離を値「D」として参照する。
【0068】
ドライエッチングによる加工により、半導体リッジの上面及び側面が形成される。半導体リッジを形成した後に、絶縁膜、例えばシリコン酸化膜(具体的にはSiO)を形成する。この絶縁膜は、半導体リッジの側面及び光ガイド層の表面(エッチングにより形成された表面)を覆うと共に半導体リッジの上面(半極性を示すコンタクト面)に開口を有する。半導体リッジの上に電極を形成する。半導体リッジ上面にはアノード電極(例えばNi/Au)を蒸着により形成する。このオーミック電極を覆うようにパッド電極(例えばTi/Au)を形成する。GaN基板の裏面は研磨して、基板膜厚80μmの研磨基板を形成する。このGaN基板の研磨面上の全面にカソード電極(例えばTi/Al)とパッド電極(例えばTi/Au)を形成する。これらの工程により、基板生産物が作製される。
【0069】
電極を形成した後に、基板生産物の割断を行って光共振器のための端面(へき開面と異なる端面)を形成する。これらの端面上に誘電体多層膜を成膜する。誘電体多層膜はSiO/TiOからなる。これらの工程により、m軸方向に75度の角度で傾斜させた半極性GaN基板{20−21}面上に半導体レーザが作製される。この半導体レーザは520nm波長帯で発光できる。
【0070】
比較例として、上記のエピタキシャル基板の構造をc面GaN基板上に作製する。c面GaN基板を用いるエピタキシャル基板では、井戸層はInGaN層(In組成0.07)を含み、この半導体レーザは410nm帯において発振可能である。この半導体レーザには端面コートはしていない。
【0071】
図2は、実施例1に係るリッジ型窒化物半導体レーザの構造を模式的に示す図面である。図2の(a)部は実施例1に係るリッジ型窒化物半導体レーザのためのエピタキシャル基板の構造を模式的に示す図面である。図2の(b)部は実施例1に係るリッジ型窒化物半導体レーザにおけるリッジ構造を模式的に示す図面である。図3は、{20−21}面及びc面上の半導体レーザにパルス通電を行って測定したしきい値電流Ith及び距離Dとの関係を示す図面である。{20−21}面上の半導体レーザ11aでは、距離Dが150nmを超えたあたりからしきい値電流Ithが急激に増加する。一方、c面上の半導体レーザでは、しきい値電流Ithは、距離Dが200nmあたりから増加する。
【0072】
活性層が圧縮歪みを内包する井戸層を含むとき、上記の{20−21}面上の半導体レーザでは、その井戸層のピエゾ分極の向きがp型クラッド層からn型クラッド層への方向に向く。このような活性層の半極性面上に半導体リッジが作製される。発明者らの考察によれば、この構造では、図3に示されるように、半導体リッジから来るキャリアの横広がりが、c面上に設けられた半導体リッジからのキャリアの横広がりに比べて大きい。{20−21}面上の半導体レーザでは、半導体リッジの底と第2ヘテロ接合との距離Dが200nm以下であるとき、半導体リッジから来るキャリアの横広がりの程度が許容可能であり、光導波路構造における光分布とキャリア分布とのミスマッチに起因する導波ロスを許容できると考えられる。このため、しきい値電流の増加が抑制されている。
【0073】
発明者らの更なる考察によれば、上記の距離D150nmは、p側内側半導体層のアンドープInGaN光ガイド層とp型InGaN光ガイド層との合計膜厚にほぼ等しい。p側内側半導体層のアンドープInGaN光ガイド層とp型InGaN光ガイド層とはヘテロ接合を形成する。{20−21}面上の半導体レーザでは、図4の(a)部に示されるように、ホールバンドにおいてこのヘテロ接合に二次元ホールガスが生成される。二次元ホールガスHGを生成するヘテロ接合が、半導体リッジから外れて位置するとき、この二次元ホールガスHGは、p側の半導体領域においてキャリアの横広がりを引き起こしている可能性がある。一方、c面上の半導体レーザでは、図4の(b)部に示されるように、ホールバンドにおいてこのヘテロ接合に二次元ホールガスが生成されない。
【0074】
図4に示されるように、{20−21}面上の井戸層WSにおけるバンドの傾きがc面上の井戸層WCにおけるバンドの傾きと逆向きであるので、{20−21}面上の井戸層WSにおけるピエゾ分極の向きは、c面上の井戸層WCにおけるピエゾ分極の向きと逆である。c面上の半導体レーザでは、{20−21}面上の半導体レーザのような二次元ホールガスの生成のような現象が生じない。
【0075】
図4に示されるように、破線RGは半導体リッジの底BOTTOMの位置を示す。ヘテロ接合HJが半導体リッジ内に含まれないとき、半導体リッジから流れ出たキャリアは、二次元ホールガスの働きにより横方向にも流れる。
【0076】
(実施例2)
図5は、実施例2に係るリッジ型窒化物半導体レーザの構造を模式的に示す図面である。実施例2に係るリッジ型窒化物半導体レーザ11bでは、実施例1における半極性面のレーザ構造のp側内側半導体層において、p型InGaN光ガイド層とp型GaN光ガイド層との間に、厚さ20nmの組成傾斜層を設ける。組成傾斜層では、In組成はp型InGaN光ガイド層の界面におけるIn組成値からp型GaN光ガイド層の界面におけるIn組成値(In組成ゼロ)に連続的に増加する。半導体リッジ形成のエッチングにおいて、距離Dは170nmである。
【0077】
この半導体レーザのしきい値電流Ithは70mA程度であり、図3を参照して比較すると、170nmの距離Dを有する半導体レーザのしきい値に比べて、60から70%程度に低い。このしきい値電流の低下は、光ガイド領域におけるヘテロ接合が組成傾斜層に置き換えられて、二次元ホールガスによるキャリア広がりが抑制されていることを示すと考えられる。
【0078】
上記の実施例1及び実施例2の結果を検討した結果、本実施の形態に係る窒化物半導体発光素子11は、以下の形態を有することが好ましい。
【0079】
再び図1を参照しながら、本実施の形態に係る窒化物半導体発光素子11を説明する。傾斜角Angleが50度以上80度以下又は130度以上170度以下の範囲にあることができる。p型クラッド層27のバンドギャップが第3ヘテロ接合HJ3において第2内側半導体層25の第2部分25bのバンドギャップより大きい。これ故に、第2内側半導体層25のホールバンドにおいて第3ヘテロ接合HJ3の近傍にディップが形成される。ホールバンドにおけるディップは正孔の横広がりを引き起こす。しかしながら、第3ヘテロ接合HJ3は半導体リッジ35内に位置するので、第3ヘテロ接合HJ3内においてはキャリアの横広がりは、半導体リッジ35の幅に限定される。
【0080】
窒化物半導体発光素子11は、基板39を更に備えることができる。基板39は、III族窒化物半導体からなる半極性主面39aを有する。半極性主面39aは、III族窒化物半導体のc軸の方向の延在する軸(ベクトルVCで示される軸Cx)に直交する基準面Scに対して傾斜する、半極性主面39aと基準面Scとの成す角度(実質的に角度Angleに等しい角度)は、50度以上80度以下又は130度以上170度以下の範囲にあることができる。第1のIII族窒化物半導体領域13、活性層15及び第2のIII族窒化物半導体領域17は、半極性主面39a上に設けられる。上記の基板39上にエピタキシャル成長されるIII族窒化物半導体層がヘテロ接合を成すとき、そのヘテロ接合は、ホールバンドにディップが形成される。基板39はGaNからなることができる。GaN基板上にコヒーレントにエピタキシャル成長されるInGaN層には、圧縮歪みが内包される。
【0081】
また、傾斜角Angleは63度以上80度以下の範囲にあることができる。上記の傾斜角Angleの半極性面39aは、均質なIn取り込み及び高In組成の窒化ガリウム系半導体の成長を可能にする。また、基板39の半極性主面39aと基準面Scとの成す角度が63度以上80度以下の範囲にあることができる。
【0082】
活性層15は、500nm以上550nm以下の範囲内にピーク波長を有する発光スペクトルを生成するように設けられることができる。500nm以上550nm以下の範囲内にピーク波長を有する発光スペクトルを生成する活性層15は、半極性面を利用して作製される。この窒化物半導体発光素子11に該活性層15を適用するに際して、ヘテロ接合に起因するキャリアの広がりを避けることができる。活性層15では、井戸層33aは第2内側半導体層27に接合を成すことができる。
【0083】
図1を参照すると、第2内側半導体25として構造A1、A2、A3、A4が示されている。
・構造A1〜A4。
この窒化物半導体発光素子11において、III族窒化物半導体(小さいバンドギャップ)とIII族窒化物半導体(大きなハンドギャップ)とが、ヘテロ接合を成すように配列されるとき、発明者らの検討によれば、このヘテロ接合において、第2内側半導体層25のホールバンドにディップが形成される。このヘテロ接合が半導体リッジ35に含まれないとき、ホールバンドにおけるディップは正孔の横広がりを引き起こす。しかしながら、図1に示される構造A1〜A4のように、第3部分25cがヘテロ接合を含まないので、ホールバンドにおけるディップによるキャリア横広がりの発生を避けることができる。
【0084】
・構造A1、A2。
発明者らの検討によれば、第2ヘテロ接合HJ2から積層軸Axの方向に規定された80nm以内の部分では、ホールバンドにおけるディップを生成するようなヘテロ接合によるキャリア広がりの影響は小さい。図1に示される構造A1、A2では、第2内側半導体層25の第1部分25aは、薄い半導体層40の厚さにより提供され、電子ブロック層41を含むことができる。電子ブロック層41が、第2内側半導体層25において第2ヘテロ接合HJ2から80nm以内の第1部分25aに含まれるとき、第1部分25aはヘテロ接合HJ4を含む。このヘテロ接合HJ4は、第1部分25aのホールバンドにディップを生成する。しかしながら、第1部分25aは、活性層15に接合を成す程度に活性層15に近いので、電子ブロック層41に係るヘテロ接合HJ4によるキャリア広がりの影響は小さい。
【0085】
また、第1部分25aの第4ヘテロ接合HJ4は、第2ヘテロ接合HJ2から積層軸Axの方向に規定された10nm以上の距離で離れることが好ましい。第4ヘテロ接合HJ4に係る半導体層(例えば電子ブロック層41)にはドーパントが添加される可能性がある。上記10nm以上の距離は、ドーパント拡散の影響を活性層15に及ぼさないことを可能にする。上記10nm以上の距離を提供するために、活性層15と電子ブロック層41との間に薄い半導体層が設けられ、この薄い半導体層は、光ガイド層又は障壁層の材料と同じ材料からなっていてもよい。薄い半導体層は、電子ブロック層41のバンドギャップと井戸層のバンドギャップとの間にバンドギャップを有する窒化ガリウム系半導体、例えばGaN又はInGaNからなることができる。
【0086】
・構造A3、A4。
一方、実施例1及び実施例2のように、窒化物半導体発光素子11では、第2内側半導体層25の第1部分25aは第2ヘテロ接合HJ2から積層軸Axの方向に規定された80nm以内にあり、第3部分25cはヘテロ接合を含まない。
【0087】
・構造A2、A4。
第2内側半導体層25は、第1光ガイド層43及び第2光ガイド層45を含むことができる。第1光ガイド層43の材料は第2光ガイド層35の材料と異なる。これ故に、第2光ガイド層45のバンドギャップは第1光ガイド層43のバンドギャップより大きい。第2部分25bは第1光ガイド層43と第2光ガイド層45とからなる接合HJ5を含む。第1光ガイド層43は第2光ガイド層45と互いに異なる材料からなるので、第2内側半導体層内25に屈折率分布を生成できる。一方、第2内側半導体層25の第2部分25bが第1光ガイド層43と第2光ガイド層45とからなるヘテロ接合HJ5を含む。このヘテロ接合HJ5により、ホールバンドにディップが形成される。しかしながら、このヘテロ接合HJ5は半導体リッジ35に含まれるので、ホールバンドにおけるディップによるキャリア横広がりの発生を避けることができる。
【0088】
・構造A1、A3。
窒化物半導体発光素子11では、第2内側半導体層25の第2部分25b及び第3部分25cは、第1光ガイド層43及び第2光ガイド層45を含み、第2光ガイド層45のバンドギャップは第1光ガイド層43のバンドギャップより大きく、第2内側半導体層25の第2部分25b及び第3部分25cは、第2内側半導体層25の材料の組成がn型クラッド層23からp型クラッド層27への方向に単調に変化する組成傾斜領域47を更に含むことができる。第1光ガイド層43は実質的に一定の組成を有し、第2光ガイド層45は実質的に一定の組成を有し、組成傾斜領域47ではIn組成が減少している。
【0089】
傾斜組成領域47は、第1光ガイド層43と第2光ガイド層45とを繋いで第2内側半導体層内に屈折率分布を生成できる一方で、傾斜組成領域47のおかげで、第1光ガイド層43と第2光ガイド層45とはヘテロ接合を形成しない。これ故に、第2内側半導体層25は、互いに異なる屈折率の第1光ガイド層43及び第2光ガイド層45を含むけれども、第2内側半導体層25におけるホールバンドにディップを生成しない。
【0090】
なお、窒化物半導体発光素子11では、第2内側半導体層25の第3部分25cが傾斜組成領域47を含むけれども、組成傾斜は、第2内側半導体層25の一部又は全部に設けられることができる。傾斜組成は、第2内側半導体層25内に屈折率分布を生成できる。また、ホールバンドにディップを生成しない。
【0091】
好適な実施例では、第2内側半導体層25の厚さDG2は200nm以上500nm以下であることができる。第2内側半導体層25はp型クラッド層27と活性層15との間に設けられた第2光ガイド領域を含むことができる。また、第1内側半導体層21の厚さDG1は200nm以上500nm以下であることができる。第1内側半導体層21は、n型クラッド層23と活性層15との間に設けられた第1光ガイド領域を含む。
【0092】
緑色レーザといった長波長発光のレーザでは、屈折率の波長分散に起因して光ガイド層とクラッド層の屈折率差を大きくできない。屈折率差を大きくできないことを補うために、上記のような厚い光ガイド層を利用することが有効である。しかしながら、光ガイド層のトータル膜厚が500nmを超えると、第2内側半導体層25については、活性層15からアノード電極までの半導体領域における素子直列抵抗が無視できい程度に大きくなる。これは駆動電圧の上昇を招く。また、第1内側半導体層21については、光ガイド層のトータル膜厚が500nmを超えると、光ガイド層の歪み増大や結晶性の悪化を招くことがある。
【0093】
好適な実施例では、第2内側半導体層25では、図6の(a)部に含まれるように、第2光ガイド領域は、アンドープInX1Ga1−X1N層(0<X1<1)53aと、MgドープInX1Ga1−X1N層(0<X1<1)53bと、MgドープInX2Ga1−X2N層(0≦X2<X1<1)53cを含むことができる。アンドープInX1Ga1−X1N層53a、MgドープInX1Ga1−X1N層53b、及びMgドープInX2Ga1−X2N層53cは、n型クラッド層23からp型クラッド層27への方向に順に配置されている。MgドープInX2Ga1−X2N層53cはMgドープInX1Ga1−X1N層53bと接合(図1におけるヘテロ接合HJ5)を成す。アンドープInX1Ga1−X1N層53a及びMgドープInX1Ga1−X1N層53bの合計の厚さは第2ヘテロ接合HJ2と半導体リッジ35の底BOTTOMとの距離より大きい。
【0094】
この窒化物半導体発光素子11によれば、アンドープInX1Ga1−X1N層53a及びMgドープInX1Ga1−X1N層53bの合計の厚さが第2ヘテロ接合HJ2と半導体リッジ35の底BOTTOMとの距離より大きいので、MgドープInX2Ga1−X2N層53cとMgドープInX1Ga1−X1N層53bとの接合(図1に示されたヘテロ接合HJ5)は半導体リッジ35内に位置する。高In組成の半導体層と低In組成(ゼロを含む)の半導体から光ガイド領域を構成できるので、光ガイド領域の光閉じ込め機能を大きく損なうことなく、結晶品質を良好にでき、また光ガイド領域(53a〜53c)上に成長されるクラッド層27及びコンタクト層29の結晶品質を劣化させることがない。
【0095】
好適な実施例では、第2内側半導体層25では、図6の(b)部に含まれるように、第2光ガイド領域は、アンドープInX1Ga1−X1N層(0<X1<1)55aと、MgドープInX1Ga1−X1N層(0<X1<1)55bと、Mgドープ組成傾斜InGa1−XN層55cと、MgドープInX2Ga1−X2N層(0≦X2<X1<1)55dを含むことができる。アンドープInX1Ga1−X1N層55a、MgドープInX1Ga1−X1N層55b、Mgドープ組成傾斜InGa1−XN層55c、及びMgドープInX2Ga1−X2N層55dは、n型クラッド層23からp型クラッド層27への方向に順に配置されている。Mgドープ組成傾斜InGa1−XN層におけるIn組成Xは、MgドープInX1Ga1−X1N層55bとMgドープ組成傾斜InGaN層55cとの界面において組成X1である。Mgドープ組成傾斜InGaN層55cとMgドープInX2Ga1−X2N層55dとの界面において組成X2である。組成X1から組成X2まで単調に変化する。Mgドープ組成傾斜InGa1−XN層55cは、半導体リッジ35の底BOTTOMと第2ヘテロ接合HJ2との間に位置する。
【0096】
この窒化物半導体発光素子11によれば、Mgドープ組成傾斜InGa1−XN層55cにおけるIn組成Xが、組成X1から組成X2まで単調に変化する。このMgドープ組成傾斜InGa1−XN層55cが第2ヘテロ接合HJ2と半導体リッジ35の底BOTTOMとの間に位置する。なお、第2内側半導体層25におけるIn組成は、n型クラッド層23からp型クラッド層27への方向に単調に変化することができる。
【0097】
好適な実施例では、第2内側半導体層25では、図6の(b)部に示される構造において組成傾斜層を含むことなく、第2光ガイド領域はアンドープInGa1−XN層(0<X<1)及びMgドープInGa1−XN層(0<X<1)を含むことができる。アンドープInGa1−XN層は活性層15とMgドープInGa1−XN層との間に設けられる。アンドープInGa1−XN層及びMgドープInGa1−XN層の合計膜厚は、第2ヘテロ接合HJ2と半導体リッジ35の底BOTTOMとの間の距離より大きい。アンドープInGa1−XN層とMgドープInGa1−XN層との接合は、第2ヘテロ接合HJ2と半導体リッジ35の底BOTTOMとの間にあることができる。この窒化物半導体発光素子11によれば、アンドープInGa1−XN層とMgドープInGa1−XN層は同じIn組成なので、これらの層はヘテロ界面を構成しない。活性層15に近いInGa1−XN層は吸収ロス低減のために、アンドープであることが好ましい。また、アンドープInGa1−XN層が活性層15とMgドープInGa1−XN層との間に設けられるので、光ガイド層から活性層15へMg拡散を防止できる。
【0098】
図7は、半導体リッジの形状の例示を示す図面である。図7に示されるように、半導体リッジは、図1に示される形状だけでなく、図7の(a)部、(b)部及び(c)部に示される形状を有することができる。図7の(a)部〜(c)部に示される形状では、2層の光ガイド層43、45によって形成されるヘテロ接合HJ5が半導体リッジの側面において終端している。図7の(a)部における半導体リッジ35はトレンチにより規定される。図7の(b)部における半導体リッジ35は、ヘテロ接合HJ5の延在を遮る小さい一対の溝により規定される。図7の(c)部における半導体リッジ35は、ヘテロ接合HJ5の延在を遮るテーパ形状の一対の溝により規定される。これらのリッジ形状は、ドライエッチングにより形成可能である。
【0099】
図8は、ピエゾ分極とバンドダイアグラムとの関係を示す図面である。図8において、符号F1は伝導帯側の擬フェルミ準位を示し、符号F2は価電子帯側の擬フェルミ準位を示す。InGaN活性層は{20−21}面GaN上に形成される。この面上に設けられた窒化ガリウム半導体層がその面内方向に圧縮応力を受けるとき、その窒化ガリウム半導体層に負のピエゾ分極VPWが発生する。図6において、InGaN活性層は、例えば面内方向に圧縮応力を受ける。この活性層上に、InGaN活性層のIn組成より小さいIn組成のInGaN光ガイド層が形成される。InGaN活性層上では、InGaNガイド層の歪みが緩和されて、InGaNガイド層は弱い圧縮を内包する。このInGaN光ガイド層を4つの領域GR1、GR2、GR3、GR4に分ける。領域GR1はInGaN活性層にヘテロ接合を成す。このヘテロ界面において、InGaN活性層に生成された負の分極VPWに応じて、領域GR1には小さく正の分極が生成されて、InGaN領域GR1は正の分極VPG1を示す。領域GR3、GR4はInGaN光ガイド層の圧縮歪みに起因して負方向に分極が生成されて、領域GR3、GR4は、それぞれ負の分極VPG3、VPG4を有する。領域GR4はGaN光ガイド層にヘテロ接合を成す。このヘテロ界面において、GaN光ガイド層には、InGaN光ガイド層における分極と反対向きに分極VPG0が発生する。このように、領域GR3、GR4には負の分極が生成され、GaN光ガイド層には正の分極が生成される。小さいバンドギャップのInGaN光ガイド層の領域GR4は負の分極VPG4を有するので、このヘテロ界面においてホールバンドにはディップDIPが生成される。領域GR2は、正の分極VPG1を示す領域GR1と負の分極VPG3を示す領域GR3との間に位置し、分極の遷移領域である。
【0100】
図9は、ピエゾ分極とバンドダイアグラムとの関係を示す図面である。図9において、符号F1は伝導帯側の擬フェルミ準位を示し、符号F2は価電子帯側の擬フェルミ準位を示す。図9におけるエピ構造では、AlGaN又はGaNからなる電子ブロック層が光ガイド層内に設けられる。
【0101】
この構造では、InGaN活性層は、面内方向の圧縮歪みを含み、電子ブロック層は面内方向の引っ張り歪みを含む。InGaN活性層と電子ブロック層との間のInGaN光ガイド層を3つの領域GR5、GR6、GR7に分けるとき、領域GR5は、正の分極VPG5を有し、領域GR7は、負の分極VPG7を有し、領域GR6では、領域GR5と領域GR7との間において分極が遷移する。
【0102】
また、GaN光ガイド層と電子ブロック層との間のInGaN光ガイド層を3つの領域GR8、GR9、GR10に分けるとき、領域GR8は、電子ブロック層からの応力を受けて少し大きい負の分極VPG8を有する。領域GR10はGaN光ガイド層に接合を成し、小さい負の分極VPG10を有する。領域GR9では、領域GR8と領域GR10との間において分極が遷移する。
【0103】
この構造では、二次元ホールガスは、ヘテロ接合J2、J3で生成される。ヘテロ接合J2は、半導体リッジ内に設けられるので、キャリアの横広がりに寄与しない。ヘテロ接合J3は、半導体リッジ外に設けられる。しかしながら、ヘテロ接合J3に係る電子ブロック層が活性層から80nm程度の以内に位置するので、このヘテロ接合J3は、キャリアの横広がりにほとんど寄与しない。ヘテロ接合J3は、活性層から10nm以上の距離で離すことが好ましい。これにより、電子ブロック層にp型ドーパントが添加されているとき、このp型ドーパントの拡散の影響をInGaN井戸層が受けることがない。
【0104】
本発明は、本実施の形態に開示された特定の構成に限定されるものではない。
【産業上の利用可能性】
【0105】
本実施の形態によれば、半導体リッジから来るキャリアの横広がりを低減可能な構造を有する窒化物半導体発光素子を提供できる。
【符号の説明】
【0106】
11…窒化物半導体発光素子、13…第1のIII族窒化物半導体領域、15…活性層、17…第2のIII族窒化物半導体領域、19…電極、21…第1内側半導体層、23…n型クラッド層、25…第2内側半導体層、27…p型クラッド層、29…p型コンタクト層、Ax…積層軸、31…コア領域、HJ1、HJ2、HJ3、HJ4、HJ5…ヘテロ接合、33a…井戸層、33b…障壁層、35…半導体リッジ、BOTTOM…半導体リッジの底、37a、37b…端面、39…基板、39a…半極性主面、Angle…傾斜角、Sc…基準面。

【特許請求の範囲】
【請求項1】
窒化物半導体発光素子であって、
n型クラッド層及び第1内側半導体層を含む第1のIII族窒化物半導体領域と、
前記第1のIII族窒化物半導体領域の前記第1内側半導体層の上に設けられた活性層と、
p型クラッド層及び第2内側半導体層を含み前記活性層の上に設けられた第2のIII族窒化物半導体領域と、
前記第2のIII族窒化物半導体領域の上に設けられた電極と、
を備え、
前記第1のIII族窒化物半導体領域、前記活性層及び前記第2のIII族窒化物半導体領域は、ある積層軸に沿って順に配列され、
前記第1内側半導体層は前記活性層と前記n型クラッド層との間に設けられ、
前記第2内側半導体層は前記活性層と前記p型クラッド層との間に設けられ、
前記第1内側半導体層、前記活性層及び前記第2内側半導体層はコア領域を構成し、
前記n型クラッド層、前記コア領域及び前記p型クラッド層は光導波路構造を構成し、
前記活性層と前記第1のIII族窒化物半導体領域の前記第1内側半導体層とは第1ヘテロ接合を構成し、
前記n型クラッド層はIII族窒化物半導体からなり、
前記第1ヘテロ接合は、前記n型クラッド層の前記III族窒化物半導体のc面に沿って延在する基準面に対して、ゼロより大きい傾斜角で傾斜しており、
前記活性層は、窒化ガリウム系半導体からなり圧縮歪みを内包する井戸層を含み、前記井戸層のピエゾ分極の向きは前記p型クラッド層から前記n型クラッド層への方向に向き、前記井戸層はInGaN層を含み、
前記活性層の前記井戸層と前記第2のIII族窒化物半導体領域の前記第2内側半導体層とは第2ヘテロ接合を構成し、
前記第2のIII族窒化物半導体領域は半導体リッジを有し、
前記半導体リッジは、前記第2内側半導体層と前記p型クラッド層との間の第3ヘテロ接合を含み、
前記第2内側半導体層は、前記活性層の前記井戸層に前記第2ヘテロ接合を成す第1部分と、前記第3ヘテロ接合から前記半導体リッジの底までの第2部分と、前記第1部分と前記第2部分との間の第3部分とを含み、
前記第1部分、前記第3部分及び前記第2部分は、前記積層軸に沿って順に配列され、
前記半導体リッジの前記底と前記第2ヘテロ接合との距離は200nm以下である、窒化物半導体発光素子。
【請求項2】
前記p型クラッド層のバンドギャップは、前記第3ヘテロ接合において前記第2内側半導体層の前記第2部分のバンドギャップより大きく、
前記傾斜角は、50度以上80度以下又は130度以上170度以下の範囲にある、請求項1に記載された窒化物半導体発光素子。
【請求項3】
前記第2内側半導体層の前記第1部分は、前記第2ヘテロ接合から前記積層軸の方向に規定された80nm以内にあり、
前記第2内側半導体層の前記第3部分は、ヘテロ接合を含まない、請求項1又は請求項2に記載された窒化物半導体発光素子。
【請求項4】
前記第2内側半導体層は、第1光ガイド層及び第2光ガイド層を含み、
前記第1光ガイド層の材料は前記第2光ガイド層の材料と異なり、
前記第2内側半導体層の前記第2部分は、前記第1光ガイド層と前記第2光ガイド層とからなる接合を含む、請求項1〜請求項3のいずれか一項に記載された窒化物半導体発光素子。
【請求項5】
前記第2内側半導体層の前記第3部分は、前記第2内側半導体層の材料の組成が前記n型クラッド層から前記p型クラッド層への方向に単調に変化する傾斜組成領域を含む、請求項1〜請求項4のいずれか一項に記載された窒化物半導体発光素子。
【請求項6】
前記第2内側半導体層の前記第2部分及び前記第3部分は、第1光ガイド層及び第2光ガイド層を含み、
前記第2光ガイド層のバンドギャップは前記第1光ガイド層のバンドギャップより大きく、
前記第2内側半導体層の前記第2部分及び前記第3部分は、前記第2内側半導体層の材料の組成が前記n型クラッド層から前記p型クラッド層への方向に単調に変化する組成傾斜領域を更に含み、
前記第1光ガイド層は実質的に一定の組成を有し、
前記第2光ガイド層は実質的に一定の組成を有する、請求項1〜請求項3のいずれか一項に記載された窒化物半導体発光素子。
【請求項7】
前記第2内側半導体層の前記第1部分は電子ブロック層を含む、請求項1〜請求項6のいずれか一項に記載された窒化物半導体発光素子。
【請求項8】
前記第1部分は、前記電子ブロック層と前記活性層との間に設けられた光ガイド層と、該光ガイド層と前記電子ブロック層との第4のヘテロ接合を含み、
前記第4のヘテロ接合は、前記第2ヘテロ接合から前記積層軸の方向に規定された10nm以上の距離で離れる、請求項7に記載された窒化物半導体発光素子。
【請求項9】
III族窒化物半導体からなる半極性主面を有する基板を更に備え、
前記半極性主面と前記基準面との成す角度は、50度以上80度以下又は130度以上170度以下の範囲にあり、
前記第1のIII族窒化物半導体領域、前記活性層及び前記第2のIII族窒化物半導体領域は、前記半極性主面上に設けられる、請求項1〜請求項8のいずれか一項に記載された窒化物半導体発光素子。
【請求項10】
前記基板はGaNからなる、請求項9に記載された窒化物半導体発光素子。
【請求項11】
前記第1内側半導体層の厚さは200nm以上500nm以下であり、
前記第1内側半導体層は、前記n型クラッド層と前記活性層との間に設けられた第1光ガイド領域を含み、
前記第2内側半導体層の厚さは200nm以上500nm以下であり、
前記第2内側半導体層は、前記p型クラッド層と前記活性層との間に設けられた第2光ガイド領域を含む、請求項1〜請求項10のいずれか一項に記載された窒化物半導体発光素子。
【請求項12】
前記第2内側半導体層は第2光ガイド領域を含み、
前記第2光ガイド領域は、アンドープInGa1−XN層(0<X<1)と、MgドープInGa1−XN層(0<X<1)とを含み、
前記アンドープInGa1−XN層は前記活性層と前記MgドープInGa1−XN層との間に設けられ、
前記アンドープInGa1−XN層及び前記MgドープInGa1−XN層の合計膜厚は、前記第2ヘテロ接合と前記半導体リッジの前記底との間の距離より大きく、
前記アンドープInGa1−XN層と前記MgドープInGa1−XN層との接合は、前記第2ヘテロ接合と前記半導体リッジの前記底との間にある、請求項1〜請求項11のいずれか一項に記載された窒化物半導体発光素子。
【請求項13】
前記第2内側半導体層は第2光ガイド領域を含み、
前記第2光ガイド領域は、アンドープInX1Ga1−X1N層(0<X1<1)と、MgドープInX1Ga1−X1N層(0<X1<1)と、MgドープInX2Ga1−X2N層(0≦X2<X1<1)とを含み、
前記アンドープInX1Ga1−X1N層、前記MgドープInX1Ga1−X1N層、及び前記MgドープInX2Ga1−X2N層は、前記n型クラッド層から前記p型クラッド層への方向に順に配置されており、
前記MgドープInX2Ga1−X2N層は前記MgドープInX1Ga1−X1N層と接合を成し、
前記アンドープInX1Ga1−X1N層及び前記MgドープInX1Ga1−X1N層の合計の厚さは、前記第2ヘテロ接合と前記半導体リッジの前記底との距離より大きい、請求項1〜請求項11のいずれか一項に記載された窒化物半導体発光素子。
【請求項14】
前記第2内側半導体層は第2光ガイド領域を含み、
前記第2光ガイド領域は、アンドープInX1Ga1−X1N層(0<X1<1)と、MgドープInX1Ga1−X1N層(0<X1<1)と、Mgドープ組成傾斜InGa1−XN層と、MgドープInX2Ga1−X2N層(0≦X2<X1<1)とを含み、
前記アンドープInX1Ga1−X1N層、前記MgドープInX1Ga1−X1N層、Mgドープ組成傾斜InGa1−XN層、及び前記MgドープInX2Ga1−X2N層は、前記n型クラッド層から前記p型クラッド層への方向に順に配置されており、
前記Mgドープ組成傾斜InGa1−XN層におけるIn組成Xは、前記MgドープInX1Ga1−X1N層と前記Mgドープ組成傾斜InGa1−XN層との界面において組成X1であり、前記Mgドープ組成傾斜InGa1−XN層と前記MgドープInX2Ga1−X2N層との界面において組成X2であり、前記組成X1から前記組成X2まで単調に変化し、
前記Mgドープ組成傾斜InGa1−XN層は、前記第2ヘテロ接合と前記半導体リッジの前記底との間に位置する、請求項1〜請求項11のいずれか一項に記載された窒化物半導体発光素子。
【請求項15】
前記傾斜角は63度以上80度以下の範囲にある、請求項1〜請求項14のいずれか一項に記載された窒化物半導体発光素子。
【請求項16】
前記活性層は、500nm以上550nm以下の範囲内に発振ピーク波長を有する発光スペクトルを生成するように設けられる、請求項1〜請求項15のいずれか一項に記載された窒化物半導体発光素子。
【請求項17】
前記活性層では、前記井戸層は前記第2内側半導体層に接合を成す、請求項1〜請求項16のいずれか一項に記載された窒化物半導体発光素子。
【請求項18】
窒化物半導体発光素子であって、
n型クラッド層及び第1内側半導体層を含む第1のIII族窒化物半導体領域と、
前記第1のIII族窒化物半導体領域の前記第1内側半導体層の上に設けられた活性層と、
p型クラッド層及び第2内側半導体層を含み前記活性層の上に設けられた第2のIII族窒化物半導体領域と、
前記第2のIII族窒化物半導体領域の上に設けられた電極と、
を備え、
前記第1のIII族窒化物半導体領域、前記活性層及び前記第2のIII族窒化物半導体領域は、ある積層軸に沿って順に配列され、
前記第1内側半導体層は前記活性層と前記n型クラッド層との間に設けられ、
前記第2内側半導体層は前記活性層と前記p型クラッド層との間に設けられ、
前記活性層と前記第1のIII族窒化物半導体領域の前記第1内側半導体層とは第1ヘテロ接合を構成し、
前記n型クラッド層はIII族窒化物半導体からなり、
前記第1ヘテロ接合は、前記n型クラッド層の前記III族窒化物半導体のc面に沿って延在する基準面に対して、ゼロより大きい傾斜角で傾斜しており、
前記活性層は、窒化ガリウム系半導体からなり圧縮歪みを内包する井戸層を含み、前記井戸層のピエゾ分極の向きは前記p型クラッド層から前記n型クラッド層への方向に向き、
前記活性層と前記第2のIII族窒化物半導体領域の前記第2内側半導体層とは第2ヘテロ接合を構成し、
前記第2のIII族窒化物半導体領域は半導体リッジを有し、
前記半導体リッジは、前記第2内側半導体層と前記p型クラッド層との間の第3ヘテロ接合を含み、
前記第2内側半導体層は、前記第2ヘテロ接合から前記積層軸の方向に規定された80nm以内であり前記活性層に前記第2ヘテロ接合を成す第1部分と、前記第3ヘテロ接合から前記半導体リッジの底までの第2部分と、前記第1部分と前記第2部分との間の第3部分とを含み、
前記第1部分、前記第3部分及び前記第2部分は、前記積層軸に沿って順に配列され、
前記第2内側半導体層の前記第3部分はヘテロ接合を含まない、窒化物半導体発光素子。
【請求項19】
窒化物半導体発光素子であって、
n型クラッド層及び第1内側半導体層を含む第1のIII族窒化物半導体領域と、
前記第1のIII族窒化物半導体領域の前記第1内側半導体層の上に設けられた活性層と、
p型クラッド層及び第2内側半導体層を含み前記活性層の上に設けられた第2のIII族窒化物半導体領域と、
前記第2のIII族窒化物半導体領域の上に設けられた電極と、
を備え、
前記第1のIII族窒化物半導体領域、前記活性層及び前記第2のIII族窒化物半導体領域は、ある積層軸に沿って順に配列され、
前記第1内側半導体層は前記活性層と前記n型クラッド層との間に設けられ、
前記第2内側半導体層は前記活性層と前記p型クラッド層との間に設けられ、
前記活性層と前記第1のIII族窒化物半導体領域の前記第1内側半導体層とは第1ヘテロ接合を構成し、
前記n型クラッド層はIII族窒化物半導体からなり、
前記第1ヘテロ接合は、前記n型クラッド層の前記III族窒化物半導体のc面に沿って延在する基準面に対して、ゼロより大きい傾斜角で傾斜しており、
前記活性層は、窒化ガリウム系半導体からなり圧縮歪みを内包する井戸層を含み、前記井戸層のピエゾ分極の向きは前記p型クラッド層から前記n型クラッド層への方向に向き、
前記活性層と前記第2のIII族窒化物半導体領域の前記第2内側半導体層とは第2ヘテロ接合を構成し、
前記第2のIII族窒化物半導体領域は半導体リッジを有し、
前記半導体リッジは、前記第2内側半導体層と前記p型クラッド層との間の第3ヘテロ接合を含み、
前記第2内側半導体層は、前記第2ヘテロ接合から前記積層軸の方向に規定された80nm以内であり前記活性層に前記第2ヘテロ接合を成す第1部分と、前記第3ヘテロ接合から前記半導体リッジの底までの第2部分と、前記第1部分と前記第2部分との間の第3部分とを含み、
前記第1部分、前記第3部分及び前記第2部分は、前記積層軸に沿って順に配列され、
前記第2内側半導体層の前記第3部分はヘテロ接合を含まず、
前記第2内側半導体層は、第1光ガイド層及び第2光ガイド層を含み、
前記第1光ガイド層のバンドギャップは第2光ガイド層のバンドギャップより大きく、
前記第1光ガイド層は前記p型クラッド層と前記第2光ガイド層との間に設けられ、
前記第1光ガイド層は前記第2光ガイド層に前記第2部分においてヘテロ接合を成す、窒化物半導体発光素子。
【請求項20】
窒化物半導体発光素子であって、
n型クラッド層及び第1内側半導体層を含む第1のIII族窒化物半導体領域と、
前記第1のIII族窒化物半導体領域の前記第1内側半導体層の上に設けられた活性層と、
p型クラッド層及び第2内側半導体層を含み前記活性層の上に設けられた第2のIII族窒化物半導体領域と、
前記第2のIII族窒化物半導体領域の上に設けられた電極と、
を備え、
前記第1のIII族窒化物半導体領域、前記活性層及び前記第2のIII族窒化物半導体領域は、ある積層軸に沿って順に配列され、
前記第1内側半導体層は前記活性層と前記n型クラッド層との間に設けられ、
前記第2内側半導体層は前記活性層と前記p型クラッド層との間に設けられ、
前記活性層と前記第1のIII族窒化物半導体領域の前記第1内側半導体層とは第1ヘテロ接合を構成し、
前記n型クラッド層はIII族窒化物半導体からなり、
前記第1ヘテロ接合は、前記n型クラッド層の前記III族窒化物半導体のc面に沿って延在する基準面に対して、ゼロより大きい傾斜角で傾斜しており、
前記活性層は、窒化ガリウム系半導体からなり圧縮歪みを内包する井戸層を含み、前記井戸層のピエゾ分極の向きは前記p型クラッド層から前記n型クラッド層への方向に向き、
前記活性層と前記第2のIII族窒化物半導体領域の前記第2内側半導体層とは第2ヘテロ接合を構成し、
前記第2のIII族窒化物半導体領域は半導体リッジを有し、
前記半導体リッジは、前記第2内側半導体層と前記p型クラッド層との間の第3ヘテロ接合を含み、
前記半導体リッジは、前記第2内側半導体層と前記p型クラッド層との間の第3ヘテロ接合を含み、
前記第2内側半導体層は、前記第2ヘテロ接合から積層軸の方向に規定された80nm以内にあり前記活性層に前記第2ヘテロ接合を成す第1部分と、前記第3ヘテロ接合から前記半導体リッジの底までの第2部分と、前記第1部分と前記第2部分との間の第3部分とを含み、
前記第1部分、前記第3部分及び前記第2部分は、前記積層軸に沿って順に配列され、
前記第2内側半導体層の前記第3部分はヘテロ接合を含まず、
前記第2内側半導体層の前記第3部分は、前記第2内側半導体層の材料の組成が前記n型クラッド層から前記p型クラッド層への方向に単調に変化する領域を含む、窒化物半導体発光素子。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate


【公開番号】特開2013−93382(P2013−93382A)
【公開日】平成25年5月16日(2013.5.16)
【国際特許分類】
【出願番号】特願2011−233165(P2011−233165)
【出願日】平成23年10月24日(2011.10.24)
【出願人】(000002130)住友電気工業株式会社 (12,747)
【出願人】(000002185)ソニー株式会社 (34,172)
【Fターム(参考)】