説明

耐食性導電部材とその製造方法及び燃料電池

【課題】金属基材の上に貴金属の薄膜を設けてなる耐食性導電部材において、ピンホールがきわめて少なく、薄膜が緻密であって基材金属によく密着しており、したがって過酷な使用環境に耐える耐食性導電部材、とりわけ燃料電池の金属セパレータを提供する。
【解決手段】たとえばステンレス鋼の表面に厚さ100nm以下の貴金属の薄膜を形成した材料において、貴金属層および基材と貴金属層との中間層の内部に存在する不純物の量を、それぞれ、C:1.5%以下、P:1.5%以下、O:1.5%以下、S:1.5%以下であって、C+P+O+S:4.0%以下に規制する。基材の表面に存在する汚染被膜を物理的および(または)化学的な方法により除去して清浄な表面を露出させ、その直後に、表面が再度汚染されるに先だって電気メッキなどにより貴金属被膜を形成する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、燃料電池用の金属セパレータを代表とする耐食性導電部材とその製造方法、及び燃料電池に関する。
【背景技術】
【0002】
燃料電池用の金属セパレータおよび集電部材に関して、耐食性を維持し接触抵抗を低くするために、ステンレスなどの金属基材の表面に薄い金メッキを施すことが提案されている(特開平10−228914)。同様な処理は、各種の電気接点や端子の材料に関しても有用である。上記の提案によれば、ステンレス基材上に直接、厚さ0.01〜0.06μmの金メッキを施したものは、硝酸曝気試験(JIS H8621)1時間後においてもCr溶出が確認されず、ピンホールは形成されていないとしている。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開平10−228914号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
しかし、実際の固体高分子形燃料電池内では、温度が100℃近くなることも加わり、金属セパレータは、もっと過酷な環境にさらされることになるから、よりきびしい試験、たとえばpH2の沸騰硫酸液中に168時間浸漬する試験の後においても、金属イオンが溶出しないという、高い耐食性が要求される。メッキの厚さを増せば、問題は実質上解消するが、燃料電池用金属セパレータは多数枚を積層して使用するものであり、そのメッキ厚さは100nm以下でなければ、コスト的に実用に耐えない。
【0005】
前掲の特開平10−228914に記載された金メッキ法、すなわち、「脱脂→洗浄→表面活性化→洗浄→金メッキ→洗浄→乾燥」の工程にしたがって、金属基材とくにステンレス基材上に金メッキ膜(厚さ0.01〜0.06μm)を形成したものは、pH2の沸騰硫酸液中に168時間浸漬する試験をすると、金属基材を構成する元素の溶出が検出され、その溶出量は、場合によりかなり変動があることがわかった。つまり、金属基材表面上へ既知の方法で金メッキを施すだけでは、固体高分子形燃料電池に使用可能な金属セパレータのような、高い耐食性をもった導電部材は得られない、ということが明らかである。
【0006】
発明者らは、上記のようなきびしい試験に耐える導電性耐食部材を提供することを意図し、既知の金メッキ製品の耐食性が不十分である理由を追及した。その結果、つぎのような結論に至った。
・金属基材の表面およびメッキされた貴金属の薄膜内には、意外に多量の不純物が存在し、これらが薄膜の耐食性を損っていること、
・貴金属の薄膜と基材金属との間には、少なくとも部分的に、不純物を含有する中間層が存在して、薄膜自体の基材金属への密着性を低下させていること、
・このような不純物は、金属基材表面の不動態被膜、酸化被膜、汚染被膜など、耐食性にとって有害な異種被膜を十分に除去することができないまま、直接貴金属薄膜を形成したために含有されたと考えられること。
【0007】
上記の結論を概念的に図示すると、図3の上段にみるようになる。これは単なる想像ではなく、図3の下段に示すような、オージェ分析を行なった実験事実に基づいている。
【0008】
このような異種被膜および中間層が存在すると、つぎのような不都合が引き起こされる。
・異種被膜成分が貴金属薄膜中のピンホールとなり、腐食の起点となる。
・中間層の電気伝導度が低い部分があると、電解メッキの過程で電流密度が変動したり、場所により不均一になって、ピンホールを増加させたり、薄膜の緻密さを低くする。
・中間層と貴金属薄膜との密着性が悪いと、なんらかの外的刺激により、貴金属薄膜が簡単に剥離する。
【0009】
本発明は、上記のような問題を克服し、金属基材の上に貴金属の薄膜を設けてなる耐食性導電部材において、ピンホールがきわめて少なく、薄膜が緻密であって基材金属によく密着しており、したがって過酷な使用環境に耐える耐食性導電部材、とりわけ燃料電池の金属セパレータを提供することを課題とする。
【課題を解決するための手段及び発明の効果】
【0010】
上記課題を解決するために、本発明の耐食性導電部材は、金属基材の表面の少なくとも一部に厚さ100nm以下の貴金属の薄膜を形成した材料において、貴金属層および基材と貴金属層との中間層の内部に存在する不純物の量を、それぞれ、C:1.5%以下、P:1.5%以下、O:1.5%以下、S:1.5%以下であって、C+P+O+S:4.0%以下に規制したことを特徴とする。これらの規制値がもつ意義は、後記する実施データにより裏付けられる。また、本発明の燃料電池は、電解質としての固体高分子膜を一対の電極で挟みこんでなるセル本体と、上記本発明の耐食性導電部材からなる燃料電池用金属セパレータとを有することを特徴とする。
【0011】
このような低不純物含有量の貴金属薄膜を有する耐食性導電部材を製造する本発明の方法は、金属基材の表面に存在する汚染被膜を物理的および(または)化学的な方法により除去して清浄な表面を露出させ、その直後に、表面が再度汚染されるに先だって貴金属被膜を形成することを特徴とする。
【0012】
基材金属は、表面の耐食性を要求される部分を完全に貴金属で被覆できるのであれば、任意のものを選択できるが、基材自体がある程度の耐食性を有していれば有利であり、この観点から、ステンレス鋼であることが好ましい。とくに、耐食性にすぐれたオーステナイト系ステンレス鋼が有用である。
【0013】
基材にオーステナイト系ステンレス鋼を使用すれば、その主要成分であるFe,CrおよびNiが、基材と貴金属薄膜層との中間層に、また貴金属層の内部にさえ現れる。そのようにして貴金属層の内部および中間層に現れるこれら元素の存在割合も、耐食性にとってとくに重要であることが明らかになった。すなわち、貴金属薄膜層および中間層の内部において、最大のCr/Fe比が3以下、最大のNi/Fe比が2以下であることが好ましい。この裏付けも、後記する実施データにみるとおりである。
【0014】
薄膜を構成する貴金属は、Au,Pt,Pd,RhもしくはRu、またはこれらの混合物のいずれであってもよい。貴金属としての特性を維持している限りにおいては、これらを主材とする合金であってもよい。
【0015】
金属基材の表面に存在する異種物質からなる汚染被膜、すなわち不動態被膜、酸化被膜、汚染被膜などを除去して清浄な表面を露出させる、物理的および(または)化学的な方法には、ウエット式およびドライ式の両方が可能である。前者の代表は電解研磨液による洗浄であり、後者の代表は真空イオン照射である。ここで「電解研磨液」は、電解研磨に常用されている溶液のほか、20%硫酸のような、腐食液を包含する。
【0016】
汚染被膜を除去した「直後に、表面が再度汚染されるに先だって」は、たとえばステンレス鋼の場合、「表面の不動態被膜を除去したのち再度不動態が形成されるまで」を意味し、このインターバル時間は、できるだけ短時間であることが望ましい。現実の操業における具体的なめやすをいえば、清浄化をウエット式で行なうにせよドライ式で行なうにせよ、おおよそ1分以内に、貴金属薄膜の形成を開始することが必要である。インターバルを短くするには、清浄化をウエット式で行なった場合は、貴金属薄膜の形成もまたウエット式で、すなわち電解メッキまたは無電解メッキで行なうことが好都合であり、清浄化をドライ式で行なった場合は、貴金属薄膜の形成もまたドライ式で、すなわち真空薄膜製膜法であるスパッタリングまたはイオンアシスト真空蒸着で実施することが好都合である。
【図面の簡単な説明】
【0017】
【図1】本発明の燃料電池の一構成例を示す概略図。
【図2A】本発明の耐食性導電部材を適用した燃料電池用金属セパレータの一構成例を示す第一概略図。
【図2B】本発明の耐食性導電部材を適用した燃料電池用金属セパレータの一構成例を示す第二概略図。
【図3】金属基材の上に貴金属の薄膜を形成した耐食性導電部材における表面の状態を示すものであって、上段は概念的な断面図であり、下段はそれに対応する、オージェ分析のプロファイルを示したグラフ。
【発明を実施するための形態】
【0018】
以下、図面を参照して、本発明の実施の形態について説明する。
図1は、本発明の耐食性導電部材が使用される燃料電池の概要を説明するものである。該燃料電池1は、電解質として固体高分子膜3を採用した固体高分子形燃料電池1である。具体的に、固体高分子膜3はスルホン酸基を含むフッ素樹脂とすることができる。該燃料電池1は、固体高分子膜3を挟む一対の電極2、4を有し、該固体高分子膜3と電極2、4とによりなるセル本体5を有する。そして、電極2、4は、その第一主表面2a、4aにて固体高分子膜3と接触しており、第二主表面2b、4bと接触する形態で電極2、4の外側に板状のセパレータ10が配置されている。該セパレータ10はこのセル本体5を直列的に接続する役割を有するとともに、セル本体5に燃料ガス及び空気ガスを供給するために配置されている。本実施の形態においては、このセパレータ10が本発明の耐食性導電部材である。なお、セル本体5とセパレータ10との間に、燃料ガス及び酸化剤ガスのリークを防止するために、ガスケットが配置されるが、図1では省略している。なお、これらセル本体5とセパレータ10とを単位セルUとして、この単位セルUが冷却水流通基板11(グラファイト等の導電性材料からなる)を介して、複数積層されて燃料電池スタック1とされる。単位セルUはたとえば50〜400個程度積層され、その積層体の両端に、単位セルUと接触する側から、導電性シート9、集電板8、絶縁シート7及び締め付け板6がそれぞれ配置されて、燃料電池スタック1とされる。集電板8と複数のセパレータ10とは直列に接続され、複数のセル本体5からの電流が集められることになる。本明細書においては、上記単位セルUと燃料電池スタック1とを燃料電池の概念に含むとする。なお、図1においては、導電性シート9、集電板8、絶縁シート7及び締め付け板6等、それぞれの部材が離間した状態で描かれているが、これらの部材は、例えばボルト等により互いに固定されている。
【0019】
図2は、本発明の耐食性導電部材が使用される燃料電池用金属セパレータとしてのセパレータ10の概略を示すものである。図2Aに示すように、セパレータ10は板状に形成され、その主表面に、凸凹が形成されており、セパレータ10の凸部14の先端側が電極に接触する形態となっている。そして、セパレータ10の凹部15が、電極2、4に燃料ガスあるいは酸化剤ガスを供給するためのガス流通路21(図1も参照)とされる。また、このガス流通路21の両端に開口部が形成され、それぞれ反応ガス流入口22、反応ガス流出口23とされる。各セパレータ10に形成される反応ガス流入口22及び反応ガス流出口23の位置が、それぞれ一致するようにセパレータ10が積層される。さらに、図2Bに示すように、セパレータ10は、金属基材13の主表面にAu膜12が形成されてなるものであって、凸部14の先端面14aに加えて、電極2、4と接触する予定のない凹部15(非接触領域)の側面15a及び底面15bにもAu膜12が形成されている。さらに、Au膜12の膜厚は1〜500nmとされている。また、Au膜12はAuメッキ膜12である。
【実施例】
【0020】
異種被膜を除去する清浄化を、ウエット法またはドライ法により行なった。まず、ウエット法の代表的な工程を示せば、つぎのとおりである。
1)脱脂:オルトケイ酸ナトリウム40g/lおよび界面活性剤1g/lを溶解した溶液を60℃に保ち、その中へ約1分間浸漬する。
2)洗浄および乾燥:純水中で超音波処理したのち、乾燥空気中に置くか、または乾燥窒素ガスなどをブローする。
3)汚染被膜除去:10%硫酸液を60℃に保ち、その中で、被処理材を陽極にして、電流密度約5A/dm2で約1分間の電解をする。
4)洗浄および乾燥:上記と同じ。
5)活性化:10%硫酸液を60℃に保ち、その中へ約1分間浸漬する。
6)洗浄および乾燥:上記と同じ。
7)貴金属メッキ:貴金属の塩を溶解したメッキ浴中で電解メッキする。
8)洗浄および乾燥:上記と同じ。
【0021】
ドライ法の工程は、代表的にはつぎのとおりである。
1)脱脂:オルトケイ酸ナトリウム40g/lおよび界面活性剤1g/lを溶解した溶液を60℃に保ち、その中へ約1分間浸漬する。
2)洗浄および乾燥:純水中で超音波処理したのち、乾燥空気中に置くか、または乾燥窒素ガスなどをブローする。
3)真空排気:1×10-6Torrまで4)汚染被膜除去:真空排気後、5mTorrのアルゴンガスを導入し、ビーム電流250mAでイオン化し、アルゴンイオンを被処理材の表面に約5分間照射する。
5)貴金属製膜:アルゴンガス中のスパッタリングまたは真空蒸着。
【0022】
下記の実施例において行なった清浄化処理は、若干の変更を伴うものもあるので、それらを一括して示す。
A:前記したウエット法の代表例のとおり。
B:上記Aの工程3)汚染被膜除去において、室温に保った5%硫酸液に約30秒間浸漬する。
C:上記Aの工程3)汚染被膜除去において、室温に保った10%塩酸液に約30秒間浸漬する。
D:前記したドライ法の代表例のとおり。
E:上記Dの工程4)汚染被膜除去において、真空排気後、3mTorrのアルゴンガスを導入し、ビーム電流100mAでイオン化し、アルゴンイオンを被処理材の表面に約3分間照射する。
【0023】
金属基材として各種のステンレス鋼(いずれもオーステナイト系)を使用し、上記A〜Eのいずれかの手段による清浄化を行ない、所定のインターバル時間が経過した後、電解メッキまたはスパッタリングにより、Au,Pt,Pd,RhまたはRuの薄膜を形成した。金属基材の種類、清浄化手段、インターバル時間、薄膜形成法および膜厚を、表1に示す。
【0024】
得られた耐食性導電材についてオージェ分析を行なって、貴金属薄膜および中間層内の不純物であるC,P,O,Sの含有量を測定するとともに、中間層内のCr/Feの比およびNi/Feの比を調べた。続いて、pH2の沸騰硫酸に168時間浸漬する試験を行なった。硫酸液400ml中に溶出したFe,NiおよびCrのイオンの量を測定し、Feの溶出量が0.2mgを超過するか、またはFe+Ni+Crの溶出量合計が0.3mgを超過した場合を不合格とした。結果を表2にまとめて示す。
【0025】
【表1】

【0026】
【表2】

【0027】
ステンレス鋼のような基材金属の表面に、金などの貴金属の薄膜を形成した場合、その薄膜の性質、とくにピンホールの有無や量、また基材への薄膜の密着性などは、薄膜の内部に存在する異種の物質、とくに不純物としてのC,P.O,Sの含有量や、基材と薄膜との間に介在する中間層の組成により顕著に異なることを、発明者らは明らかにした。こうした影響は、貴金属薄膜が100nm以下というごく薄いものである場合、とくに大きいことも、発明者らの確認したところである。
【0028】
この発見に基づいて、基材表面を汚染している異種被膜を除去する清浄化操作と、それに続く薄膜形成の操作とを短いインターバルで実施することにより、清浄化した基材表面の再汚染を防ぐことを特徴とし、それによって、不純物がきわめてすくなく、ピンホールもほとんどなく、緻密で基材によく密着した貴金属薄膜層を形成することに成功したのが、本発明である。
【0029】
このようにして本発明は、耐食性が高く、電導度も高く、かつ、低い接触抵抗が確保された耐食性導電材、代表的には固体高分子形燃料電池の金属セパレータを与える。この金属セパレータは、表面に設けた貴金属薄膜が数十nmという薄い膜であるにもかかわらず、十分な電導度を有し、かつ高温の使用環境において高い耐食性を示す。コストは、貴金属の使用量が少なくてすむので、工業的な実施が容易な水準にある。
【符号の説明】
【0030】
1、U 燃料電池
2、4 電極
3 固体高分子膜
5 セル本体
10 セパレータ
12 Au膜(Auメッキ膜)
13、17 金属基材
14 凸部
14a 凸部の先端面
15 凹部
18 切断予定線
21 ガス流通路

【特許請求の範囲】
【請求項1】
金属基材の表面の少なくとも一部に厚さ100nm以下の貴金属の薄膜を形成した材料において、貴金属層および基材と貴金属層との中間層の内部に存在する不純物の量を、それぞれ、C:1.5%以下、P:1.5%以下、O:1.5%以下、S:1.5%以下であって、C+P+O+S:4.0%以下に規制したことを特徴とする耐食性導電部材。
【請求項2】
基材金属がステンレス鋼である請求項1記載の耐食性導電部材。
【請求項3】
ステンレス鋼がオーステナイト系ステンレスである請求項2記載の耐食性導電部材。
【請求項4】
貴金属層および中間層の内部において、最大のCr/Fe比が3以下、最大のNi/Fe比が2以下である請求項3記載の耐食性導電部材。
【請求項5】
薄膜を構成する貴金属が、Au,Pt,Pd,RhもしくはRu、またはこれらの混合物、またはこれらを主材とする合金である請求項1記載の耐食性導電部材。
【請求項6】
金属基材の表面の少なくとも一部に貴金属の薄膜を形成した材料を製造する方法であって、金属基材の表面に存在する汚染被膜を物理的および(または)化学的な方法により除去して清浄な表面を露出させ、その直後に、表面が再度汚染されるに先だって貴金属被膜を形成することを特徴とする耐食性導電部材の製造方法。
【請求項7】
燃料電池用金属セパレータである請求項1ないし請求項5のいずれかに記載の耐食性導電部材。
【請求項8】
電解質としての固体高分子膜を一対の電極で挟みこんでなるセル本体と、請求項7に記載の燃料電池用金属セパレータとを有することを特徴とする燃料電池。

【図1】
image rotate

【図2A】
image rotate

【図2B】
image rotate

【図3】
image rotate


【公開番号】特開2010−236091(P2010−236091A)
【公開日】平成22年10月21日(2010.10.21)
【国際特許分類】
【出願番号】特願2010−92644(P2010−92644)
【出願日】平成22年4月13日(2010.4.13)
【分割の表示】特願2005−501228(P2005−501228)の分割
【原出願日】平成15年8月19日(2003.8.19)
【出願人】(000003713)大同特殊鋼株式会社 (916)
【Fターム(参考)】