説明

荷電粒子線を用いた寸法計測方法、および寸法計測装置

【課題】本発明は、単にビーム走査範囲単位での照射量のコントロールだけでは、抑制することが困難な寸法値変動要因に依らず、高精度な寸法測定を行うことを目的とする。
【解決手段】上記目的を達成するために、以下に、ビームによるコンタミネーションの付着によって生じる正の堆積と、試料除去によって生ずる負の堆積が相殺される走査範囲内の位置を測定部位として選択、或いは走査領域内において、寸法変動の影響がない、或いは少ない部分を測定部位として選択する方法、及び装置を提案する。当該方法及び装置によれば、走査領域面内で、寸法測定を行うに当たり適正な位置を選択することが可能となる。上記構成によれば、ビーム照射によって生じる寸法値変動要因に依らず、高精度な寸法測定を行うことが可能となる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、荷電粒子線で半導体装置等の試料を走査し、試料が発生する二次電子信号、あるいは反射電子信号等、パターンの形状を反映した信号波形を用いてパターンの寸法を計測する電子線式寸法計測装置及びそれを用いた寸法計測方法に関する。
【背景技術】
【0002】
荷電粒子線を試料上に走査して、試料が発生する二次電子信号、あるいは反射電子信号等、パターンの形状を反映した信号波形を用いて基板上に形成されたパターンの寸法を計測する測長SEM装置は、いまや高精度の微細加工を行うためには必要不可欠な計測・検査装置である。
【0003】
一方で、古くから荷電粒子線を用いた表面観察装置、例えば電子顕微鏡を用いて観察を行うと、試料の電子線を照射した部分にコンタミネーションが付着することが知られている。コンタミネーションは、例えば、非特許文献1に記載されているように、基板を観察するための真空室内に残留、または基板自体から放出された炭化水素系のガス分子が、荷電粒子が照射された部分に凝集して固体化・堆積するものであり、一般にコンタミネーションと称されている。コンタミネーションが付着・堆積すると、パターンが太くなり、パターン寸法の計測が正確に行えなくなると言う問題が生じる。
【0004】
コンタミネーションの付着に対し、特許文献1には、ドーズ量、すなわち電子線を照射している時間を制限する機能を設けた装置が開示されている。すなわち、コンタミネーションの堆積量を最小に抑えるために、検査・計測対象パターンに電子線を照射時間、あるいは電子線照射量を最小限にする方法,装置が提案されている。
【0005】
また特許文献2には、コンタミネーションの付着ではなく、パターンのシュリンク、及びそのシュリンクに基づく寸法値変動を抑制するために、Y方向の倍率を選択的に低倍率にすることによって、単位面積当たりのビーム照射量を減らす技術が開示されている。
【0006】
更に特許文献3には、測定対象へのコンタミネーションの付着を抑制するために、フォーカス合わせを測長対象とは異なるパターンにて行う技術が開示されている。
【先行技術文献】
【特許文献】
【0007】
【特許文献1】WO2003/021186号公報
【特許文献2】特開2006−134952号公報
【非特許文献】
【0008】
【非特許文献1】「コンタミネーション」(矢田慶治、電子顕微鏡 16(1981)2)
【発明の概要】
【発明が解決しようとする課題】
【0009】
上記各文献に開示された技術は、ビームの照射量を減少、或いは測定対象に対し、装置条件の調整(例えばフォーカス調整)のためのビーム照射を行わないようにすることで、コンタミネーション等の発生を抑制するためのものである。即ち、ビーム走査範囲単位での照射量を減らすためのものである。しかしながら、本特許出願の発明者らは、単にビーム走査範囲単位での照射量のコントロールだけでは、抑制することが困難な寸法値変動要因があることを、新たに見出した。
【0010】
以下に、単にビーム走査範囲単位での照射量のコントロールだけでは、抑制することが困難な寸法値変動要因に依らず、高精度な寸法測定を行うことを目的とした方法、及び装置について、説明する。
【課題を解決するための手段】
【0011】
上記目的を達成するために、以下に、ビームによるコンタミネーションの付着によって生じる正の堆積と、試料除去によって生ずる負の堆積が相殺される走査範囲内の位置を測定部位として選択、或いは走査領域内において、寸法変動の影響がない、或いは少ない部分を測定部位として選択する方法、及び装置を提案する。当該方法及び装置によれば、走査領域面内で、寸法測定を行うに当たり適正な位置を選択することが可能となる。
【発明の効果】
【0012】
上記構成によれば、ビーム照射によって生じる寸法値変動要因に依らず、高精度な寸法測定を行うことが可能となる。
【図面の簡単な説明】
【0013】
【図1】測長SEMの概略構成図。
【図2】測長SEM装置における寸法計測方法を説明するフローチャート。
【図3】測長SEM装置によるパターン寸法の測定原理を説明する図。
【図4】電子ビームによる試料へのコンタミネーションの付着と試料の削れの原理を説明する図。
【図5】ラインパターンのSEM画像の一例を説明する図。
【図6】視野内における寸法値変化の原理を説明する図。
【図7】複数のラインパターンが配列されている場合における視野位置の決定法を説明する図。
【図8】複数のホールパターンが配列されている場合における視野位置の決定法を説明する図。
【図9】ラフネスが形成されたパターンが配列されている場合における視野位置の決定法を説明する図。
【図10】視野内のコンタミネーションと削れの分布情報をデータベース化する原理を説明する図。
【図11】データベース化した情報に基づいて、ビームシフトを行い、寸法計測を実施するプロセスを示すフローチャート。
【図12】データベース化した情報に基づいて、ビームシフトを行い、寸法計測を実施するプロセスを示すフローチャート。
【図13】質量分析器を備えた荷電粒子線装置の概略構成図。
【図14】データベース化した情報に基づいて、ビームシフトを行い、寸法計測を実施するプロセスを示すフローチャート。
【図15】FOV設定ウィンドウを用いた視野位置決定法の一例を説明する図。
【図16】FOV設定ウィンドウの種類を説明する図。
【図17】視野位置決定法の一例を説明するフローチャート。
【図18】ラインパターンに対する視野位置決定法を説明するための図。
【図19】ホールパターンに対する視野位置決定法を説明するための図。
【図20】多数のパターンが配列された試料に対する視野位置設定法を説明する図。
【発明を実施するための形態】
【0014】
本特許出願の発明者らは、電子線による試料上の走査範囲、すなわち電子線照射による視野内において、視野の周辺部ではコンタミネーションは付着し堆積するが、視野内の中央部では逆にパターンが細って観察される、つまり電子ビームにより材料が除去される現象を見出した。この現象は、真空室内に残留する炭化水素系のガス分子を減らし、いわゆる真空の質を向上させることで観察されるものであり、気相中の炭化水素系ガスを減らしたことで、基板上を拡散してくる炭化水素系のガス分子がコンタミネーションの主な原料供給になったためであると理解している。なお、試料基板や一次電子ビームの条件によっては、照射領域内周辺で堆積は生じるが中央部での材料除去が生じない場合や、逆に照射領域内周辺で堆積は生じずに中央部での材料除去が生じる場合もある。
【0015】
本願発明者は、前記現象に基づき、パターンの計測部位を視野内において選択することによって、コンタミネーション量を調整できることを、すなわちコンタミネーションの影響を受けた結果として、真の値に対して+の値から−の値まで計測値を取得できることを見出した。つまり、前述した材料除去をマイナスの堆積と考えれば、堆積量とは付着と除去を合わせた量のことであり、堆積が主体であれば値はプラスに、除去が主体であれば値はマイナスとなり、正負あわせてゼロの位置において堆積がゼロになる。以上に基づき、上記目的を達成するための下記の知見を得た。
【0016】
すなわち、コンタミネーション等に基づく影響の抑制のためには、付着と除去を合わせた堆積量がゼロになる位置、例えば、コンタミネーションが付着(正の堆積)する領域と材料除去(負の堆積)が発生する領域の境界位置を、計測部位に選択してパターン計測を行う、またその機能を設けることを提案する。なお前述したように、試料基板や一次電子ビームの条件によっては、材料除去が生じない場合や逆に付着が生じない場合があり、この場合の付着と除去を合わせた堆積量がゼロになる位置は、コンタミネーションが付着する領域と基板表面の境界位置、あるいは基板表面と材料除去が生じる境界位置となる。以下本明細書中では、付着と除去を合わせた堆積量がゼロになる位置をコンタミネーションが付着する領域と材料除去が発生する領域の境界位置と定義する。
【0017】
上記手法によれば、電子線照射によって生じるコンタミネーションの堆積、ならびにビームによる材料除去の影響を排除することができ、真の検査・計測結果に近い値を得ることが可能となる。その結果、微細パターンの高精度計測・検査が可能となる。
【0018】
以下、正負の堆積に依らず、安定した測定を行い得る測定方法、及び装置について、図面を参照して詳細に説明する。
【0019】
なお、以下に説明する計測法は、各種の荷電粒子線を用いた計測・検査装置に有効であるが、以下の実施の形態では電子線式寸法計測装置、測長SEMを対象に説明する。すでに説明したように、走査電子顕微鏡(Scanning Electron Microscope:SEM)を応用した測長SEMは、現在半導体製造工程のパターン寸法管理に必須の装置となっている。
【0020】
図1は、測長SEMの概略構成図である。測長SEMは、電子光学系1100,ステージ機構系が備えられた真空室1200,ウエハ搬送系(図示せず),真空排気系(図示せず),装置制御および信号処理を行う処理制御部1300から構成される。
【0021】
電子光学系1100は、電子銃1101と、電子銃1101からの一次電子ビーム1102の放出をアライメントするアライメントコイル1107と、一次電子ビーム1102を集束させるコンデンサレンズ1103と、一次電子ビーム1102の非点を補正する非点補正コイル1108と、一次電子ビーム1102を二次元に偏向させる偏向器1105,1106と、対物レンズ1104,対物レンズ絞り1109により構成される。ウエハ1201は、XYステージ1202上に載置されステージコントローラ1301からの指令によりXY方向に走行し、任意の位置に停止させることができる。二次電子検出器1110は、ウエハ1201に一次電子ビームを照射することで発生した二次電子を検出し、電気信号に変換する。これにより二次電子線像(SEM画像)が得ることができる。
【0022】
以上の構成において、電子銃1101から放出された一次電子ビームはコンデンサレンズ1103,対物レンズ1104によって集束され、微小スポットとしてXYステージ1202上に載置されたウエハ1201上に照射される。電子ビームが照射されると、照射された部分から試料の材質や形状に応じた二次電子や反射電子が発生する。偏向器1105,1106を用いて一次電子ビーム1102を二次元走査し、発生する二次電子を二次電子検出器1206で検出して電気信号に変換し、さらにA/D変換器1211でディジタル信号に変換することによって、二次元のディジタル画像としてのSEM画像を得ることができる。なお本実施例では、二次電子像に関して説明しているが、本発明は反射電子像に対しても同様に用いることができる。
【0023】
ステージコントローラ1301は、処理制御部1300からの指令に基づいてXYステージ1202を制御する。偏向・焦点制御部1302,加速電圧制御部1303もまた、処理制御部1300からの指令に基づいて、偏向器1204,1205を制御して画像倍率設定やフォーカス制御を、また加速電圧の制御を行う。得られたSEM画像は、処理制御部1300で計測処理される。また、処理制御部1300は、得られた画像や計測データを保存するデータベース1304を持ち、装置の操作や結果表示,条件設定(レシピ作成)を行うコンピュータ1305を備えている。
【0024】
なお、レシピ作成は、半導体デバイスの設計データを記憶した、或いは外部の記憶媒体へ半導体デバイスの設計データへのアクセスが可能な外部コンピュータでも作成が可能である。また、本実施例例では、SEMを制御する制御装置と、SEMによって得られた信号に基づいて測定を行うコンピュータを別体のものとして、説明しているが、これに限られることはなく、コンピュータにて装置の制御と測定処理を一括して行うようにしても良いし、各制御装置にて、SEMの制御と測定処理を併せて行うようにしても良い。以下の説明は、寸法測定方法、及び寸法測定装置の説明に関するものであると共に、SEM等の装置条件設定方法、及び装置条件設定装置に関するものでもある。
【0025】
また、上記コンピュータ或いは制御装置(以下、画像処理装置と称することもある)には、測定処理を実行するためのプログラムが記憶されており、当該プログラムに従って測定が行われる。更にコンピュータ、或いは外部コンピュータには、半導体製造工程に用いられるフォトマスク(以下単にマスクと称することもある)やウエハの設計データが記憶されている。この設計データは例えばGDSフォーマットやOASISフォーマットなどで表現されており、所定の形式にて記憶されている。なお、設計データは、設計データを表示するソフトウェアがそのフォーマット形式を表示でき、図形データとして取り扱うことができれば、その種類は問わない。また、データ管理装置とは別に設けられた記憶媒体にデザインデータを記憶させておいても良い。
【0026】
コンピュータ等は、設計データ上にて、測定点、及びビーム走査位置を設定することが可能であり、当該設定はレシピとして記憶され、保存される。また、コンピュータ等は、後述する正の堆積領域、及び/又は負の堆積領域に関する情報を記憶する記憶媒体を備えている。当該情報は、後述する手法による演算によって取得しても良いし、予め他の装置によって取得されていた情報を、情報伝達媒体を経由して入手するようにしても良い。
【0027】
次に、測長SEMを用いてウエハ上のパターン計測を行う場合の、基本的な手順について説明する。図2にそのフローチャートを示した。まず処理制御部1300において、計測を行うパターンのウエハ上における位置座標を取得する(201)。通常はあらかじめ作成されたレシピ、あるいはコマンドなどより行われる。次に処理制御部1300からの指令に基づいて、ステージコントローラ1301は移動目標を発生させ、XYステージ1202の移動を行う(202)。ステージ停止後、画像を取得しフォーカス調整など画像の調整を行うが、スループットを上げる目的で位置決め完了前に仮目標表位置で画像調整を行う場合もある(202)。計測対象となるパターンはナノミリメータオーダーであるのでステージ1202の位置決め精度は非常に厳しく、ある誤差を持って位置決めを完了することになる。そこで位置決め完了後には測定倍率よりも低い倍率にて画像取得を行い(203)、処理制御部1300に記録された代表的な実パターン画像とのマッチングを行うことで、目的とする寸法計測箇所の正確な位置を求め(204)、ビームシフトにより寸法計測箇所を画面中央に移動する(205)。なお最近では、マッチングのためのパターンに設計形状を用いる手法が取り入れられつつある。倍率を上げてマッチング,ビームシフトによる寸法測定箇所の画面中央への移動を繰り返す(206)。ただしステージの停止精度が十分正確である場合には206の工程はスキップされることになる。次いで最終的に計測を行う倍率において、寸法計測が実施される(207)。具体的には、レシピにて設定されたビーム条件,倍率,フレーム加算数で画像を取得し、寸法計測箇所におけるラインプロファイルのエッジの抽出処理を行い、エッジ情報から寸法を求め、データ保存を行う(208)。例えば、図3(a)に示すようなラインパターン301に対する画像が取得され、計測箇所が矢印302であった場合、パターンの断面(図3(b))に対応して、二次電子のプロファイルは図3(c)のように得ることができる。この二次電子プロファイルからエッジ部分303,304を抽出してラインパターンの寸法を求める。
【0028】
すでに説明したように、このような計測装置,方法によってパターン計測を行う場合、コンタミネーションの堆積は、パターンを太くするために、パターン寸法の正確な計測を行うことができなくなる。そして、真のパターン寸法との食い違いは、パターン寸法が微細になればなるほど大きな値となる。
【0029】
発明者らは、コンタミネーションの堆積は、試料上の電子ビーム走査範囲、すなわち視野内において、視野の周辺部に多くコンタミネーションが堆積し、視野内の中央部に向かってコンタミネーションは減少し、中央部分では逆にパターンが細って観察される現象を見出した。図4(a)は、平面サンプルに対して電子線による走査を10分間行って取得したSEM画像であり、図4(b)は、電子線を走査した部位をAFMによって計測した三次元プロファイルであり、図4(c)は矢印401に対応するAFMの二次元断面プロファイルである。
【0030】
電子線を走査した視野内の周辺部に多くコンタミネーション402が堆積し、視野内の中央部に向かってコンタミネーション402は減少、中央部分では逆に削れ403が観察され、基板材料が除去されていることが、すなわちビームによる削れが起こっていることがわかる。すなわち、外周部から中央部に向かってコンタミネーション402の堆積(正の堆積),ビームによる削れ403(負の堆積)が生じ、その境界には両者の影響を受けない領域が存在することがわかる。
【0031】
次に55nm幅,ピッチ100nmのラインパターンを測長SEMにて観察した結果を図5示す。現象を見易くするために、電子線による試料上の走査を5分間行ってSEM画像を取得した。画像内の外周部501においてライン寸法は59nmであり、中央部502において51nmであり、境界部分503は55nmであった。すなわち外周部501において約4nm太く測定され、中央部では逆に約4nm細く測定されたことになる。
【0032】
このような現象の発見に基づき、当該現象等に依らず、高精度な測定を行い得る方法、及び装置について以下に説明する。すでに述べたように、試料基板や一次電子ビームの条件によっては、照射領域内周辺でコンタミネーション402の堆積は生じるが中央部での削れ403が生じない場合や、逆に照射領域内周辺で堆積402は生じずに中央部での削れ403が生じる場合もある。以下本明細書中では、付着と除去を合わせたトータルの堆積量がゼロになる位置をコンタミネーションが付着する領域と材料除去が発生する領域の境界位置と定義して説明する。
【0033】
適正な測定,検査を行うための第1の実施形態を、図6を用いて説明する。通常、一次電子ビームの走査範囲の中心、すなわち視野(Field Of View:FOV)内の中心に、寸法データの取得位置が位置づけられる。それに対し、本実施例では、一次電子ビームの走査範囲、すなわち視野内におけるコンタミネーション堆積領域と材料除去領域の境界線、或いは境界領域を寸法測定データの取得位置として位置づけている。
【0034】
なお、一次電子ビームの条件よっては、材料除去が生じない場合がある。この場合は、視野内におけるコンタミネーション堆積領域と基板表面の境界領域を寸法測定データの取得位置とすることとする。
【0035】
寸法測定対象が図6(a)に示すようなラインパターンの場合、電子ビーム走査による視野内の凹凸分布は、コンタミネーションによる堆積領域(正の堆積)601とビームによる削れ領域(負の堆積)602によって、例えば図6(b)のようになる。このように得られたSEM像においては、真のラインパターン寸法に対して、A部においてはマイナス(−)の値に、D部においてはプラス(+)の値になるが、C部においては+になる領域と−になる領域の境界603に当たるために差異が少ない値を得ることができる。またBにおいては、ラインの左側は+であるが右側が−になるために計測結果は真の値と誤差の小さな値を得ることができる。図2のフローで示したように、従来は計測データの取得部位を画像の中心に位置するようビームシフトで画像を動かし、画像の中心すなわちA部を寸法測定データの取得位置としている。すなわちこの場合は、真のラインパターン寸法よりも小さな結果を出すこととなる。ここで本発明では、寸法測定データ取得位置を視野内中心ではなく、C部,D部に位置づけることができるよう制御する機能を持ち測定を行うことで、コンタミネーションやビームによる削れの影響を受けずに、真の検査・計測結果に近い値を得ることを可能とする。
【0036】
なお、上述の説明では、正の堆積領域と、負の堆積領域との間に定義される境界線、或いは当該境界線を中心として設定される境界領域内に測定対象パターンのデータ取得位置が位置づけられるように、FOV位置を移動する例について説明したが、データ処理上は、必ずしも境界線を設定する必要はなく、例えば、FOV中心、或いはFOV輪郭から所定の距離位置(距離範囲内)に、データ取得位置が位置づけられるようにしても良い。また、境界線等にデータ取得位置の一部が重畳したときに、適正なFOVの位置づけが行われたと判断しても良いし、所定の境界線領域内に、データ取得位置(取得範囲)の全てが包含される、或いはデータ取得範囲の所定値以上の部分が含まれたときに、適正なFOVの位置づけが行われたと判断しても良い。
【0037】
また、走査電子顕微鏡のレシピ作成者が定義した測定位置、或いは視野位置を補正するために上述したアルゴリズムを用いれば、レシピ作成者は、コンタミネーションの存在を意識することなく、測定条件を決定することが可能となる。
【0038】
次に、第2の実施の形態について図7を例に説明する。図7(a)に示したように密にパターン706が並んでいる場合、視野内の複数本のラインパターンについてパターン寸法の平均値を求め、平均値によって寸法管理を行う場合がある。本実施例は、このような寸法の平均値計測に特に有効である。ここでは、6本のライン706の平均値を、寸法測定データ取得位置E部において求める例を示した。図7(a)は、6本のライン706と視野範囲704との関係の一例を説明する図である。図7(b)は、寸法測定データ取得位置E部を、視野中心に配置した場合の視野範囲位置を例示している。図7(c)は、本実施例における寸法測定データ取得位置E部と視野範囲位置との位置関係を説明する図である。図6にて説明したように、コンタミネーションによる堆積とビームによる削れによってラインパターンの寸法には分布がつき、701の領域では寸法は太く、702の領域では細く計測されることになる。ここで、図7(b)に例示するように計測対象のパターンの寸法測定データ取得位置E部を画像の中心に位置するようビームシフトで動かし、寸法測定データを取得した場合には、真のラインパターン寸法よりも小さな結果を出してしまうこととなる。それに対し、図7(c)に例示本実施例では、寸法測定データ取得位置E部を視野内中心ではなく、境界線703(コンタミネーション堆積量(正の堆積)とビームによる削れ量(負の堆積)の和、あるいは平均値が概略ゼロになる部分)に位置づけることが特徴である(図7(b))。これにより、計測結果である寸法の平均値はコンタミネーションやビームによる削れの影響を受けずに、真の検査・計測結果に近い値を得ることが可能となる。
【0039】
図7に例示するFOV位置の決定法では、荷電粒子線照射によって堆積物が堆積する領域と、荷電粒子線照射によって試料上の材料が除去される領域の双方に、複数の測定対象パターンの寸法測定データ取得位置が重畳すると共に、堆積の影響と材料の除去の影響が相殺される位置に、前記寸法測定データ取得位置が位置づけられるように、荷電粒子線の視野位置を設定している。即ち、負の堆積分と正の堆積分が略相殺される位置に、データ取得位置E部が配置されるように、FOV位置を決定している。このFOVの位置は、図7の例示の場合、境界線703によって形成される円の中心とデータ取得位置E部が重なる第1のFOV位置(図7(b))と、境界線703によって形成される円に、データ取得位置E部の線分が外接する第2のFOV位置との間である。
【0040】
第1のFOV位置は、データ取得位置E部が、負の堆積が最も多いと予想される円の中心を通過すると共に、理論上、最も長い距離、負の堆積が予想される領域(境界線内部)とデータ取得位置E部が重畳する位置である。一方、第2のFOV位置は、理論上、負の堆積がなく、境界線と外接する部分以外は、正の堆積が予想される個所である。よって、正負双方の堆積を利用して、測定値を真値に近づけるためには、第1のFOV位置と第2のFOV位置の間に、FOVが設定されることが望ましい。
【0041】
以上のようなルールに基づいて、FOVを自動移動するようなアルゴリズムを適用すれば、無意識に設定したようなFOVであっても、測定誤差の極めて少ない測定条件にて、測定を行うことが可能となる。
【0042】
図18は、FOVの位置決定を行うための他のアルゴリズムを説明する図である。図18は、FOV内の正負の堆積量に関する情報を、行列形式で記憶したフィルタを説明する図である。フィルタ1801はn×m(本例では9×9)の行列形式で、各領域の堆積量に関する情報を記憶している。
【0043】
例えば、測長SEMの操作者は、半導体デバイス等の設計データ上で、測定条件を設定し、その設定情報をレシピとして登録する。図19に例示するような3本のラインパターン1802,1803,1804の線幅の平均値を測定するために、測定位置1805を設定する。このケースでは、各小領域に堆積量に関する情報が記憶されているため、測定位置1805に関わる領域(図18の例の場合、測定位置1805が重畳する8個の小領域)に記憶された堆積量の合計値が、最もゼロに近くなるような位置に測定位置が設定されるよう、FOV位置を決定すれば良い。
【0044】
測定範囲を設定することによって、堆積量の総計を計算すべき範囲が判明するため、フィルタ1801内で、当該範囲の総計が最もゼロに近くなるような位置をサーチすることで、堆積による影響の少ないFOV位置を自動的に決定することが可能となる。上記手法は、堆積がある程度安定して生じる場合に特に有効である。
【0045】
なお、上述の例では、各小領域に記憶する情報として、堆積量を例に説明したが、これに限られることはなく、例えば測定値の変動量,変動率、或いは誤差率等を各小領域に記憶する情報しても良い。堆積による影響が、結果としてキャンセルされる位置を見出せる情報であれば、その種類は問わない。変動率の場合は例えば、真値を1.0とした場合の各小領域の変動率(例えば1.1,0.9等)を記憶しておき、その加算平均の結果が、1.0になるように、或いは1.0に最も近づくように、FOV位置を決定すると良い。
【0046】
次に、第3の実施の形態について、図8に示したようなホールパターンを例に説明する。第1,第2の実施形態で説明したラインパターンでは、視野内におけるコンタミネーション堆積領域では寸法が太くなり、一方でビームによる削れ領域では寸法が細く計測されるが、ホールパターンの場合、逆にコンタミネーション堆積領域では寸法が小さく、ビームによる削れ領域では寸法が大きく計測されることになる。図8(a)は、ホールパターンと視野範囲804との位置関係を説明する図である。図8(b)は、本実施例における寸法測定データ取得位置F部に対するSEM像の視野範囲805を例示する図である。
【0047】
図8(a)に例示するように、計測対象のパターンの寸法測定データ取得位置F部を画像の中心に位置するようビームシフトにより制御して、寸法測定データを取得した場合には、真のホールパターン寸法よりも大きな測定値を出してしまうことになる。一方、図8(b)に例示するように寸法測定データ取得位置E部を、視野内中心ではなく、コンタミネーション堆積量(正の堆積)とビームによる削れ量(負の堆積)の和が概略ゼロになる部分803に位置づけることで、コンタミネーションやビームによる削れの影響を受けずに、真の検査・計測結果、すなわちホール径に近い値を得ることが可能となる。
【0048】
図19は、図18にて説明したフィルタを、ホールパターン1902の寸法測定に適用した例を説明する図である。図18の例のように、連続的に配列されたパターンの寸法を測定するわけではなく、測長ボックス1903,1904間の寸法が判れば良いため、測長ボックス1903,1904の2箇所が、正堆積領域と負堆積領域間の境界線上に配置するようにすれば良い。よって、フィルタ1901を用いる以外にも、単に2つの測長ボックス1903,1904を境界線に近づけるような手法で、FOV位置を決定するようにしても良い。
【0049】
次に、第4の実施の形態について図9を例に説明する。ラインパターンの微細化によってラインエッジのラフネスがゲートのしきい値電圧等のデバイス特性に影響を及ぼす場合がある。そのために、寸法測定装置はラフネス計測を行うことがある。具体的には、図9(a)に示したように、ラインパターン901の長手方向領域902にわたり、一定ピッチで寸法を取得することでラインエッジのラフネス計測を行う。なお、図9(b)は視野内におけるライン長手方向の凹凸分布を示したものである。すでに第三の実施形態までの説明で述べてきたように、従来は計測対象のパターンの寸法測定データ取得位置を視野903内の中心に位置づけていた。すなわち、ラインエッジラフネス計測を行う場合には、ラインパターン901の長手方向領域902の中央部を視野903内の中心に位置づけていた。この例においては、測定領域902はほとんどがラインが細る領域であるためにラフネスも真の値に対して小さな値を計測することになる。次に本実施形態による測定領域902に対する視野907の位置を図9(c)に、視野内907におけるライン長手方向の凹凸分布を(図9(d))に示す。本実施形態では、例えばラフネス計測領域902の長手方向におけるコンタミネーション堆積量(正の堆積)とビームによる削れ量(負の堆積)の和が概略ゼロになるようにビームシフト量を計算し、視野907内において計測領域902を位置づけることが特徴である。これによって、より正確なラフネス計測を行うことが可能となる。
【0050】
上述の実施例によれば、計測対象のパターンをパターンマッチングにより認識し(図2、204)ビームシフトで画像を動かし測定対象をSEMの視野内に入れる過程(図2、205)において、パターンを画像の中心に位置するようビームシフトを制御するのではなく、視野内のコンタミネーションによる堆積の領域とビームによる削れの領域の境界領域に、パターンの計測対象部位が位置するようにビームシフト量を制御する機能を持ち測定を行う。さらに、複数本のラインパターンの平均値やラフネス計測を行う場合には、計測領域におけるコンタミネーション堆積量とビームによる削れ量の和が概略ゼロになるように、計測部位を視野内において位置づける。これにより、コンタミネーションやビームによる削れの影響を受けずに、真の検査・計測結果に近い値を得ることが可能となる。
【0051】
次に、第5の実施の形態について、図20を用いて説明する。図20は多数のホールパターンが配列された試料を例示しており、当該試料上のパターン寸法の平均値を測定するための手法を説明するための図である。本実施例では、多数配列されたパターンの平均値を求めるための測定対象を選択する一手法を説明する。
【0052】
図20は、ホールパターンが多数配列されている試料画像(或いは設計データ)上で、境界線2002を有するFOV設定ウィンドウ2001によって、平均値の計算に供されるパターンを選択する手法を説明している。FOV設定ウィンドウ2001はSEM画像上、或いは設計データ上の任意の位置への設定が可能であり、当該設定に基づいて、SEMの走査位置が設定される。また、FOV設定ウィンドウ2001には、境界線2002,境界領域上限2003,境界領域下限2004が併せて表示されている。境界領域上限2003と境界領域下限2004は、堆積に基づく寸法変動値を、実質的にゼロと見做せる、或いは測定誤差として許容可能な範囲を示している。
【0053】
なお、本実施例では、境界領域上限2003と境界領域下限2004を境界線領域とし、当該領域に50%以上、パターン面積が重畳するパターンを、平均値計算対象パターンとして選択する例を説明しているが、これに限られることはなく、例えば境界線2002から所定距離内に存在するパターンを選択するようにしても良いし、所定領域内に部分的に重畳するパターンを選択するようにしても良い。堆積に基づく寸法変動を、実質的にゼロと見做せるパターンを選択する選択法であれば、その種類は問わない。
【0054】
以上のように、複数の同種パターンの寸法の平均値を計測する手法(ACD(Averaged Critical Dimension))において、平均値計算に供するパターンを上述のように選択することによって、正負の堆積の影響の少ない高精度な計測,演算を実施することが可能となる。
【0055】
なお、平均値計測に供するパターンの数が、予め決まっている場合には、境界線2002上、或いはその近傍に存在するパターンから、所定数のパターンを選択するようにすると良い。その場合、境界線2002に距離の近い順に、所定数を選択するようにすれば、正負の堆積の影響の少ないパターンを選択することができる。一方で、境界線2002近傍に存在するパターンが所定数に満たない場合には、その旨の情報を表示装置に表示することによって、操作者は、レシピの設定条件(倍率,視野位置,装置条件等)の見直しを行うことが可能となる。
【0056】
次に第6の実施の形態について、図15を用いて説明する。図15も図20と同様にFOV設定ウィンドウ1501を例示する図である。本実施例は、設計データ上に任意の複数の測定点が設定された状態において、当該複数の測定点が、境界線1507上、或いは境界線近傍(例えば、境界領域上限1508と境界領域下限1509との間)に、位置づけられるように、FOV設定ウィンドウ1501の位置を調整する例を説明している。
【0057】
昨今、リソグラフィーにおいて設計通りのパターンをウエハ上に転写するために、OPC(Optical Proximity Correction)処理が行われるようになってきた。パターン形成における近接効果は、縮小投影型露光装置のレンズの解像限界に近いパターンの転写ほど顕著であり、複雑な補正が必要となる。フォトマスク上で、このような補正が施される個所は多数に及び、これらの評価を適正に行うことが、OPCの精度向上の鍵となる。
【0058】
このような多数の測定対象が試料上に存在する場合であっても、FOV設定ウィンドウ1501による視野位置決定を行うことによって、正負の堆積の影響の少ない高精度な測定を実施するための測定条件を設定することが可能となる。図15は、5つの測定点1502〜1506を測定するための視野位置を決定するために、FOV設定ウィンドウ1501を用いた実施例を説明している。その一態様として、半導体デバイスの設計データ上で、FOV設定ウィンドウ1501を用いたサーチを行い、境界領域上限1508と境界領域下限1509との間に、5つの測定点が含まれる、或いは測定点の一部が重畳する視野位置を、測定用の視野位置として、選択することが考えられる。その他にも、設計データ上で、FOV設定ウィンドウ1501を用いたサーチを行い、境界線1507と、5つの測定点間の距離の加算値が最も小さくなるような視野位置を、測定用の視野位置として、選択することが考えられる。また、この場合、最小加算値が所定値を越えるような場合には、その旨を情報として表示することで、測定点と境界線との間に大きな乖離が生じるような状態を把握することが可能となる。また、加算値だけではなく、個々の測定点ごとに、距離のしきい値を設け、それを越えた場合に、その情報を表示することで、例えば1点だけ境界線から離間するような状態を容易に把握することが可能となる。
【0059】
以上のように、多数の測定点が存在する場合であっても、FOV設定ウィンドウ1501を用いたサーチを行うことによって、正負の堆積の影響の少ない視野位置を見出すことが可能となる。
【0060】
図16は、FOV設定ウィンドウの種類を説明する図である。(a)は、境界線領域の内側(円中心に近い領域)では負の堆積による寸法減少、境界線領域外側では正の堆積による寸法増加が起こる場合に、その間を測定範囲として選択するためのウィンドウである。(b)は、正の堆積の影響が支配的である反面、負の堆積が余り生じない場合に、正の堆積領域の内側を、測定範囲として選択するためのウィンドウである。(c)は、負の堆積の影響が支配的である反面、正の堆積が余り生じない場合に、負の堆積領域の外側を、測定範囲として選択するためのウィンドウである。
【0061】
これらのウィンドウを試料条件や、測定装置の装置条件に応じて使用することによって、堆積の影響の少ない測定のための視野位置を自動的に決定することが可能となる。
【0062】
図17は、設計データ上にて設定された測定点に応じて、自動的にFOV位置を決定する処理を説明するためのフローチャートである。設計データ上で測定点を設定(S1701)した後に、試料情報、及び装置情報を入力する(S1702)。この試料情報等の入力は、予め記憶された試料や装置条件に対応するFOV設定ウィンドウを読み出すためのものであるが、対応するFOV設定ウィンドウが存在しない場合や、任意のFOV設定ウィンドウを適用する場合には、当該ステップは不要となる。
【0063】
予め登録された、或いは任意のFOV設定ウィンドウ上には境界線位置(領域)が設定されているが、そのような設定がない場合、或いは任意の境界線位置(領域)を設定する場合には、FOV内でS1703にてそのような設定を行う。次に、境界線位置(領域)に測定点が位置づけられるようなFOV位置をサーチする(S1704)。複数の測定点が存在する場合には、境界線位置(領域)に全ての測定点が位置づけられているか、或るいは、これまで説明してきたような境界線と測定点との関係を満たしているか、の判断(S1705)を行い、当該条件を満たすようであれば、その情報をレシピとして設定(S1706)し、当該条件を満たさないようであれば、FOV位置の再設定を行うか、再設定が不可と判断される場合には、設定が不可である旨の情報を発信する(S1707)。
【0064】
図17に例示するような処理によれば、正負の堆積の影響の少ない測定を行うためのFOV位置を自動的に決定することが可能となる。
【0065】
次に第7の実施形態について図10,図11を用いて説明する。本実施形態では、図6から図9に示した実施例において、コンタミネーションの堆積とビームによる削れによって生じる視野内の凹凸分布を取得する方法について説明する。
【0066】
あらかじめフラットサンプルパターンにて、基板材質,加速電圧,プローブ電流,電圧,フレーム加算数,最終的な倍率に到るまでに行ったオートフォーカスの回数・倍率などを実際のパターンを計測する際の条件と合わせ、SEM画像、ならびに電子線を走査した部位のAFMによる断面形状を取得しておく。例えば、図10に示したように、コンタミネーション堆積領域1001とビームによる削れ領域1002の境界1003の視野内における位置情報、コンタミネーション堆積量1005とビームによる削れ量1006などのデータをあらかじめデータベースにして格納しておく。
【0067】
図11に示したフローチャートにおいて、まず計測条件に則した視野内凹凸情報をデータベース(図1、1304)より取得して、処理制御部1300において、測定倍率における視野内の凹凸分布の境界に当たる座標を計算する。次いで、計測を行うパターンのウエハ上における位置座標を取得(201)以降へと進む。最終的なパターンの位置決めは、パターンマッチングによって、目的とする寸法計測箇所の正確な位置を求め、ビームシフトにより行うのであるが、画像内中央であった寸法測定箇所のビームシフトによる移動位置が、本実施例では、工程1011にて計算された視野内の凹凸分布の境界に当たる位置となる(1015)。データベースには、計測条件毎にデータテーブルが準備してあることが望ましい。装置状態の変化によりコンタミネーションの堆積とビームによる削れによる凹凸分布が変動する可能性を考慮して、定期的にSEM画像,AFMの断面形状を取得し、データ更新を行うことが望ましい。
【0068】
また、近年の半導体デバイスに使用される材料には多岐にわたり、その中には、例えばガス放出が非常に大きい有機材料もある。このような材料が使われたウエハ、すなわちガス放出が非常に多いウエハの測定を行った後の真空室には、炭化水素系の残留ガスが多く残り、次のウエハの測定に影響を及ぼす場合がある。このような前プロセスの影響により、コンタミネーションの堆積とビームによる削れによる凹凸分布が変動する可能性を考慮して、データベースには、特にガス放出の多い材料を使用したウエハについて、次ウエハの凹凸分布への変動結果を記憶しておくことが望ましい。具体的には、あらかじめ特にガス放出の多い材料を使用したウエハを、実際のパターンの計測に要する時間と合わせて真空室内に滞留させ、その後にフラットサンプルパターンを真空室内に導入して実際のパターンを計測する際の条件と合わせ、SEM画像、ならびに電子線を走査した部位のAFMによる断面形状を取得し、凹凸分布をデータベースにして格納しておく。計測に際しては、まず前プロセスのウエハ情報を取得し、前ウエハがガス放出が非常に多いウエハである場合には、通常の凹凸分布ではなく記憶された前ウエハの影響が考慮された凹凸分布の測定結果を用いることで、前ウエハの影響を排除することができる。
【0069】
また近年のレジスト材料は、一次電子ビームによりシュリンクするものがある。このようなレジスト材料に対しては、一次電子ビームによるレジストのシュリンク量をデータベースに記憶,格納しておき、測定に際して凹凸分布の補正を行うことが望ましい。実際のパターン計測に際しては、コンタミネーションの堆積とビームによる削れによる凹凸分布にレジストのシュリンク量の補正をかけて寸法測定位置を視野内にて位置づけることで、コンタミネーション,ビームによる削れ,レジストシュリンク、全ての影響を排除することが可能となる。なお、レジストのシュリンク量測定に関しては、加速電圧,プローブ電流,電圧,フレーム加算数などの一次電子ビーム条件,レジストパターン寸法,厚さなどの条件を合わせることが望ましい。
【0070】
また別のコンタミネーションの堆積領域とビームによる削れ領域の境界を取得する方法として、画像コントラストを利用する方法も有効である。例えば、図4(c)におけるコンタミネーションの堆積領域は、SEM像(図4(a))の暗い部分に相当し、図4(c)におけるエッチング領域は、SEM像(図4(a))の明るい部分に相当している。図5のラインパターンにおいても画像内に周囲の暗部と中央部の明部が観察でき、暗部は寸法が太く(図5、501)と明部にて寸法が細くなっている(図5、502)。これは、材料によって二次電子放出効率が異なりSEM像にコントラストがつくことによる。すなわち、コンタミネーションが堆積しているアモルファスカーボンの部分と基板、この場合にはSi、との間でコントラスト差がつく。例えば図12示したフローチャートは、図2で説明したフローにコントラスト情報取得(1012)を付加したものである。例えば高倍率画像撮像後に画像のコントラスト情報を取得し、処理制御部1300において明暗部の境界に当たる座標を計算する。これに基づいて、寸法データを取得する位置座標を、コントラスト情報を基に計算され明暗部の境界に当たる位置になるようビームシフト量を決定する(1015)。
【0071】
本実施例では、高倍率画像撮像後に画像のコントラスト情報を取得する例で説明したが、ビームシフトや寸法計測を行う前の工程であれば同様の結果を得ることができる。本コントラスト情報を取得する方法は、装置の状態診断にも使用できる。例えば、明暗部の境界に当たる座標をデータベース(図1、1301)に記憶させ、同一パターンを計測した場合の、明部の広さの変動をグラフ化する。明部が狭くなって行くようなトレンドが見える場合には、装置内に炭化水素系のガスが増加していることが、すなわち真空の質が低下していることを示しており、それによって装置のメンテナンス時期を予定することが可能となる。また常にある一定以上の画質で装置を使用し続けることが可能となる。
【0072】
次に、コンタミネーションの堆積領域とビームによるの削れ領域の境界を取得する別の実施形態を説明する。すでに述べたように、コンタミネーションの原因は、基板を観察するための真空室内に残留、または基板自体から放出された炭化水素系のガス分子が、荷電粒子が照射された部分に凝集して固体化・堆積するものである。したがって、真空室内における炭化水素系ガス分子の試料への入射頻度とコンタミネーションの堆積量は比例関係にある。本実施形態では、炭化水素系ガス分子の試料への入射頻度をコンタミネーション堆積量、すなわちSEM像視野内の暗部を形成する面積の指標として用いることが特徴である。ここで、炭化水素系ガス分子の試料への入射頻度は炭化水素系ガスの分圧に比例するので、分圧を計測できる質量分析器を利用している。図13に示すように、真空室1200に質量分析器1401を備え付け、炭化水素系ガス分圧、例えば質量数50〜300までの足し合わせた総量の情報を、処理制御部1300にリアルタイムで送る。あらかじめデータベースには、残留炭化水素系ガスの総量の値とコンタミネーションの堆積情報、具体的にはフラットサンプルパターンにて、基板材質,加速電圧,プローブ電流,電圧,フレーム加算数,最終的な倍率に到るまでに行ったオートフォーカスの回数・倍率などを実際のパターンを計測する際の条件と合わせたSEM画像、ならびに電子線を走査した部位のAFMによる断面形状、の関係を取得し、格納しておく。図14示したフローチャートにおいて、まず真空室1200内の残留炭化水素系ガスの総量Pcarbonを取得し(1013)、次に残留炭化水素系ガスの総量の値,パターン測定条件(基板材質,加速電圧,プローブ電流,電圧,フレーム加算数,最終的な倍率に到るまでに行ったオートフォーカスの回数・倍率などを)に対応する視野内凹凸情報をデータベース(図12、1304)より取得する。
【0073】
これによって、処理制御部1300において、測定倍率における視野内の凹凸分布の境界に当たる座標を計算することができる。この場合には、真空室内の残留炭化水素系ガスの変化を質量分析器1401によりモニタしているので、装置状態の監視をリアルタイムで行っていることになる。すなわち真空の質が低下、それによる装置のメンテナンス時期を予定することが可能となる。また常にある一定以上の画質で装置を使用し続けることが可能となるなどの効果も合わせて得ることができる。
【0074】
なお、上述の実施例では、測定点に対し、堆積等の影響が少なくなるようなFOV位置を決定する例について説明したが、FOV設定ウィンドウの各小領域に、寸法値の補正係数を保存しておき、各測定点で得られた寸法値に、各測定点が属する小領域に保存された補正係数を乗算することによって、真値を算出するようにしても良い。
【符号の説明】
【0075】
402 コンタミネーション
403 削れ
601,1001 コンタミネーション堆積領域
602,1002 削れ領域
603 領域の境界
701,702 領域
703 境界線
803 部分
1003 コンタミネーション堆積領域とビームによる削れ領域の境界
1100 電子光学系
1101 電子銃
1102 一次電子ビーム
1103 コンデンサレンズ
1104 対物レンズ
1105,1106 偏向器
1107 アライメントコイル
1108 非点補正コイル
1109 対物レンズ絞り
1110 二次電子検出器
1111 A/D変換器
1200 真空室
1201 ウエハ(基板)
1202 XYステージ
1300 処理制御部
1301 ステージコントローラ
1302 偏向・焦点制御部
1303 加速電圧制御部
1304 データベース
1305 コンピュータ
1401 質量分析器

【特許請求の範囲】
【請求項1】
試料上に形成された測定対象パターンに荷電粒子線を走査して、当該測定対象パターンの寸法を測定する寸法測定方法において、
前記荷電粒子線照射によって堆積物が堆積する領域と、前記荷電粒子線照射によって前記試料上の材料が除去される領域との間に前記測定対象パターンの測定位置を位置づけるように、前記荷電粒子線の視野位置を設定し、当該設定された視野への前記荷電粒子線の走査に基づいて、前記測定対象パターンの寸法を測定することを特徴とする寸法測定方法。
【請求項2】
請求項1において、
前記視野位置の決定は、予め取得された視野内における堆積物の堆積領域に関する情報に基づいて行うことを特徴とする寸法測定方法。
【請求項3】
請求項2において、
前記堆積物の堆積領域に関する情報は、平坦な試料に対して、前記荷電粒子線を照射したときに取得することを特徴とする寸法測定方法。
【請求項4】
請求項1において、
前記試料に荷電粒子線を照射したときに得られる画像のコントラスト情報から、前記堆積物が堆積する領域と、試料上の材料が除去される領域の境界に関する情報を取得することを特徴とする寸法測定方法。
【請求項5】
請求項1において、
前記荷電粒子線が照射される真空領域内の残留炭化系ガス量を測定し、
当該取得された残留炭化系ガス量に関する情報に基づいて、前記堆積物が堆積する領域、或いは前記荷電粒子線照射によって堆積物が堆積する領域と、前記荷電粒子線照射によって前記試料上の材料が除去される領域との間の境界を判定することを特徴とする寸法測定方法。
【請求項6】
試料上に形成された複数の測定対象パターンに荷電粒子線を走査して、当該複数の測定対象パターンの寸法を測定する寸法測定方法において、
前記荷電粒子線照射によって堆積物が堆積する領域と、前記荷電粒子線照射によって前記試料上の材料が除去される領域の双方に、前記複数の測定対象パターンの寸法測定データ取得位置が重畳すると共に、前記堆積の影響と前記材料の除去の影響が相殺される位置に、前記寸法測定データ取得位置が位置づけられるように、前記荷電粒子線の視野位置を設定し、当該設定された視野への前記荷電粒子線の走査に基づいて、前記測定対象パターンの寸法を測定することを特徴とする寸法測定方法。
【請求項7】
請求項6において、
前記視野位置の決定は、予め取得された視野内における堆積物の堆積領域に関する情報に基づいて行うことを特徴とする寸法測定方法。
【請求項8】
請求項7において、
前記堆積物の堆積領域に関する情報は、平坦な試料に対して、前記荷電粒子線を照射したときに取得することを特徴とする寸法測定方法。
【請求項9】
請求項6において、
前記試料に荷電粒子線を照射したときに得られる画像のコントラスト情報から、前記堆積物が堆積する領域と、試料上の材料が除去される領域の境界に関する情報を取得することを特徴とする寸法測定方法。
【請求項10】
請求項6において、
前記荷電粒子線が照射される真空領域内の残留炭化系ガス量を測定し、
当該取得された残留炭化系ガス量に関する情報に基づいて、前記堆積物が堆積する領域、或いは前記荷電粒子線照射によって堆積物が堆積する領域と、前記荷電粒子線照射によって前記試料上の材料が除去される領域との間の境界を判定することを特徴とする寸法測定方法。
【請求項11】
試料上に形成された測定対象パターンへの荷電粒子線を走査によって取得された信号に基づいて、当該測定対象パターンの寸法測定を行う寸法測定装置において、
前記荷電粒子線照射によって堆積物が堆積する領域と、前記荷電粒子線照射によって前記試料上の材料が除去される領域との間に前記測定対象パターンの測定位置を位置づけるように、前記荷電粒子線の視野位置を設定する制御装置を備え、当該制御装置は、当該設定された視野への前記荷電粒子線の走査に基づいて、前記測定対象パターンの寸法を測定することを特徴とする寸法測定装置。
【請求項12】
請求項11において、
前記制御装置は、前記堆積物の堆積領域に関する情報を記憶する記憶媒体を備えていることを特徴とする寸法測定装置。
【請求項13】
請求項12において、
前記堆積物の堆積領域に関する情報は、平坦な試料に対して、前記荷電粒子線を照射したときに取得することを特徴とする寸法測定方法。
【請求項14】
請求項11において、
前記試料に荷電粒子線を照射したときに得られる画像のコントラスト情報に基づいて、前記堆積物が堆積する領域と、試料上の材料が除去される領域の境界に関する情報を取得することを特徴とする寸法測定装置。
【請求項15】
請求項11において、
前記荷電粒子線が照射される真空領域内の残留炭化系ガス量を測定する測定装置から得られる残留炭化系ガス量に関する情報に基づいて、前記堆積物が堆積する領域、或いは前記荷電粒子線照射によって堆積物が堆積する領域と、前記荷電粒子線照射によって前記試料上の材料が除去される領域との間の境界を判定することを特徴とする寸法測定装置。
【請求項16】
試料上に形成された測定対象パターンへの荷電粒子線を走査によって取得された信号に基づいて、当該測定対象パターンの寸法測定を行う寸法測定装置において、
前記荷電粒子線照射によって堆積物が堆積する領域と、前記荷電粒子線照射によって前記試料上の材料が除去される領域の双方に、前記複数の測定対象パターンの寸法測定データ取得位置が重畳すると共に、前記堆積の影響と前記材料の除去の影響が相殺される位置に、前記寸法測定データ取得位置が位置づけられるように、前記荷電粒子線の視野位置を設定する制御装置を備え、当該制御装置は、当該設定された視野への前記荷電粒子線の走査に基づいて、前記測定対象パターンの寸法を測定することを特徴とする寸法測定装置。
【請求項17】
請求項16において、
前記制御装置は、前記堆積物の堆積領域に関する情報を記憶する記憶媒体を備えていることを特徴とする寸法測定装置。
【請求項18】
請求項17において、
前記堆積物の堆積領域に関する情報は、平坦な試料に対して、前記荷電粒子線を照射したときに取得することを特徴とする寸法測定方法。
【請求項19】
請求項16において、
前記試料に荷電粒子線を照射したときに得られる画像のコントラスト情報に基づいて、前記堆積物が堆積する領域と、試料上の材料が除去される領域の境界に関する情報を取得することを特徴とする寸法測定装置。
【請求項20】
請求項16において、
前記荷電粒子線が照射される真空領域内の残留炭化系ガス量を測定する測定装置から得られる残留炭化系ガス量に関する情報に基づいて、前記堆積物が堆積する領域、或いは前記荷電粒子線照射によって堆積物が堆積する領域と、前記荷電粒子線照射によって前記試料上の材料が除去される領域との間の境界を判定することを特徴とする寸法測定装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate


【公開番号】特開2010−160080(P2010−160080A)
【公開日】平成22年7月22日(2010.7.22)
【国際特許分類】
【出願番号】特願2009−3021(P2009−3021)
【出願日】平成21年1月9日(2009.1.9)
【出願人】(501387839)株式会社日立ハイテクノロジーズ (4,325)
【Fターム(参考)】