説明

血圧推定の向上のための適応時間領域フィルタ処理

【課題】患者の血圧を決定するためにカフ圧力波形を処理するためのシステムおよび方法を提供する。
【解決手段】心拍数モニタ32は、患者14の心拍数を取得する。取得した心拍数に基づいて、システム10は、患者から受信したカフ圧力波形を処理するためのフィルタパラメータを選択する。フィルタパラメータは、患者の心拍数に基づいて決定される高域通過カットオフ周波数および低域通過カットオフ周波数を含む。低域通過カットオフ周波数は、心拍数の調波周波数に基づき、高域通過カットオフ周波数は、心拍数の基本周波数に基づく。高域通過および低域通過カットオフ周波数は、フィルタ係数を選択するために使用される。高域通過および低域通過カットオフ周波数は、フィルタ処理が患者の心拍数に基づいて適応するように、患者の心拍数に基づいて選択される。

【発明の詳細な説明】
【技術分野】
【0001】
本開示は、一般に非観血式血圧モニタリングの分野に関する。より具体的には、本開示は、カフ圧力波形の処理を向上させるために、患者の決定された心拍数に基づいてフィルタパラメータを使用して、時間領域において患者からのカフ圧力波形をフィルタ処理するための方法およびシステムに関する。
【背景技術】
【0002】
ヒトの心臓は、周期的に収縮して、強制的に血液を動脈に流す。このポンプ作用の結果、圧脈波または圧力振動がこれらの動脈の中に存在し、動脈の容積が周期的に変わる。各サイクル中の最小血圧は拡張期圧として知られており、各サイクル中の最大圧力は収縮期圧として知られている。「平均動脈圧」(MAP)として知られるさらにもう1つの血圧値は、各サイクルにわたって測定された血圧の時間加重平均値を表す。
【0003】
患者の拡張期圧、収縮期圧、および平均動脈圧の決定に多くの技術を使用することはできるが、非観血式血圧モニタリングにおいて通常使用するこうした1つの方法は、オシロメトリック技術と呼ばれる。血圧を測定するこの方法は、例えば患者の上腕など、患者の身体の肢体に可膨張性カフを巻き付けることが必要である。次いで、カフを患者の収縮期圧を上回る圧力まで膨張させた後、圧力を一連の小さい圧力ステップで徐々に低下させる。カフに空気作用によって接続されている圧力センサは、収縮プロセス全体にわたってカフ圧力を測定する。センサの感度は、患者の動脈の中を血液が流れることによって、カフ内で生じる圧力変動を測定することができるものである。各脈拍で、血流によって動脈の容積に小さい変化が起こり、この変化が膨張したカフに伝わり、それによってカフ内のわずかな圧力変動がさらに生じ、この変動が圧力センサによって検出される。圧力センサは、収縮プロセスの間、圧力ステップごとに患者の心臓の鼓動に関連する一連の小さい周期的な圧力変動と結合されるカフ圧力レベルを表す電気信号を生成する。「複合体(complexes)」または「振動」と呼ばれるこれらの変動では、巻かれたカフの圧力が収縮期圧を上回る場合、有するピーク間振幅が最小であることがわかっている。
【0004】
カフ圧力が減少するにつれて、振動の大きさは単調に増大し始め、最終的に最大振幅に達する。振動の大きさが最大振幅に達した後、カフ圧力が減少し続けるにつれて、振動の大きさは単調に減少する。このようなオシロメトリックデータは「正規分布曲線」の外観を有するものとして表されることが多い。実際に、測定されたオシロメトリックパルスの振幅を表す最良適合曲線またはエンベロープを算出することができる。生理的に、最大振動振幅値のカフ圧力は、MAPに近い。さらに、収縮期圧および拡張期圧に等しいカフ圧力の複素振幅には、この最大振動振幅値との一定の関係がある。このように、オシロメトリック法は、巻かれたカフの様々な圧力レベルで検出される振動振幅の測定に基づく。
【0005】
オシロメトリック法に従って動作する血圧測定器は、様々な巻かれたカフの圧力レベルで圧力振動の振幅を検出する。デバイスが予め定められた圧力パターンによってカフ圧力を自動的に変えるにつれて、これらの振動の振幅、および巻かれたカフの圧力が一緒に格納される。これらの振動振幅は、オシロメトリック「エンベロープ」を定義し、最大値、およびMAPにほぼ等しいその関連のカフ圧力を見つけるために評価される。最大値とのある一定の関係を有する振動振幅を生成するMAP未満のカフ圧力は、拡張期圧と呼ばれ、同様に、その最大値とのある一定の関係を有する振幅を有する複合体をもたらすMAPを上回るカフ圧力は、収縮期圧と呼ばれる。MAPの最大値に対するそれぞれ収縮期圧および拡張期圧の振動振幅の関係は、当業者の選好に応じて経験的に導出される比率である。一般に、これらの比率は、MAPにおける振幅の40%〜80%の範囲で示される。
【0006】
振動の大きさを決定する1つの方法は、記録された振動振幅および対応するカフ圧力レベルに計算的に曲線をあてはめることである。その結果、あてはめ曲線を使用して、MAP、収縮期、および拡張期のデータポイントの近似を計算することができる。MAPの推定は、最大の振動を有するカフ圧力レベルと見なされる。したがって、一次導関数がゼロに等しいあてはめ曲線でポイントを見つけることによって、MAPの1つの可能な推定値を決定することができる。この最大振動値データポイントから、MAPにおける振動振幅の割合をとることによって、収縮期圧および拡張期圧の振動の振幅を計算することができる。このように、あてはめ曲線に沿って収縮期データポイントおよび拡張期データポイントをそれぞれ計算することができ、したがって、それらのそれぞれの圧力を推定されることもできる。このカーブフィッティング技術は、生のオシロメトリックデータをフィルタ処理または平滑化する効果がある。しかし、いくつかの状況で、オシロメトリックエンベロープを構築し、処理するために使用される追加のフィルタ技術が血圧値の決定の正確さを向上させることができることがわかっている。
【0007】
血圧計算の信頼性および再現性は、振動振幅を正確に決定する能力に依存する。しかし、振動振幅の決定は、アーティファクトの汚染に影響されやすい。オシロメトリック法が測定されたカフ圧力の小さい変動を検出することに依存するので、このカフ圧力に影響を及ぼす外力によって、いくつかの場合、オシロメトリックデータを完全にマスキングし得る、そうでなければオシロメトリックデータが役立たなくなることがあるアーティファクトが生成される可能性がある。アーティファクトのこうした1つのソースは、患者による自発的な動き、または無意識の動きからのものである。例えば震えている患者など、不随意運動は、オシロメトリックデータの高周波のアーティファクトを生成し得る。例えば患者が腕、手、または胴を動かすことによって生じるものなど、随意運動のアーティファクトは、低周波のアーティファクトを生成し得る。
【0008】
現在使用可能なシステムは、収集したオシロメトリックデータがアーティファクトによって破壊されているかどうかを決定することができるが、いくつかの現在のフィルタ技術は、周波数領域において実行され、高速フーリエ変換(FFT)アルゴリズムの使用を必要とする。FFTアルゴリズムには、すべてのフィルタ処理のケースにおいて望ましくない可能性もある制限がいくつかある。一例として、FFTアルゴリズムは、かなりの量の計算能力および速度を必要とする。コンピュータリソースがすべてのNIBPモニタリングシステムにおいて使用可能というわけではないので、FFTアルゴリズムは、いくつかの状況で使用できるだけである。さらに、FFTアルゴリズムは、所望の数のサンプルを有する特定の期間にわたってフィルタ処理を実行する。FFTアルゴリズムは、いくつかのサンプルを格納することを必要とするので、この場合もまた、かなりの計算のオーバーヘッドを必要とする。さらに、非観血式血圧システムは、アーティファクトによって破壊されていると指定されたオシロメトリックデータを単に拒否することがある。これらの例において、妥当にアーティファクトのないオシロメトリックデータを取得できるまで、各圧力ステップでより多くのオシロメトリックデータを集めなければならない。これによって、患者の血圧の決定にかなりの時間がかかり、関連の肢体への血流を制限している膨張性カフに関連する患者の不快感が増すことになる。
【先行技術文献】
【特許文献】
【0009】
米国特許出願公開第2010/0249616号明細書
【発明の概要】
【0010】
本明細書において、患者の血圧の決定に使用するオシロメトリックエンベロープを計算するために、患者からのオシロメトリック信号をフィルタ処理する方法が開示される。この方法は、処理ユニットでカフ圧力波形を受信するステップを含む。次に、例えばSpO2またはECGモニタなどの心拍数モニタから受信される患者の心拍数を使用して、患者の心拍数の基本周波数および少なくとも1つの調波周波数を見つける。
【0011】
本明細書において、ある患者についてのオシロメトリックエンベロープおよび血圧推定値の計算に使用する、患者から受信されたカフ圧力波形をフィルタ処理する方法およびシステムが開示される。この方法およびシステムは、患者の現在の心拍数を使用して、患者から受信したカフ圧力波形を処理するためのデジタルフィルタ係数を選択する。本開示の適応技術は、患者の現在の心拍数に基づいてフィルタ係数を選択する。
【0012】
一旦血圧測定用カフが患者に巻かれると、NIBPモニタリングシステムの処理ユニットは、初期膨張圧まで血圧測定用カフを膨張させる。次いで、血圧測定用カフを、一連の圧力ステップで収縮させる。各圧力ステップで、処理ユニットは、患者の心拍数に関連する情報を得る。心拍数情報に基づいて、処理ユニットは、格納されたデジタルフィルタ係数を取り出す。デジタルフィルタ係数は、心拍数の基本周波数および最初の2つの調波周波数が通過帯域の中に含まれることを確実にするために、高域通過カットオフ周波数および低域通過カットオフ周波数に基づいて、格納された値から選択される。2つの調波周波数は本開示の範囲内に含まれるものとして説明するが、本開示の範囲内で動作すると共に、追加の調波周波数を使用することができることを理解されたい。
【0013】
一旦フィルタ係数が記憶装置から取り出されると、処理ユニットは、高域通過および低域通過デジタルフィルタを初期化し、振動を検出するようにカフ圧力波形を処理する。振動の大きさ情報および圧力レベルは、処理ユニットのメモリ内に格納される。フィルタ係数は、患者の心拍数に基づいて選択されるので、通過帯域の外側に生じるアーティファクトを取り除くために、大部分の信号エネルギーを含む血圧測定用カフからの信号がフィルタ処理される。
【0014】
一旦オシロメトリックデータが圧力ステップで取り出されると、血圧測定用カフの圧力が低減され、システムは、患者の現在の心拍数に基づいて、フィルタパラメータを再度選択する。このように、システムは、特定の圧力ステップで得られた心拍数に基づいて、各圧力ステップで異なるフィルタ係数を選択することができる。この適応技術は、圧力ステップが患者の現在の心拍数に基づいてフィルタ処理されるので、オシロメトリック信号からのエネルギーが圧力ステップごとに検出されることを確実にする。
【0015】
一旦オシロメトリックエンベロープが構築されると、プロセッサは、既知の技術を使用して、患者の血圧を決定する。次いで血圧推定値は、ディスプレイに出力され、周知のように、医療関係者によって分析され得る。
【0016】
図面は、開示を実施する、現在企図される最良の形態を示す。
【図面の簡単な説明】
【0017】
【図1】血圧の非観血式測定のためのシステムの一実施形態を示す図である。
【図2】複数の圧力ステップで血圧測定用カフから集められたオシロメトリックデータを表すグラフである。
【図3】患者の血圧を決定するために本開示のシステムによって使用されるデータの取得および動作シーケンスを示すフローチャートである。
【図4】患者の心拍数に基づいて選択される低域通過フィルタおよび高域通過フィルタを使用した圧力波形処理において使用するステップを示すフローチャートである。
【図5A】圧力波形処理の一部として選択することができるいくつかのタイプの低域通過フィルタを示す図である。
【図5B】圧力波形処理の一部として選択することができるいくつかのタイプの低域通過フィルタを示す図である。
【図5C】圧力波形処理の一部として選択することができるいくつかのタイプの低域通過フィルタを示す図である。
【図5D】圧力波形処理の一部として選択することができるいくつかのタイプの低域通過フィルタを示す図である。
【図6A】圧力波形処理の一部として選択することができるいくつかのタイプの高域通過フィルタを示す図である。
【図6B】圧力波形処理の一部として選択することができるいくつかのタイプの高域通過フィルタを示す図である。
【図7】開示に従って使用することができる代替のタイプの高域通過フィルタである。
【図8】患者の血圧および適応フィルタ技術の結果を決定するために使用される様々な異なるカフ圧力を示すグラフである。
【図9】本開示の処理ユニットによって実行される操作順序を示すフローチャートである。
【発明を実施するための形態】
【0018】
図1は、非観血式血圧(NIBP)モニタリングシステム10の一実施形態を示す。NIBPモニタリングシステム10は、患者14の腕または他の肢体に装着される従来の柔軟性のある膨張および収縮可能なカフである圧力カフ12を含む。処理ユニット16は、加圧空気源20と圧力導管22との間に配置される加圧弁18を制御する。加圧弁18がカフ12の圧力を増加させるよう制御されるにつれて、カフ12は、患者14の腕の回りで収縮する。カフ12内において十分な量の圧力に達すると、カフ12は、患者14の上腕動脈を完全に閉塞する。
【0019】
カフ12が完全に膨張した後、処理ユニット16は収縮弁24をさらに制御して、カフ12から圧力導管22に、そして外気へと、漸進的に圧力を解放し始める。カフ12の膨張および漸進的な収縮の間、圧力導管28によって圧力カフ12に空気作用によって接続される圧力変換器26は、圧力カフ12内の圧力を測定する。代替実施形態では、カフ12は、漸進的な収縮に対して、連続的に収縮する。こうした連続的に収縮する実施形態において、圧力変換器26は、カフ内の圧力を連続的に測定することができる。さらに別の実施形態において、カフ12は、オシロメトリックエンベロープ情報を集めるために、漸進的に膨張する。さらに別の実施形態において、オシロメトリックエンベロープ情報を集めるために、カフ12を、混合であるが、制御されたパターンで、漸進的に収縮および膨張させることができる。
【0020】
カフ12内の圧力が処理ユニット16によって制御されるにつれて、圧力変換器26は、各心拍により上腕動脈に流れ込む患者の血液、および追加の血液量を収容するために結果として生じる動脈の拡張によって生じる圧力変動を表す測定されたカフ圧力におけるオシロメトリックパルスを検出する。
【0021】
カフ圧力波形が処理され、分析されるように、オシロメトリックパルスを含めて、圧力変換器26で測定されるカフ圧力データが処理ユニット16に提供され、収縮期圧、拡張期圧、およびMAPを含む患者の血圧の決定を、臨床医に対して、ディスプレイ30上に表示することができる。
【0022】
処理ユニット16は、心拍数モニタ32によって得られる患者14の心拍数の表示をさらに受信することができる。心拍数モニタ32は、一般的に使用される様々な心拍数検出技術のうちの1つまたは複数を使用して、患者14の心拍数を取得する。使用することができる1つの心拍数検出技術は、患者14の特定の解剖学的局部に接続されている導線34が患者の心臓を経由する電気活動の伝達を監視する心電図記録法(ECG)のものである。あるいは、患者の心拍数は、SpO2、プレチスモグラフ、またはカフ圧力データの信号処理および分析を含む他の既知の技術を使用して取得することもできる。
【0023】
図2は、図1に示されるNIBPモニタリングシステム10から取得することができる様々な圧力値を示すグラフである。圧力変換器26によって決定されるカフ圧力は、カフ圧力グラフ36として表される。カフ圧力は、処理ユニット16によって制御されるように、カフ12が完全に膨張したカフ圧力であるカフ圧力ステップ38aでピークに達する。処理ユニット16は、38aが患者の収縮期圧よりかなり上にある圧力であるように、カフ12の膨張を制御する。これは、患者の血圧データの前もって決定された値を参照することによって、または、標準医療監視業務を参照することによって制御または修正することができる。次いでカフ圧力グラフ36は、収縮弁24によって制御されるカフ12の漸進的な各減圧を反映する一連の圧力ステップ38a〜38uで、漸進的に低下する。カフ圧力が患者の上腕動脈がもはや完全には閉塞されていない圧力ステップに達する前に、測定されたカフ圧力は、オシロメトリックパルス40を示す。各圧力ステップで検出されるオシロメトリックパルスの数は、患者の心拍数、およびNIBPシステムが各圧力ステップでデータを集める時間の長さに応じて制御されるが、通常、少なくとも2つのオシロメトリックパルスを取得するために、カフ圧力データは各圧力レベルで記録される。
【0024】
オシロメトリックパルスデータを含めて、カフ圧力の測定は、例えば圧力増分38uにおいて見られるように、オシロメトリックエンベロープが完全に特定するほど、オシロメトリックパルスが十分小さくなる増分にカフ圧力が達するまで、圧力ステップの各増分において行われる。この時点で、処理ユニット16は、圧力カフ12を完全に収縮させるように収縮弁24を制御し、血圧データの収集が終了する。
【0025】
図2は、一連の漸進的なカフ圧力ステップから集められたオシロメトリックパルスデータを使用して計算されたオシロメトリックエンベロープ42をさらに示す。処理ユニット16は、各圧力ステップでオシロメトリックパルスを分離し、オシロメトリックエンベロープ42を表す最良適合曲線を作成する。オシロメトリックエンベロープは、収縮期圧、拡張期圧、およびMAPを推定することに役立つ。MAP44は、オシロメトリックエンベロープ42のピークに対応する圧力ステップの増分38kと決定される。一旦MAPが決定されると、収縮期圧46および拡張期圧48は、MAP圧レベルの振動振幅の予め定められた割合である特定の振動振幅と関連する圧力レベル値と識別することができる。一実施形態において、収縮期圧46は、オシロメトリックエンベロープの振幅がMAPの50%である圧力増分38hに対応する。別の実施形態では、拡張期圧48は、エンベロープ振幅がMAPにおけるエンベロープ振幅の60%と70%との間にある圧力増分38nに相関する。収縮期圧および拡張期圧を推定するために使用されるMAP振幅の割合は、通常、処理ユニット16によって使用される特定のアルゴリズムに応じて40%と80%の間にある。
【0026】
代替実施形態では、オシロメトリックエンベロープデータポイントを生成するために、各圧力ステップでのオシロメトリックパルスの振幅が平均される。これらの実施形態のうちのいくつかにおいて、計算されたオシロメトリックデータポイントの質を改善するために、パルス整合、またはある圧力ステップにおける第1のオシロメトリックパルスの消去などの技術を使用することができる。オシロメトリックエンベロープ42は、圧力ステップで複素振幅の平均を最良適合曲線の入力データポイントとして使用して作成することもできる。あるいは、オシロメトリックエンベロープ42のデータポイントは、各圧力ステップにおけるオシロメトリックパルスの最大振幅でもよい。
【0027】
図2からわかるように、オシロメトリックパルスは、全体的なカフ圧力および圧力増分ステップに対して比較的小さい。これによって、オシロメトリックパルスの検出がノイズおよび他のアーティファクトに非常に影響されやすくなる。患者からのオシロメトリック信号を処理するときに、信号内の最大量の生理的エネルギーは、患者の心拍数の基本周波数および最初の2つの調波周波数内に含まれる。エネルギーの大半は、低端部においては基本周波数によって定義され、高端部においては第2の調波周波数によって定義される周波数帯域内に含まれているので、基本周波数を下回り、第2の調波周波数を上回るオシロメトリック信号の部分を取り除く時間領域フィルタ処理は、信号から望ましい情報のいずれも失うことなく、信号内に含まれるノイズの量を減らす。
【0028】
本明細書において開示される血圧を決定する生理的モニタリングシステムおよび方法は、アーティファクトを取り除くためにオシロメトリックパルス信号の改良された処理を提供することを意図する。本明細書において開示される実施形態は、所望の生理的信号およびアーティファクトが特定の周波数成分特性を有するときに、より高品質のオシロメトリックパルス信号の生成をもたらし得る。これによって、オシロメトリックエンベロープの構築および患者の血圧推定値の計算の精度が向上する。図2は、段階的な収縮を使用したオシロメトリック信号の取得の一例を示すが、例えば連続的な収縮または段階的な膨張など、オシロメトリック信号を得る他の技術が可能であり、ここで提供される説明は、段階的な収縮に関して以下に開示されるように、実施形態の有用性を制限するものでない。
【0029】
図1を再度参照すると、処理ユニット16において自動NIBP測定を算出するとき、アーティファクトによって報告される血圧推定値の誤りが生じないことが重要である。本開示によれば、血圧の推定値を決定するために使用される情報用に処理ユニット16内で波形が分析される前に、処理ユニット16は、圧力変換器26から取得されるカフ圧力波形をフィルタ処理する。本開示によれば、処理ユニット16は、圧力変換器26からのカフ圧力波形に適応時間領域フィルタ処理を使用する。適応時間領域フィルタ処理は、記憶装置50内に格納される一連のIIRフィルタ係数を作成することによって達成される。記憶装置50に格納される係数は、NIBPモニタリングシステム10によって使用することができる一連のフィルタを指定することによって決定される。記憶装置50に格納されるフィルタ係数は、例えば心拍数など、患者からのパラメータに応じて、処理ユニット16によって取り出される。
【0030】
上述したように、心拍数モニタ32は、患者の心拍数の表示を処理ユニット16に提供する。心拍数モニタ32は、ECGまたはSpO2モニタのいずれかとすることができる。あるいは、心拍数モニタ32は、患者の心拍数を示すために処理ユニット16に情報を戻す任意のタイプのモニタとすることができる。
【0031】
本開示において、心拍数モニタ32は、患者の心拍数を示す信号を処理ユニットに提供する。しかし、心拍数モニタは、単に患者から信号を提供することができ、処理ユニット16は、患者の心拍数を決定するようにプログラムすることができる。このような実施形態では、処理能力は、心拍数モニタ32から取り除かれ、処理ユニット16に組み込まれる。いずれにせよ、処理ユニット16は、心拍数モニタ32を介して患者の心拍数の表示を取得する。
【0032】
図3は、患者の血圧を決定する際の処理ユニット16の動作を大まかに示す。ステップ52において、NIBPモニタリングシステムは、最初に、ECGモニタからECG波形情報を取得する。図3に示す実施形態では、心拍数モニタは、ECG波形取得デバイスである。しかし、心拍数モニタがSpO2モニタリングシステムである場合、類似のステップが実行されることを理解されたい。
【0033】
一旦ECG波形が患者から取得されると、心拍数モニタは、ステップ54でECG波形処理を行い、ステップ56で心拍数の決定を生成する。上述したように、心拍数は、本出願に示した実施形態において心拍数モニタ内で決定されるが、代替実施形態では、処理ユニットにおいて算出することができる。
【0034】
一旦心拍数の決定がステップ56において行われると、システムは、ステップ58に進み、患者からの心拍数に基づいて波形フィルタを選択する。ステップ58においてなされる選択は、所望の高域通過カットオフ周波数および低域通過カットオフ周波数の両方に設定される係数を選択することを含む。高域通過および低域通過カットオフ周波数は、患者の心拍数に基づいて明確に選択される。具体的には、高域通過および低域通過カットオフ周波数は、血圧測定用カフからの信号からの情報に最も関連した生理的情報を保つと共に、例えば患者の筋収縮、または患者の活発な身体的操作を要求する手順の間に血圧測定用カフに圧力をかける外科医からなど、外部の干渉から生じる運動アーティファクトを破棄するために必要な調波成分に基づいて選択される。
【0035】
1つの例示として、ステップ54において決定される患者の心拍数が60bpmである場合、心拍数の基本周波数は1Hzであり、第1および第2の調波はそれぞれ2Hzおよび3Hzである。生理的情報の大半が基本周波数および最初の2つの調波内に含まれるので、ステップ58において選択される圧力波形フィルタは、基本周波数および最初の2つの調波に基づく。心拍数が60bpmである例示において、低域通過カットオフ周波数は、3Hzであり、最初の2つの調波を含み、高域通過カットオフ周波数は、1Hzであり、基本周波数が含まれることを確実にする。
【0036】
もう1つの例示として、心拍数が120bpmであると決定された場合、基本周波数および最初の2つの調波はそれぞれ2Hz、4Hz、および6Hzである。こうした実施形態では、低域通過カットオフ周波数は6Hzに選択され、高域通過カットオフ周波数は2Hzに選択されて、基本周波数がフィルタ処理セットに含まれることを確実にするようにする。
【0037】
ステップ58において、図1の処理ユニット16は、心拍数モニタ32からの心拍数に基づいて信号をフィルタ処理するために、どのタイプの波形フィルタが最適かを選択する。この選択に基づいて、処理ユニット16は、選択された高域通過および低域通過カットオフ周波数に基づいて、記憶装置から1組のデジタルフィルタ係数を取り出す。上述したように、高域通過および低域通過カットオフ周波数は、患者からの心拍数、およびフィルタ技術によって使用される所望の数の調波に基づく。代替実施形態では、2つを超える調波を使用することができる。一例として、3つの調波が使用され、患者の心拍数が120bpmであった場合、低域通過カットオフ周波数は、調波が2つだけ使用されるときの上述した6Hzの低域通過カットオフ周波数ではなく、8Hzとなる。
【0038】
図5aは、約2Hzの低域通過カットオフ周波数を含む第1の低域通過フィルタを示す。図5aに図示される低域通過フィルタは、図1に示される記憶装置50に格納されるデジタルフィルタ係数によって定義される。低域通過カットオフ周波数は2Hzとすべきと処理ユニット16が決定すると、図5aのフィルタを作成するフィルタ係数が選択され、取り出される。
【0039】
図5bは、4Hzの低域通過カットオフ周波数を有する第2の低域通過フィルタを示す。図5bに示される低域通過フィルタは、記憶装置50内に格納される1組のデジタルフィルタ係数によって定義される。低域通過カットオフ周波数は4Hzとすべきと処理ユニット16が決定すると、図5bに示されるフィルタに関連するフィルタ係数が記憶装置50から取り出される。
【0040】
図5cは、6Hzの低域通過カットオフ周波数を含む低域通過フィルタを示す。図5cに示されるフィルタは、記憶装置50内に格納される一連のデジタルフィルタ係数によって定義される。低域通過カットオフ周波数は6Hzとすべきと処理ユニット16が決定すると、処理ユニット16は、図5cのフィルタに関連するフィルタ係数を取り出す。
【0041】
図5dは、8Hzの低域通過カットオフ周波数を含む低域通過フィルタを示す。図5dに示される低域通過フィルタは、記憶装置50内に格納される1組のデジタルフィルタ係数によって定義される。低域通過カットオフ周波数は8Hzとすべきと処理ユニット16が決定すると、処理ユニット16は、図5dに示されるフィルタに関連するフィルタ係数を取り出す。
【0042】
図5a〜図5dに示される低域通過フィルタは、4次楕円フィルタである。しかし、選択されるフィルタの順序、サンプリングレート、および他の既知の要因が本開示に従って使用することができる低域通過フィルタのタイプに影響することを理解されたい。通常、低域通過フィルタ係数は、一貫した方法で任意のアーティファクトおよび任意の調波エネルギーを最適に取り除くために、最高の所望の調波を低域通過カットオフ周波数のすぐ下に保つように選択される。
【0043】
図6aは、1Hzの高域通過カットオフ周波数を含む高域通過フィルタを示す。図6aに示される高域通過フィルタは、記憶装置50内に格納される一連のデジタルフィルタ係数によって定義される。高域通過カットオフ周波数は1Hzとすべきと処理ユニット16が決定すると、処理ユニット16は、図6aに示されるフィルタに関連するフィルタ係数を取り出す。
【0044】
図6bは、2Hzの高域通過カットオフ周波数を含む高域通過フィルタを示す。図6bに示される高域通過フィルタは、記憶装置50内に格納される一連のデジタルフィルタ係数によって定義される。高域通過カットオフ周波数は2Hzとすべきと処理ユニット16が決定すると、処理ユニット16は、図6bに示される高域通過フィルタに関連するフィルタ係数を取り出す。
【0045】
図6a〜図6bに示される高域通過フィルタは、4次バターワースフィルタである。しかし、選択されるフィルタの順序、サンプリングレート、および他の既知の要因が本開示に従って使用することができる高域通過フィルタのタイプに影響することを理解されたい。通常、高域通過フィルタ係数は、任意の下部の周波数アーティファクトを最適に取り除くために、基本周波数を高域通過カットオフ周波数のすぐ上に保つように選択される。
【0046】
図7は、微分器と呼ばれる別のタイプの高域通過フィルタを示す。図7に示される6次微分器(sixth order differentiator)も、1組のデジタルフィルタ係数によって定義され、定義済みの高域通過カットオフ周波数を有する高域通過フィルタとして使用することができる。高域通過カットオフ周波数が図7に示すようになるものと処理ユニット16が決定すると、処理ユニット16は、図7のフィルタと関連する記憶装置50に格納されるフィルタ係数を取り出す。
【0047】
図3を再度参照し、一旦処理ユニット16がステップ58で高域通過および低域通過フィルタ係数を選択すると、処理ユニットは、ステップ60に示すように、圧力変換器から時間領域におけるカフ圧力波形を受信する。ステップ60において得られるカフ圧力波形は、処理ユニット16で受信され、ステップ58において選択される圧力波形フィルタ(群)を利用して、ステップ62で、時間領域においてカフ圧力波形が処理される。
【0048】
図3のステップ62によって識別される圧力波形処理は、図4の流れ図にさらに示される。図4に示すように、カフ圧力波形サンプルは、ステップ60で得られ、ステップ64に示すように、現在の圧力ステップにおけるカフ圧力またはベースラインが波形サンプルから減算される。
【0049】
ベースラインの圧力が各サンプルから減算された後、処理ユニットは、ステップ66に示すように、また上述したように、心拍数情報に基づいて選択されたフィルタを使用する。処理ユニットは、ステップ68において低域通過フィルタ係数、およびステップ70において高域通過フィルタ係数を適用する。上述したように、ステップ68および70で使用するために選択される高域通過および低域通過フィルタ係数は、所望の高域通過および低域通過周波数に基づいて記憶装置50から取り出される。
【0050】
低域通過および高域通過フィルタ係数がステップ68および70において適用される前に、処理ユニットは、リンギング効果および他の一時的な効果がフィルタ出力より勝るのを防ぐために、フィルタを初期化する。フィルタの最初のプライミングは、周知の技術である。一旦フィルタがプライミングされると、血圧測定用カフからの圧力波形が処理され、ステップ72で出力信号が提供される。ステップ72で提供される出力信号は、高域通過および低域通過カットオフ周波数によって決定される通過帯域の外側のアーティファクトを取り除くために、フィルタ処理されている。
【0051】
図3を再度参照すると、ステップ62で一旦出力信号が処理されると、処理ユニット16は、既知の技術を使用して、ステップ74でオシロメトリックエンベロープデータを作成するように、圧力波形を処理する。ステップ74で生成されたオシロメトリックエンベロープデータは、ステップ76で血圧推定値を算出するために使用される。上述したように、ステップ76で出力された血圧推定値は、患者の収縮期圧、平均動脈圧、および拡張期圧の推定値を含む。
【0052】
図8は、初期膨張圧80から最終的なカフ圧力82までカフの圧力を減らすために必要とされる一連の圧力ステップ38にわたる血圧測定用カフ圧力78を示す。図8は、血圧測定用カフから取得され、上述したようにフィルタ処理されるフィルタ処理済みカフ圧力波形84も示す。フィルタ処理済みカフ圧力84は、本開示に記載される技術を使用したNIBPモニタリングシステム10によるさらなる処理のために必要とされる生理的情報のみを含む。
【0053】
次に図9を参照すると、本開示のNIBPモニタリングシステムを使用して患者の血圧を決定する際に処理ユニットによって実行されるステップのフローチャートが示されている。最初に、図9のステップ86に示すように、処理ユニット16は、最初の目標圧力まで血圧測定用カフ12を膨張させる旨のコマンドを加圧弁18に発行する。一旦システムが図2に示される初期膨張圧38aに達すると、システムは、心拍数モニタ32から患者の心拍数を決定する。心拍数情報に基づいて、システムは、ステップ88に示すように、決定された心拍数に基づいてフィルタ特性を選択する。上述したように、フィルタ処理が基本周波数および第1および第2の調波を含む一実施形態において、高域通過および低域通過カットオフ周波数が決定され、処理ユニット16は、記憶装置50からこれらのカットオフ周波数のための対応するフィルタ係数を取り出す。
【0054】
一旦フィルタ係数が選択されると、システムは、ステップ90でフィルタを初期化する。フィルタが初期化された後、処理ユニットは、圧力変換器26からカフ圧力信号を受信し、通過帯域外のアーティファクトを取り除き、ステップ92において振動を検出するようにカフ圧力信号を処理する。図8に示すように、振動は、各圧力ステップに存在しており、適応フィルタ処理に基づいて、比較的アーティファクトがない。
【0055】
一旦振動振幅が識別されると、ステップ94に示すように、処理ユニット16は、振動振幅およびカフの圧力レベルを格納する。ステップ94で振動振幅のそれぞれが格納された後、システムは、ステップ96に示すように、全オシロメトリックエンベロープが構築されたかどうかをステップ96で決定する。全オシロメトリックエンベロープがまだ構築されていない場合、システムは、ステップ98で、血圧測定用カフを新しい圧力レベルまで収縮させる。図2に示すように、血圧測定用カフの圧力は、初期膨張圧38aから最終的な圧力38uまでの一連の圧力ステップ38で収縮する。
【0056】
カフ圧力が新しい圧力ステップまで収縮した後、システムはステップ88に戻り、現在の心拍数に基づいてフィルタ特性を再度選択する。このように、血圧の監視中に心拍数が変化した場合、システムが現在決定されている心拍数に基づいて異なるフィルタ設定を選択することができるように、システムは、個々の圧力ステップのそれぞれで患者の心拍数をチェックする。したがって、システムは、血圧を決定するプロセスの間、変化する心拍数に適応する。
【0057】
オシロメトリックエンベロープがステップ96で構築されたことを処理ユニットが決定するまで、システムは、ステップ88〜96を繰り返し続ける。一旦オシロメトリックエンベロープが構築されると、システムは、ステップ100でオシロメトリックデータから血圧を決定する。オシロメトリックデータからの血圧の決定は、周知の処理技術である。
【0058】
一旦血圧オシロメトリックデータがステップ100で出力された適応フィルタ波形を使用して十分に得られると、処理ユニットは、この場合も従来の方法で、ステップ102で血圧推定値を決定する。
【0059】
上述したように、本開示のシステムおよび方法は、患者の心拍数に基づいて、時間領域における血圧測定用カフからのオシロメトリックデータを処理するための様々なフィルタ係数を選択する。患者の心拍数が変化するにつれて、本開示のシステムおよび方法は、フィルタ係数が患者の現在の心拍数に基づいて最も適切に選択されるようにフィルタ係数を調整する。血圧測定用カフの圧力が初期膨張圧から最終的な圧力に減少するにつれて、各圧力ステップでフィルタ特性が決定される。したがって、本開示のシステムおよび方法は、患者の血圧を決定するプロセスの間、フィルタ係数を修正する。この適応時間領域フィルタ技術およびシステムは、血圧推定値の決定の前のアーティファクトの除去を強化する。
【0060】
本書は、例を使用して、最良の形態を含めて本発明を開示し、また任意の当業者が本発明を製作し使用することができるようにする。本発明の特許され得る範囲は、特許請求の範囲によって定義され、当業者が思いつく他の例を含むことができる。こうした他の例は、それらが特許請求の範囲の文字通りの言語と異ならない構造的要素を有する場合、または、それらが特許請求の範囲の文字通りの言語とのわずかな違いを有する等価な構造的要素を含む場合、特許請求の範囲内に含まれるものとする。
【符号の説明】
【0061】
10 NIBPモニタリングシステム
12 血圧カフ
14 患者
16 処理ユニット
18 弁
20 加圧空気源
22 圧力導管
24 弁
26 圧力変換器
28 圧力導管
30 ディスプレイ
32 心拍数モニタ
34 導線
36 カフ圧力グラフ
38 圧力ステップ
38a 圧力ステップ
38a カフ圧力ステップ
38a 初期膨張圧
38h 増分
38k 圧力ステップの増分
38n 増分
38u 圧力増分
38u 最終的な圧力
40 パルス
42 エンベロープ
44 振動MAP
46 圧力
48 圧力
50 記憶装置
78 血圧測定用カフ圧力
80 初期膨張圧
82 最終的なカフ圧力
84 フィルタ処理済みカフ圧力波形

【特許請求の範囲】
【請求項1】
患者(14)の血圧を計算する方法であって、
患者に配置された血圧測定用カフ(12)から処理ユニット(16)でカフ圧力波形を受信するステップと、
前記処理ユニット(16)で前記患者の心拍数の表示を受信するステップと、
前記患者の前記心拍数に基づいてフィルタパラメータを選択するステップと、
前記選択されたフィルタパラメータに基づいて前記処理ユニット(16)で前記カフ圧力波形をフィルタ処理するステップと、
前記フィルタ処理済みカフ圧力波形(84)に基づいて前記処理ユニット(16)で前記患者の血圧を決定するステップと
を含む方法。
【請求項2】
前記心拍数の表示が前記患者のECG信号から受信される請求項1記載の方法。
【請求項3】
前記心拍数インジケータが前記患者のSpO2信号から受信される請求項1記載の方法。
【請求項4】
フィルタパラメータを選択する前記ステップが、
前記心拍数の基本周波数を算出するステップと、
前記基本周波数に基づいて高域通過カットオフ周波数を選択するステップと、
前記基本周波数の選択された調波周波数に基づいて低域通過カットオフ周波数を選択するステップと
を含む請求項1記載の方法。
【請求項5】
前記選択された調波周波数が第2の調波周波数である請求項4記載の方法。
【請求項6】
前記カフ圧力波形が前記選択された高域通過および低域通過カットオフ周波数を使用して処理される請求項5記載の方法。
【請求項7】
一連の圧力ステップ(38)で初期膨張圧(38a)から前記血圧測定用カフ(12)を収縮させるステップと、
前記圧力ステップのそれぞれで前記カフ圧力波形を受信するステップと、
前記選択されたフィルタパラメータを使用して前記圧力ステップのそれぞれで前記カフ圧力波形をフィルタ処理するステップと、
前記フィルタ処理済みカフ圧力波形に基づいてオシロメトリックエンベロープ(42)を作成するステップと
をさらに含む請求項1記載の方法。
【請求項8】
前記選択された高域通過および低域通過カットオフ周波数に基づいて記憶装置から係数セットを取り出すステップと、
前記取り出された係数に基づいて前記カフ圧力波形をフィルタ処理するステップと
をさらに含む請求項4記載の方法。
【請求項9】
患者(14)の血圧を決定するためのシステム(10)であって、
処理ユニット(16)と、
前記患者の心拍数を決定するために前記患者に接続され、前記処理ユニットに前記決定された心拍数を伝える心拍数モニタ(32)と、
前記患者からカフ圧力波形を得るために前記患者に配置された血圧測定用カフ(12)であり、前記カフ圧力波形が前記処理ユニットに提供される、血圧測定用カフと、
前記処理ユニットと通信する記憶装置(50)であり、一連のフィルタ係数を含む記憶装置と、
前記処理ユニットに含まれ、前記患者の前記心拍数によって決定される低域通過カットオフ周波数を有する低域通過フィルタと、
前記処理ユニット内に含まれ、前記患者の前記心拍数によって決定される高域通過カットオフを有する高域通過フィルタと
を含むシステム(10)。
【請求項10】
前記係数が前記高域通過カットオフ周波数および前記低域通過周波数に基づいて前記記憶装置から取り出される請求項9記載のシステム。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5A】
image rotate

【図5B】
image rotate

【図5C】
image rotate

【図5D】
image rotate

【図6A】
image rotate

【図6B】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate


【公開番号】特開2012−125576(P2012−125576A)
【公開日】平成24年7月5日(2012.7.5)
【国際特許分類】
【外国語出願】
【出願番号】特願2011−271834(P2011−271834)
【出願日】平成23年12月13日(2011.12.13)
【出願人】(390041542)ゼネラル・エレクトリック・カンパニイ (6,332)
【Fターム(参考)】