説明

表面検査装置および表面検査方法

【課題】 一般に入手が容易である1台の二次元カメラと1台の照明と稼動ステージと画像処理装置という通常の表面検査装置の構成で、欠陥が凸であるか否かの判定を可能とし、短時間で検査処理が実現できる表面検査装置を提供すること。
【解決手段】 検査物を載置するステージと、一の照明、光学系、平面画像を取得する一の画像取得部、からなる撮像装置と、前記ステージと前記撮像装置とを相対的に移動させる移動制御部と、画像記憶部と、欠陥検出部と、前記欠陥検出部で欠陥が検出された画像を第1の画像とし、当該第1の画像を取得した時の前記ステージと前記撮像装置との位置関係と異なる位置関係で当該第1の画像と同一の欠陥が含まれる第2の画像を取得し、当該第1の画像と第2の画像の位置合せを行う画像位置合せ部と、位置合せがされた第1の画像と第2の画像を比較し、欠陥が凸状態であるか否かを判定する凸判定部とを有する。

【発明の詳細な説明】
【技術分野】
【0001】
半導体チップや回路パターン等の平面状の対象物について表面欠陥を検査する装置およびその検査方法に関する。
【背景技術】
【0002】
半導体チップや回路パターンなどの模様を有する平面状の対象物は、1台の二次元カメラと1台の照明と可動ステージと画像処理装置等により構成された表面検査装置により欠陥の検出が行われている。CCDカメラ等の二次元カメラにより撮像された二次元画像を用いて画像処理により表面欠陥を検出する手法としては、事前に用意した基準パターンと比較する方法や正規化相関係数にもとづくテンプレートマッチングなど多数の公知の手法が存在する。
このような二次元カメラを用いた表面検査装置では、通常、検出された欠陥について異物除去処理の後に再検査を行う。これは検出された欠陥がホコリ等の除去可能な異物の付着である場合には、その異物を除去すれば正常品として取り扱いが可能となるためである。
一方、検査物の三次元情報を取得して欠陥を検出し、検出された欠陥が異物等の付着によるものであるか否か判断可能な三次元検査装置も実現されている。対象物の三次元情報を取得する公知技術として、2台のカメラを利用するステレオ法や、レーザーによる3次元測定法が知られている。しかし、これらの技術は複数のカメラやレーザースキャナなどの専用の装置が必要となるため、装置の大型化やコストの増大等の問題を有している。これらの問題点を解決する手段として、特許文献1に記載の発明が知られている。
【0003】
特許文献1の記載の発明に関する概略構成を図12に示す。当該発明は、1台のカメラ112と1台の照明116を用い、検査物118からの反射光を二分する特殊な光学系114を用いて画像処理装置110によりステレオ法を適用して検査物の三次元情報を取得する。
【特許文献1】特開2002−213929号公報
【発明の開示】
【発明が解決しようとする課題】
【0004】
平面状の検査物の表面検査において、二次元カメラを用いた表面検査装置では検出された欠陥が異物等の付着か否か判断できないため、全ての検出された欠陥について異物除去処理の後に再検査を行っており、検査処理時間が長くなるという課題があった。
特許文献1に記載の発明においては、前記した三次元情報を取得する検査装置の問題点は解消しているものの、検査物の三次元情報を得るために特殊な光学系114を正確に調整しなければならず、その調整は非常に難しい。さらに特殊な光学系114は一般に入手困難であるため、製作に多大なコストと時間を要する。また、検査物の三次元情報を取得するためには、多くの処理や演算が必要となるため、二次元カメラを用いた表面検査装置に比較して検査処理時間が長くなる。
一方、検出された欠陥について異物除去処理後の再検査が必要か否かは、異物等の付着か否かが判断できれば良く、検出された欠陥の詳細な三次元情報まで必要としない。
そこで本発明は、一般に入手が容易である1台の二次元カメラと1台の照明と稼動ステージと画像処理装置という通常の表面検査装置の構成で、欠陥が凸であるか否かの判定を可能とし、短時間で検査処理が実現できる表面検査装置を提供することを目的とする。
【課題を解決するための手段】
【0005】
上記課題を解決するために、請求項1に記載された発明は、検査物を載置するステージと、検査物の検査対象領域に光を照射する一の照明、前記検査対象領域を拡大する光学系、前記光学系で拡大された前記検査対象領域の平面画像を取得する一の画像取得部、からなる撮像装置と、前記撮像装置により取得する平面画像が検査対象領域となるように前記ステージと前記撮像装置とを相対的に移動させる移動制御部と、前記撮像装置から送られた画像を記憶する画像記憶部と、前記画像記憶部より画像を読み出して欠陥を検出する欠陥検出部と、前記欠陥検出部で欠陥が検出された画像を第1の画像とし、当該第1の画像を取得した時の前記ステージと前記撮像装置との位置関係と異なる位置関係で当該第1の画像と同一の欠陥が含まれる第2の画像を取得し、当該第1の画像と第2の画像の位置合せを行う画像位置合せ部と、前記画像位置合せ部により位置合せがされた第1の画像と第2の画像を比較し、欠陥が凸状態であるか否かを判定する凸判定部と、を有することを特徴とする。
請求項2に記載された発明は、請求項1に係る表面検査装置であって、前記画像位置合せ部が、前記第1および第2の画像から同一の欠陥を含まない所定領域を抽出し、当該抽出された所定領域を用いて第1の画像と第2の画像の位置合せを行うことを特徴とする。
【0006】
請求項3に記載された発明は、請求項1または2に記載の表面検査装置であって、前記凸判定部が、前記画像位置合せ部により位置合せがされた第1および第2の画像の同一欠陥を含む同一領域を比較し、当該欠陥が凸状態であるか否かを判定することを特徴とする。
請求項4に記載された発明は、請求項3に記載の表面検査装置であって、前記凸判定部が、前記画像位置合せ部により位置合せがされた第1および第2の画像の同一欠陥を含む同一領域の画素値の差の二乗和が、予め設定された閾値よりも大きい場合に当該欠陥が凸状態と判定することを特徴とする。
請求項5に記載された発明は、請求項1乃至4に記載の表面検査装置であって、一の検査物に複数の検査対象領域が含まれている場合であって、一の検査対象領域の画像について前記欠陥検出部にて欠陥を検出して前記第1画像を取得した場合には、次の検査対象領域を前記撮像装置で撮像する前に、前記第2の画像を取得することを特徴とする。
請求項6に記載された発明は、請求項1乃至4に記載の表面検査装置であって、一の検査物に複数の検査対象領域が含まれている場合には、全ての検査対象領域について前記欠陥検出部にて欠陥を検出して前記第1画像を取得した後に、前記第2の画像を取得することを特徴とする。
【0007】
請求項7に記載の発明は、請求項1乃至6に記載の表面検査装置であって、異物を除去する異物除去装置を有し、前記凸判定部により欠陥が凸と判定された場合に、前記異物除去装置により異物除去処理を行った後に当該欠陥について前記欠陥検出部にて再び欠陥が検出を行うことを特徴とする。
請求項8に記載の発明は、一の欠陥を有する検査物を、異なる角度から撮像することにより得られた第1の画像と第2の画像との、画像の位置合せを行い、前記画像の位置合せがなされた第1の画像と第2の画像を比較して欠陥が凸状態であるか否かを判定する、ことを特徴とする。
【発明の効果】
【0008】
請求項1乃至6および8に係る発明によれば、欠陥が凸か否かを短時間で判定することが可能であり、検査処理時間の短縮化が実現できる。
請求項7に係る発明によれば、欠陥が凸か否かを短時間で判定し、凸である欠陥のみ異物除去処理の後に再検査することで、検査処理時間の短縮化が実現できるとともに歩留の向上をも実現できる。
【発明を実施するための最良の形態】
【0009】
本発明の実施形態について、図1乃至図11を用いて説明する。
図1は本発明に係る表面検査装置の構成を示す図である。表面検査装置は、検査物1、検査物1を載置して移動するステージ2、検査物1の検査対象領域を撮像する撮像装置10、画像処理装置20と、図示していない異物除去装置から構成される。検査物1は、半導体チップや回路パターン等の模様を有する略平面状の物であり、例えば図2にような平面上の模様を有する物である。
撮像装置10は、撮像のために検査物1に光を照射する照明11、検査物1の観察画像を拡大する光学系12、光学系12により拡大された検査対象領域の二次元画像を取得する画像取得部13により構成される。照明11はLED照明等を使用することができ、画像取得部13はCCDカメラ等を使用することができる。
画像処理装置20は、撮像装置10から送られた画像データを取得し記憶する画像記憶部21、画像記憶部21から画像を読み出して欠陥を検出する欠陥検出部22、ステージ2が異なる位置で撮像された同一の欠陥が含まれる2つの画像について画像の位置合せを行う画像位置合せ部23、画像位置合せ部23で位置合せされた2つの画像を比較して欠陥が凸か否かを判定する凸判定部24、ステージ2の移動を制御するステージ制御部25により構成されている。なお、画像処理装置20は、各種演算処理を行うCPU、各種データを記憶するハードディスク、演算処理に用いるデータ等を記憶するメモリ、外部システム等とデータをやり取りする外部入出力部、画像処理結果や撮像画像を表示するディスプレー等により構成されるPC等であり、前記各機能はハードディスクやメモリに記憶されたプログラムがCPUにより実行されることで実現される。
【0010】
次に図3に示すフローチャートを用いて、表面検査の処理を説明する。
S1にて、ステージ制御部25からステージ2に移動を指示し、検査物1の検査対象領域を撮像装置10で撮像する位置へ移動させる。ステージ2の移動完了後、撮像装置10にて検査対象領域の二次元画像を撮像し、第1画像として画像記憶部21に記憶する。欠陥検出部22は第1画像を画像記憶部21より読み出し、事前に記憶された基準パターン画像と第1画像を比較する方法や正規化相関係数に基づくテンプレートマッチング等の公知の欠陥検出技術を利用し、欠陥を検出する。欠陥検出技術は本発明の要旨ではないため、詳細説明は省略する。ここで、S1にて欠陥が検出された場合の第1画像の具体例を図4に示す。図4は、図2に示す検査物の検査対象領域を拡大して撮像された第1画像である。
S2にて、第1画像に欠陥が検出されたか否か確認し、欠陥が検出されない場合には正常と判断する(S3)。一方、欠陥が検出された場合には、S4にて、第1画像の撮像時とは異なる位置であって撮像装置10で撮像する画像に当該検出された欠陥が含まれる位置への移動を、ステージ制御部25からステージ2に指示する。ステージ2の移動完了後、撮像装置10にて画像を取得し、画像記憶部21に第2画像として記憶する。第2画像についても、第1画像と同様に欠陥検出部22にて欠陥を検出する。
【0011】
まず、S2にて欠陥を検出した第2画像の具体例を図5および図6に示す。図5は、検出された欠陥が凸状態であった場合における図4に示した第1画像に対応する第2画像である。図6は、検出された欠陥が平面状態であった場合における図4に示した第1画像に対応する第2画像である。
次に、第2画像の具体例である図5と図6に差異が生じる原因について説明する。
図7は検出された欠陥が凸状態である場合における、第1画像と第2画像の光路の違いを示した図である。図7に示すように検出された欠陥が異物の付着等による凸状態であった場合、検査物1を移動させることで凸状態の異物により光路が遮られる部分が変化することとなる。本例では、第1画像において検査物の模様と異物が重なり合う画像とはならないが、第2画像において検査物の模様と異物が重なり合う画像となることが理解できる。つまり、第1画像と第2画像において模様と欠陥の位置関係が変化することとなる。
一方、図8は検出された欠陥が平面状態である場合における、第1画像と第2画像の光路の違いを示した図である。検出された欠陥がシミ等の平面状態であった場合、図8に示すように検査物1を移動させても欠陥により光路が遮られるようなことはない。よって、第1画像と第2画像において模様と欠陥の位置関係が変化することはない。
【0012】
以上のことから、図5および図6のように、検出された欠陥が凸か否かで第2画像に差異が生じることとなる。
S5では、画像位置合せ部23にて、第1画像および第2画像の同一の欠陥を含む領域を除く所定領域を画像位置合せ領域として抽出し、抽出された第1画像および第2画像の当該画像位置合せ領域を用いて第1画像と第2画像の位置の差異を算出し、第1画像と第2画像の位置合せを行う。
画像位置合せ領域は、検出された欠陥の外側の画素領域であって、ステージ2の動作誤差量と画像位置合せに必要な画素数から決定される画素領域である。具体的には図9に示すように、画像位置合せ領域は、検出された欠陥を取り囲むように形成される略ドーナツ状の2つの太線で囲まれた領域となる。なお、ステージ2の動作誤差量と画像位置合せに必要な画素数は、ステージの位置決め精度や検査物の模様に合わせて設定が必要であるため、任意に設定可能となっている。また、画像位置合せ領域とされない略ドーナツ状の中心に位置する画素領域は、検出された欠陥の外周に数画素だけ外側に拡張した領域とする事ができる。
上記のように欠陥を含む領域を除いた略ドーナツ状の画素領域を画像位置合せ領域として抽出することとしたのは、前記の通り欠陥が凸状態の場合には第1画像と第2画像で欠陥と模様の位置関係が変化するため、欠陥部分を含む画像を用いて第1画像と第2画像の位置合せを行うと、位置合せ精度が低くなるからである。
【0013】
次に、第1画像と第2画像の位置の差異を算出する方法について説明する。前記の通り、第1画像と第2画像はステージ2が異なる位置で撮像された画像である。この時のステージ2のx軸方向における位置の差異をa、y軸方向における位置の差異をbとすれば、第1画像の座標値(x,y)に対応する第2画像の座標値は(x+a,y+b)となる。よって、第1画像の画素値を数式1にて表現すると、それに対応する第2画像の画素値は数式2により表現できることなる。
[数1]

【0014】
[数2]

【0015】
上記数式1および2を用い、画像位置合せ領域における第1画像と第2画像の画素値の差の二乗和が最小となるaおよびbを求めることで、第1画像と第2画像の位置の差異(a,b)を求めることができる。具体的には、数式3が最小となるaおよびbを最小二乗法により求めることで、第1画像と第2画像の位置の差異(a,b)が求まる。
[数3]

【0016】
以上より求めた(a,b)を用いて、第1画像をx軸方向にaおよびy軸方向にb移動させることで、第1画像と第2画像の位置合せを行うことができる。
なお、ステージ2の動作誤差が非常に微小である場合には、前記aおよびbは第1画像と第2画像の取得時におけるステージ制御部25から指示されたステージ2の移動位置の差とすることもできる。
S6では、凸判定部において、画像位置合せがなされた第1画像と第2画像から、同一欠陥を含む画素領域であって、比較に必要な領域を有する同一の画素領域を欠陥近傍領域として抽出し、当該欠陥近傍領域の画素値の差異量を求め、当該差異量が予め決められた閾値以上の場合には欠陥は凸状態であると判定する。
第1画像と第2画像から抽出された欠陥近傍領域の具体例を図10に示す。この具体例においては、画像位置合せ部23で第1画像と第2画像の位置合せの結果、第1画像と第2画像の位置の差異が(a,0)の場合のものである。第1画像および第2画像のいずれにおいても欠陥が含まれ、かつ、凸状態の判定に必要な欠陥近傍領域がm画素×n画素とする。係る場合において、第1画像における欠陥近傍領域のx軸位置はxからx+m、y軸位置はyからy+nであるとすると、第2画像における欠陥近傍領域のx軸位置はx+aからx+a+m、y軸位置はyからy+nとなる。
【0017】
上記のように欠陥近傍領域を抽出することにより、第1画像および第2画像のいずれの欠陥近傍領域にも同一欠陥が含まれ、かつ、第1画像と第2画像の欠陥近傍領域は対応する同一部分の画素領域となり、欠陥の位置関係が検査物の模様等に対して変化したことを画素値の差の二乗和を求めることで容易に把握できる。
数式4は第1画像と第2画像の欠陥近傍領域を用いて画素値の差の二乗和Dを求める式である。
[数4]

【0018】
数式4により求めた画素値の差の二乗和Dと予め設定しておく閾値Lとを比較し、画素値の差の二乗和Dが閾値L以上の場合には欠陥は凸と判定する。これは、前記の通り第1画像と第2画像において欠陥が凸状態では、模様と欠陥の位置が変化するため、共通領域の画素値の差の二乗和Dが大きくなるからである。
閾値Lは、欠陥のない正常な複数のサンプルを用いて、欠陥のない正常部位について第1画像と第2画像を取得し、任意の領域を欠陥近傍領域として画素値の差の二乗和Dを多数計算して記憶する。計算した画素値の差の二乗和Dの集合は、撮影条件やステージ動作の影響等、複数の変動要因を含んでいるため、正規分布に従うと考えられる。この分布は、凸状態の欠陥がない状態における画素値の差の二乗和Dの分布であり、上側のはずれ値を凸状態の欠陥とすればよい。そこで、平均と標準偏差を計算し、要求される検出精度に応じて上側のパーセント点(たとえば99.9%)の値を閾値Lとして決定することができる。
また、画素値の差の二乗和Dの変動要因として、画像の画素値の傾き状態(濃淡のコントラスト)が大きい場合、つまり値の低い画素群と値の高い画素群が隣接している場合には少しの位置の変化が大きな画素値の差異となるため、画像を領域に分割して領域ごとに閾値を決定することも可能である。
【0019】
S7では、S6にて凸でないと判定された欠陥については、欠陥と判断する(S8)。一方、凸と判断された場合には、S9にて異物除去処理を行う。異物除去処理の内容は、本発明の特徴部分ではなく公知技術であるので詳細な説明は省略するが、強力な吸引装置により異物を吸引して除去すること等により実現することができる。
S10にて、異物除去処理が施された欠陥を、再び撮像装置10にて撮像して画像記憶部21に記憶し、当該画像を用いて欠陥検出部22にて欠陥の検出を行う。欠陥が検出されなかった場合には、S11にて異物が除去され正常と取り扱うことが可能と判断し、正常として処理をする(S3)。一方、欠陥が再び検出された場合には、S11にて除去ができない欠陥と判断し、欠陥として処理をする(S8)。
以上の処理が終了すると、一の検査対象領域について検査処理が完了する。次に、新たな検査対象領域についてS1から再び開始する。
また、図11のフローチャートに示すように、S21にて検査物に存在する複数の検査対象領域について、全ての検査対象領域の第1画像を取得して欠陥を検出した後に、S24にて検出された欠陥を含む第2画像を取得するようにしてもよい。なお、以下の処理は前記と同じ処理を行うため、説明は省略する。
【0020】
さらに、上記実施形態ではステージ2を移動させているが、撮像装置10を移動させるようにすることもできる。
【図面の簡単な説明】
【0021】
【図1】本発明に係る表面検査装置の構成図である。
【図2】本発明に係る表面検査装置の検査物の具体例を表した図である。
【図3】本発明に係る表面検査装置の処理内容を表したフローチャートである。
【図4】本発明に係る表面検査装置で撮像された第1画像の具体例を示した図である。
【図5】本発明に係る表面検査装置で撮像された、欠陥が凸状態である場合における図4に示した第1画像に対応する第2画像の具体例を示した図である。
【図6】本発明に係る表面検査装置で撮像された、欠陥が平面状態である場合における図4に示した第1画像に対応する第2画像の具体例を示した図である。
【図7】検出された欠陥が凸状態である場合において、第1画像と第2画像の光路の違いを示した図である。
【図8】検出された欠陥が平面状態である場合において、第1画像と第2画像の光路の違いを示した図である。
【図9】本発明に係る表面検査装置で抽出される画像位置合せ領域の具体例を示した図である。
【図10】第1画像と第2画像から抽出された欠陥近傍領域の具体例を示した図である。
【図11】本発明に係る表面検査装置の処理内容を表した別のフローチャートである。
【図12】特許文献1の記載の発明における三次元検査装置の構成図である。
【符号の説明】
【0022】
1 検査物
2 ステージ
10 撮像装置
11 照明
12 光学系
13 撮像装置
20 画像処理装置
21 画像記憶部
22 欠陥検出部
23 画像位置合せ部
24 凸判定部
25 ステージ制御部


【特許請求の範囲】
【請求項1】
検査物を載置するステージと、
前記検査物の検査対象領域に光を照射する一の照明、前記検査対象領域を拡大する光学系、前記光学系で拡大された前記検査対象領域の平面画像を取得する一の画像取得部、からなる撮像装置と、
前記撮像装置により取得する平面画像が検査対象領域となるように前記ステージと前記撮像装置とを相対的に移動させる移動制御部と、
前記撮像装置から送られた画像を記憶する画像記憶部と、
前記画像記憶部より画像を読み出して欠陥を検出する欠陥検出部と、
前記欠陥検出部で欠陥が検出された画像を第1の画像とし、当該第1の画像を取得した時の前記ステージと前記撮像装置との位置関係と異なる位置関係で当該第1の画像と同一の欠陥が含まれる第2の画像を取得し、当該第1の画像と第2の画像の位置合せを行う画像位置合せ部と、
前記画像位置合せ部により位置合せがされた第1の画像と第2の画像を比較し、欠陥が凸状態であるか否かを判定する凸判定部と、
を有することを特徴とする表面検査装置。
【請求項2】
前記画像位置合せ部が、前記第1および第2の画像から同一の欠陥を含まない所定領域を抽出し、当該抽出された所定領域を用いて第1の画像と第2の画像の位置合せを行うことを特徴とする、請求項1に記載の表面検査装置。
【請求項3】
前記凸判定部が、前記画像位置合せ部により位置合せがされた第1および第2の画像の同一欠陥を含む同一領域を比較し、当該欠陥が凸状態であるか否かを判定することを特徴とする、請求項1または2に記載の表面検査装置。
【請求項4】
前記凸判定部が、前記画像位置合せ部により位置合せがされた第1および第2の画像の同一欠陥を含む同一領域の画素値の差の二乗和が、予め設定された閾値よりも大きい場合に当該欠陥が凸状態と判定することを特徴とする、請求項3に記載の表面検査装置。
【請求項5】
一の検査物に複数の検査対象領域が含まれている場合であって、一の検査対象領域の画像について前記欠陥検出部にて欠陥を検出して前記第1画像を取得した場合には、次の検査対象領域を前記撮像装置で撮像する前に、前記第2の画像を取得することを特徴とする、請求項1乃至4のいずれか1項に記載の表面検査装置。
【請求項6】
一の検査物に複数の検査対象領域が含まれている場合には、全ての検査対象領域について前記欠陥検出部にて欠陥を検出して前記第1画像を取得した後に、前記第2の画像を取得することを特徴とする、請求項1乃至4のいずれか1項に記載の表面検査装置。
【請求項7】
異物を除去する異物除去装置を有し、前記凸判定部により欠陥が凸と判定された場合に、前記異物除去装置により異物除去処理を行った後に当該欠陥について前記欠陥検出部にて再び欠陥の検出を行うことを特徴とする、請求項1乃至6のいずれか1項に記載の表面検査装置。
【請求項8】
一の欠陥を有する検査物を、異なる角度から撮像することにより得られた第1の画像と第2の画像との、画像の位置合せを行い、
前記画像の位置合せがなされた第1の画像と第2の画像を比較して欠陥が凸状態であるか否かを判定する、
ことを特徴とする表面検査方法。


【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate


【公開番号】特開2009−250777(P2009−250777A)
【公開日】平成21年10月29日(2009.10.29)
【国際特許分類】
【出願番号】特願2008−98837(P2008−98837)
【出願日】平成20年4月7日(2008.4.7)
【出願人】(000005234)富士電機ホールディングス株式会社 (3,146)
【Fターム(参考)】