説明

足部走行機構及びそれを備えた2足歩行ロボット

【課題】 既存の歩行ロボットの足底に容易に取り付けることができ汎用性に優れ、平坦な路面において高速且つ高効率で移動することができる足部走行機構の提供、及び、整地や平坦な路面においては車輪による走行ができるので、高い安定性及び移動性を有する足部走行機構を備えた2足歩行ロボットの提供を目的とする。
【解決手段】 本発明の足部走行機構3は、脚部の足底にそれぞれ配設される足部フレーム10a,10bと、足部フレーム10a,10bの一方の側部に前後に配設された能動車輪部11a,11b及び受動車輪部13a,13bと、能動車輪部11a,11bを回転駆動する駆動部12a,12bと、足部フレーム10a,10bの他方の側部に前後に配設された摩擦接地部14と、を備えた構成を有する。本発明の2足歩行ロボット1は、左右の脚部と、脚部の足底に配設された足部走行機構3と、を備えた構成を有する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、歩行ロボットの脚部の足底に配設される車輪を用いた足部走行機構及び足底に該足部走行機構を備えた2足歩行ロボットに関するものである。
【背景技術】
【0002】
近年、人間の生活環境で活動する人間形ロボット、いわゆるヒューマノイドロボットの研究、開発がさかんに行われている。ヒューマノイドロボットは、工業生産だけでなく、家事、高齢者介護等、人間の生活を快適にする目的で使用される場合が多く、人間のために作られた環境において不特定の使用者と密着して作業するため、それに適した形態と機能を持つ必要がある。また、特別な使用訓練を必要とせず安全で柔軟なヒューマンマシンインターフェースを備えることも要求されるため、極めて多くの研究課題がある。特に、移動手段として人間と同様に2足を有し、2足歩行を行う2足歩行ロボットは、多くの研究機関や企業で鋭意研究され開発されている。
【0003】
従来の2足歩行ロボットとしては、本出願人により開発されたものがあり、特許文献1に開示されている。特許文献1の2足歩行ロボットの下半身モジュールは脚部をパラレルリンク機構により構成しているので大きな負荷に耐えることができ、重量の大きい上半身を搭載又は組み込むことができ設計の自由度に優れている。
しかしながら、特許文献1の2足歩行ロボットの下半身モジュールを含めた一般的な2足歩行ロボットは、車輪を用いた移動手段を有する移動ロボットに比べ、不整地や段差のある路面での移動性は高いが、整地や平坦な路面での移動性が悪いという問題点を有していた。
【0004】
この問題点を解決するために、特許文献2には「伸縮且つ揺動可能な脚と、該脚の端部に回転可能に設けた平行2輪と、脚に設けた6軸力センサとを備え、この平行2輪走行を行う脚を2本有し、2足歩行を行う2足歩行ロボットにおいて、前記脚の端部を3次元の任意の位置に移動する脚端移動手段と、前記各脚の平行2輪の向きを独立して変える操向手段とを備えたことを特徴とする2足歩行ロボット」が開示されている。
【0005】
【特許文献1】特開2003−291080号公報
【特許文献2】特開2003−266337号公報
【発明の開示】
【発明が解決しようとする課題】
【0006】
しかしながら、上記従来の2足歩行ロボットでは以下のような課題を有していた。
(1)特許文献1に記載の2足歩行ロボットの下半身モジュールを含めた一般的な2足歩行ロボットでは、整地や平坦な路面での移動速度が遅くエネルギ効率が悪く、車輪を用いた走行手段を有するロボットでは不整地や段差のある路面での移動性が低いという課題を有していた。
(2)特許文献2に記載の2足歩行ロボットでは、各々脚に対して、その足底の両側に各々一対の車輪を設けているだけなので、片脚で立っている場合に脚端部に支持多角形を形成することができず、ZMPを制御することによる姿勢の安定化を図れないという課題を有していた。
(3)また、特許文献2では、その場で旋回を行う際には、いずれか一方の脚のみで立った状態でしか行うことができないので、支持多角形が形成されず、ZMPを制御することによる姿勢の安定化を図れないという課題を有していた。
(4)さらに、特許文献2では、2足歩行による階段等の段差昇降中に外乱が加わると、車輪を回転させ転倒しないようにバランスを取らなければならず、そうすると階段等から転落する可能性があり安全性に欠けるという課題を有していた。
【0007】
本発明は、上記従来の課題を解決するもので、既存の歩行ロボットの足底に容易に取り付けることができ汎用性に優れ、平坦な路面において高速且つ高効率で移動することができる足部走行機構の提供、及び、凹凸路面等の不整地や段差に2足歩行で対応できると共に、整地や平坦な路面においては車輪による走行ができるので、高い安定性及び移動性を有し、さらに2足歩行と車輪走行との切り換えをスムーズに行うことができる足部走行機構を備えた2足歩行ロボットの提供を目的とする。
【課題を解決するための手段】
【0008】
上記課題を解決するために本発明の足部走行機構及びそれを備えた2足歩行ロボットは、以下の構成を有している。
本発明の請求項1に記載の足部走行機構は、歩行ロボットの脚部の足底にそれぞれ配設される足部フレームと、前記足部フレームの一方の側部に前後に配設された能動車輪部及び受動車輪部と、前記能動車輪部を回転駆動する駆動部と、前記足部フレームの他方の側部に前後に配設された摩擦接地部と、を備えた構成を有している。
【0009】
この構成により、以下のような作用を有する。
(1)足部フレームの一方の側部に能動車輪部及び受動車輪部を備え、他方の側部に前後に摩擦接地部を有することにより、摩擦接地部を路面から離隔させ能動車輪部と受動車輪部のみを接地させた状態で能動車輪部を駆動することにより走行を行うことができると共に、摩擦接地部を路面に接地させることにより歩行を行うことができる。
(2)能動車輪部と受動車輪部により走行を行うことができるので、平坦な路面において高速且つ高効率で移動することができる。
(3)各足底の足部フレームを外側又は内側に傾けるだけで摩擦接地部を路面から離隔させ能動車輪部及び受動車輪部のみを接地させることができるので、車輪による走行と歩行とを容易に且つスムーズに切り換えることができる。
(4)能動車輪部の回転角を制御するだけで、歩行ロボットを前進、後進、左右旋回させることができる。また、車輪に滑りが生じない条件では、歩行ロボットの路面上における位置と方向が各能動車輪部の回転角のみによって定まるため、歩行ロボットの位置や移動速度等を容易に制御できる。
(5)足部走行機構は、足部フレームと能動車輪部及び受動車輪部と駆動部と摩擦接地部とからなるので、既存の歩行ロボットの足底に容易に取り付けて用いることができ、汎用性に優れる。
【0010】
ここで、能動車輪部としては、各足部に軸支されたモータ等の駆動部により駆動される車輪が用いられる。なお、能動車輪部の軸受としてはアンギュラ玉軸受や円すいころ軸受等が用いられる。また、受動車輪部としては、足部のフレームに回転自在に軸支されたボールキャスタ等のキャスタが用いられる。
能動車輪部、受動車輪部、及び摩擦接地部を接地させて歩行を行う場合は能動車輪部が路面との摩擦力で回転しないように駆動部を駆動して制御することが好ましい。これにより、足底の滑りを防ぐことができる。なお、能動車輪部及び受動車輪部の回転を固定するブレーキを設けて回転しないよう固定してもよい。
能動車輪部及び受動車輪部は、各足部の外側の側部に配設されることが好ましい。これにより、各足部を各々外側に傾けて摩擦接地部を路面から離隔させ能動車輪部及び受動車輪部のみが路面に接地している場合、能動車輪部及び受動車輪部により形成される支持多角形を大きくすることができ、車輪走行時の姿勢の安定性に優れる。
【0011】
また、各足部フレームを前方へ傾けることにより受動車輪部及び摩擦接地部を路面から離隔させ、各足底の能動車輪部のみを接地させることにより、歩行ロボットを能動車輪部のみが接地した状態で略直立させ、この状態で走行(倒立振子型走行)させることができる。倒立振子型走行動作時には、2足歩行ロボットであれば2つの能動車輪部のみが接地した状態で転倒しないようバランスを保ちながら移動する。このとき、2足歩行ロボットのベース部(腰部)に設けられた3軸姿勢角センサにより計測された姿勢角等をフィードバックして制御することにより系自体が安定するように制御されるため、ある程度の外乱にも対応できる。さらに、所定の位置に移動して静止することもできる。なお、能動車輪部の駆動軸を前部の摩擦接地部より前方に位置するように配置するか、或いは能動車輪部を大径のものとすることにより、各足部を外側に傾けることなく、前方へ傾けるだけで能動車輪部のみが接地した状態とすることができる。
【0012】
本発明の請求項2に記載の発明は、請求項1に記載の足部走行機構であって、前記能動車輪部、前記受動車輪部、及び前記摩擦接地部の路面に対する各接地点が同一平面上に配設されると共に、前記各接地点は前記同一平面上に支持多角形を形成する構成を有している。
【0013】
この構成により、請求項1の作用に加え、以下のような作用を有する。
(1)歩行時には、能動車輪部、受動車輪部、及び摩擦接地部を路面に接地させ、各足の底部に支持多角形を形成することができるので、ZMP制御による姿勢の安定化が可能で、安定した歩行を行うことができる。
(2)車輪走行時には、各足底の接地した能動車輪部及び受動車輪部により支持多角形を形成し、ZMP制御による姿勢の安定化が可能で整地や平坦な路面において安定した車輪走行を行うことができる。
【0014】
ここで、能動車輪部、受動車輪部、摩擦接地部のいずれか1以上と足部フレームとの間に緩衝用のゴムやバネ等の弾性部材を設けることができる。これにより、ロボット本体や足部フレームにかかる衝撃を吸収することが可能になる。なお、能動車輪部、受動車輪部、摩擦接地部の各接地点(接地部分)は、路面に接地し弾性部材が縮んだ状態で同一平面上に配置され支持多角形を形成する。
【0015】
本発明の請求項3に記載の足部走行機構は、歩行ロボットの脚部の足底にそれぞれ配設される車輪保持部と、前記車輪保持部に前後に直線状に並設された2乃至複数の受動車輪部を備えた構成を有している。
【0016】
この構成により、以下のような作用を有する。
(1)右足部及び左足部に前後に直線状に並設された2乃至複数の受動車輪部を備えているので、各足部の軌跡が波線状となるように各足部を周期的に運動させる、いわゆるスウィズル動作を行うことで、進行方向に直交する方向へ各足部を移動させる力の一部を推進力として取り出すことができ、モータ等の駆動部を用いることなく2足歩行ロボットを前進、後退させることができる。
【0017】
本発明の請求項4に記載の足部走行機構は、歩行ロボットの脚部の足底の内いずれか1以上に配設される車輪保持部と、前記車輪保持部に各接地点が支持多角形を形成するように配設された3乃至複数の受動車輪部と、を備えた構成を有している。
【0018】
この構成により、以下のような作用を有する。
(1)足部走行機構を備えていない足底で路面を蹴った後、該足底を路面から離隔することにより、足部走行機構を備えた別の脚部の足底の受動車輪部により走行することができ、モータ等の駆動部を用いることなく前進することができる。また、受動車輪部を備えた一方の足部を斜めに向け、摩擦接地部を備えた足部をその方向に蹴り出せば、斜め方向にも進むことができる。
(2)足部走行機構の足底に3乃至複数の受動車輪部により支持多角形が形成されるので、ZMP制御による姿勢の安定化が可能で整地や平坦な路面において安定した車輪走行を行うことができる。
【0019】
本発明の請求項5に記載の2足歩行ロボットは、左右の脚部と、前記脚部の各足底又はいずれか一方の足底に配設された請求項1乃至4の内いずれか1項に記載の足部走行機構と、を備えた構成を有している。
【0020】
この構成により、請求項1乃至4の内いずれか1項の作用に加え、以下のような作用を有する。
(1)能動車輪部や受動車輪部により走行することができるので、平坦な路面において高速且つ高効率で移動することができる。
(2)足底に能動車輪部及び受動車輪部と摩擦接地部とを備えた場合は、整地や平坦な路面において車輪による走行ができると共に、凹凸路面等の不整地や段差において2足歩行でき、さらに車輪走行と2足歩行との切り換えもスムーズに行うことができるので、路面の傾斜や段差、状態等に関わらず効率よく移動することができる。
【0021】
この足部走行機構は、既存の歩行ロボットの足底に容易に取り付けることができ、汎用性に優れる。なお、この足部走行機構は、能動車輪部の回転角を制御している点、或いはスウィズル動作等を行う点から2足歩行ロボットに対し特に有用であるが、4足や6足の多足歩行ロボットにも用いることができる。
また、脚部はシリアルリンク機構部を有するものであっても、パラレルリンク機構部を有するものであってもよい。
【0022】
本発明の請求項6に記載の発明は、請求項5に記載の2足歩行ロボットであってベース部と、前記足部走行機構からなる右足部及び/又は左足部と、前記ベース部の下部に配設された複数のベース部側受動ジョイントと、前記右足部及び前記左足部の上部に配設された複数の足部側受動ジョイントと、前記ベース部側受動ジョイントと前記右足部の前記足部側受動ジョイントとの間、及び、前記ベース側受動ジョイントと前記左足部の前記足部側受動ジョイントとの間に各々配設されたパラレルリンク機構部と、を備えた構成を有している。
【0023】
この構成により、請求項5の作用に加え、以下のような作用を有する。
(1)脚部が、ベース部と右足部及び左足部との間に各々複数のリンクが並列に配設されたパラレルリンク機構部により形成されているので、各々のリンクに負荷が分散され大きな負荷に耐えることができ剛性を高くすることができると共に、右足部及び左足部における出力が大きく、重量物の搭載や搬送等が可能で実用性に優れる。
【0024】
ここで、パラレルリンク機構部は、ベース部と右足部、及び、ベース部と左足部の間に各々配設され、各々のパラレルリンク機構部には複数のリンクが並列に配設されている。各々のパラレルリンク機構部は、ベース部の中央の両側に対称に配設されることが好ましく、パラレルリンク機構部に用いられるリンクも、左右の脚部で同様に対称に配設されることが好ましい。これにより、歩行動作制御を行うためのZMP(Zero Moment Point)制御が可能であり、歩行動作時の安定性に優れる。
リンクとしては、モータを用いた送り螺子機構を有するものや、油圧、水圧、空気圧シリンダや直動型アクチュエータ等を用いた直動リンクや、2以上の棒状部材を駆動関節により連結したもの等種々のものが用いられる。
ベース部には3軸姿勢角センサを設けることができる。これにより、3軸姿勢角センサの情報をフィードバックして制御することで、2足歩行ロボットの姿勢角を安定させることができる。
受動ジョイントとしては、ユニバーサルジョイント、ボールジョイント、又は2軸の軸継手、或いはこれらと1軸或いは2軸の軸継手の組合せ等を各々適宜ベース側や右足部側、左足部側に配置して用いられる。なお、ユニバーサルジョイントを用いた場合、ボールジョイントに比べ可動範囲が広くなるため好ましい。
【0025】
本発明の請求項7に記載の発明は、請求項5又は6に記載の2足歩行ロボットであって、前記パラレルリンク機構部のリンクとして、上端部で前記ベース部側受動ジョイントに連結され、下端部で前記足部側受動ジョイントに連結された伸縮可能な直動リンクを備えた構成を有している。
【0026】
この構成により、請求項5又は6の作用に加え、以下のような作用を有する。
(1)パラレルリンク機構部のリンクとして、可動方向がリンクの長手方向である直動リンクを用いることで、各々の直動リンクが互いに干渉することがないため装置の小型化及びコンパクト化が可能であると共に、設計の自由度に優れる。
(2)パラレルリンク機構部のリンクとして、可動方向がリンクの長手方向である直動リンクを用いることで、直動リンクの伸長時と短縮時で直動リンクのアクチュエータにかかる負荷に大きな差が出ないため、下半身モジュールが低い姿勢をとった場合にアクチュエータにかかる負荷トルクを低減できると共に、アクチュエータの動力を節約でき省エネルギ性に優れる。
(3)各々の直動リンクには引っ張り力及び圧縮力のみが印加され曲げモーメントが加わらないため、強度及び剛性に優れると共に、材質や形状の選択の幅が広がり設計の自由度に優れる。
【0027】
本発明の請求項8に記載の発明は、請求項5乃至7の内いずれか1項に記載の2足歩行ロボットであって、前記右足部及び前記左足部が、上面に前記足部側受動ジョイントが固定された固定板と、前記固定板の下部と前記足部フレーム又は前記車輪保持部の上部との間に介装された6軸力覚センサと、を備えた構成を有している。
【0028】
この構成により、請求項5乃至7の内いずれか1項の作用に加え、以下のような作用を有する。
(1)6軸力覚センサにより各軸方向の力3成分と各軸周りのモーメント3成分を同時に且つ逐次連続的に高精度で検出することができ、6軸力覚センサで検出された値を基にZMP制御を行うことができる。
(2)6軸力覚センサを固定板と足部フレーム又は車輪保持部との間に介装しているので、正確な検出値が得られZMP制御が可能になる。
【発明の効果】
【0029】
以上説明したように本発明の2足歩行ロボットによれば、以下のような有利な効果が得られる。
請求項1に記載の発明によれば、
(1)摩擦接地部を路面から離隔させ能動車輪部と受動車輪部のみを接地させた状態で能動車輪部を駆動することにより平坦な路面において高速且つ高効率で走行を行うことができると共に、摩擦接地部を路面に接地させることにより安定した歩行を行うことができ、各足底の足部フレームを傾けるだけで車輪による走行と歩行とを容易に且つスムーズに切り換えることができる移動性に優れた足部走行機構を提供することができる。
(2)能動車輪部の回転角を制御するだけで、歩行ロボットを前進、後進、左右旋回させることができ、また、車輪に滑りが生じない条件では、歩行ロボットの路面上における位置と方向が各能動車輪部の回転角のみによって定まるため、歩行ロボットの位置や移動速度等を容易に制御できる制御性に優れた足部走行機構を提供することができる。
(3)足部走行機構が、足部フレームと能動車輪部及び受動車輪部と駆動部と摩擦接地部とからなるので、既存の歩行ロボットの足底に容易に取り付けて用いることができる汎用性に優れた足部走行機構を提供することができる。
【0030】
請求項2に記載の発明によれば、請求項1の効果に加え、
(1)能動車輪部、受動車輪部、摩擦接地部で支持多角形を形成することができるので、ZMP制御による姿勢の安定化が可能で、安定した歩行及び走行を行うことができる足部走行機構を提供することができる。
【0031】
請求項3に記載の発明によれば、
(1)右足部及び左足部に前後に直線状に並設された2乃至複数の受動車輪部を備えているので、スウィズル動作を行うことで、モータ等の駆動部を用いることなく2足歩行ロボットを前進、後退させることができる移動性に優れた足部走行機構を提供することができる。
【0032】
請求項4に記載の発明によれば、
(1)足部走行機構を備えていない足底の摩擦接地部で路面を蹴って、足部走行機構を備えた別の足部により走行することができ、モータ等の駆動部を用いることなく前進、後退できる2足歩行ロボットを提供することができる。また、受動車輪部を備えた一方の足部を斜めに向け、摩擦接地部を備えた足部をその方向に蹴り出せば、斜め方向にも進むことができる。
(2)足部走行機構の足底に3乃至複数の受動車輪部により支持多角形が形成されるので、ZMP制御による姿勢の安定化が可能で整地や平坦な路面において安定した車輪走行を行うことができる2足歩行ロボットを提供することができる。
【0033】
請求項5に記載の発明によれば、
(1)能動車輪部や受動車輪部により走行することができるので、平坦な路面において高速且つ高効率で移動することができる2足歩行ロボットを提供することができる。
(2)整地や平坦な路面において車輪による走行ができると共に、凹凸路面等の不整地や段差において2足歩行でき、さらに車輪走行と2足歩行との切り換えもスムーズに行うことができるので、路面の傾斜や段差、状態等に関わらず効率よく移動することができる移動性に優れた2足歩行ロボットを提供することができる。
【0034】
請求項6に記載の発明によれば、請求項5の効果に加え、
(1)脚部がパラレルリンク機構部により形成されているので、各々のリンクに負荷が分散され大きな負荷に耐えることができ剛性を高くすることができると共に、右足部及び左足部における出力が大きく、重量物の搭載や搬送等が可能で実用性に優れた2足歩行ロボットを提供することができる。
【0035】
請求項7に記載の発明によれば、請求項5又は6の効果に加え、
(1)パラレルリンク機構部のリンクとして直動リンクを用いることで、各々の直動リンクが互いに干渉することがないため装置の小型化及びコンパクト化が可能で設計の自由度に優れた2足歩行ロボットを提供することができる。
(2)直動リンクの伸長時と短縮時で直動リンクのアクチュエータにかかる負荷に大きな差が出ないため、下半身モジュールが低い姿勢をとった場合にアクチュエータにかかる負荷トルクを低減できると共に、アクチュエータの動力を節約できる省エネルギ性に優れた2足歩行ロボットを提供することができる。
(3)各々の直動リンクには引っ張り力及び圧縮力のみが印加され曲げモーメントが加わらないため、強度及び剛性に優れると共に、材質や形状の選択の幅が広がり設計の自由度に優れた2足歩行ロボットを提供することができる。
【0036】
請求項8に記載の発明によれば、請求項5乃至7の内いずれか1項の効果に加え、
(1)6軸力覚センサにより各軸方向の力3成分と各軸周りのモーメント3成分を同時に且つ逐次連続的に高精度で検出することができ、また、6軸力覚センサを固定板と足部フレーム又は車輪保持部との間に介装しているので、正確な検出値が得られZMP制御が可能になる2足歩行ロボットを提供することができる。
【発明を実施するための最良の形態】
【0037】
以下、本発明の一実施の形態について、図1乃至図8を用いて説明する。
(実施の形態1)
図1は本実施の形態1における2足歩行ロボットの全体斜視図であり、図2は図1に示す2足歩行ロボットの模式図である。
図中、1は本実施の形態1における2足歩行ロボット、1aは右脚のパラレルリンク機構部、1bは左脚のパラレルリンク機構部、2はベース部、3は右足部の足部走行機構、4は左足部の足部走行機構、3a,4aは足部走行機構3,4の上部に固定された固定板、5(5a,5a′,5b,5b′,5c,5c′)はパラレルリンク機構部1a,1bの直動リンク、6(6a,6a′,6b,6b′,6c,6c′)はベース部側受動ジョイント、7(7a,7b,7c)は足部側受動ジョイント、8(8a,8b,8c)は回動受動ジョイント、9は6軸力覚センサ、10a,10bは足部フレーム、11a,11bは能動車輪部、12a,12bは駆動部、13a,13bは受動車輪部、14は摩擦接地部である。
【0038】
ここで、右脚の各部について図2を用いて説明する。なお、左脚の各部は右脚と対称で同一構成なので説明を省略する。
図1及び図2に示すように、固定板3aは床反力を検出する6軸力覚センサ9を介して右足部3の足部フレーム10aの上部に固定されている。6軸力覚センサ9により、各軸方向の力3成分と各軸周りのモーメント3成分を同時に且つ連続的に高精度で検出することができる。
直動リンク5、5a、5a′、5b、5b′、5c、5c′は、モータを用いた送り螺子機構や、油圧、水圧、空気圧等を用いたシリンダ等の直動型アクチュエータを用いて伸縮自在に形成され、その長手方向に伸縮する1自由度に形成されている。ベース部側受動ジョイント6、6a、6a′、6b、6b′、6c、6c′は、直動リンク5、5a〜5c′の長手方向に直交し、且つ各々直交する2軸の軸周方向に回動する2自由度に形成されている。足部側受動ジョイント7、7a、7b、7cは、直動リンク5、5a〜5c′の長手方向に直交し、且つ各々直交する2軸の軸周方向に回動する2自由度に形成されている。回動受動ジョイント8、8a、8b、8cは、直動リンク5、5a〜5c′の軸周方向に回動する1自由度に形成されている。
【0039】
ベース部側受動ジョイント6a、6a′はベース部2の下面の右後部側に配設されている。足部側受動ジョイント7aの下部には回動受動ジョイント8aが連結され、回動受動ジョイント8aは固定板3aの右後部側に固定されている。直動リンク5aの上端部はベース部側受動ジョイント6aに連結され、下端部は足部側受動ジョイント7aに連結されている。直動リンク5a′の上端部はベース部側受動ジョイント6a′に連結され、下端部は足部側受動ジョイント7aに連結されている。
ベース部側受動ジョイント6b、6b′はベース部2の下面の右前部側に配設されている。足部側受動ジョイント7bの下部には回動受動ジョイント8bが連結され、回動受動ジョイント8bは固定板3aの右前部側に固定されている。直動リンク5bの上端部はベース部側受動ジョイント6bに連結され、下端部は足部側受動ジョイント7bに連結されている。直動リンク5b′の上端部はベース部側受動ジョイント6b′に連結され、下端部は足部側受動ジョイント7bに連結されている。
ベース部側受動ジョイント6c、6c′はベース部2の下面の右中央部に配設されている。足部側受動ジョイント7cは固定板3aの右中央部に配設され、その下部には回動受動ジョイント8cが配設されている。直動リンク5cの上端部はベース部側受動ジョイント6cに連結され、下端部は足部側受動ジョイント7cに連結されている。直動リンク5c′の上端部はベース部側受動ジョイント6c′に連結され、下端部は足部側受動ジョイント7cに連結されている。
【0040】
次に、右脚端部の右足部の足部走行機構3について図3を用いて詳細に説明する。なお、左足部の足部走行機構4の各部は足部走行機構3と対称で同一構成であるので、説明を省略する。
図3(a)は足部走行機構3の要部斜視図であり、図3(b)は足部走行機構3の要部底面図である。
図3において、15は駆動部固定部、16はシャフト、16aは軸受部、16bは軸継手、17は減速器、17aは駆動軸、18はセンタ部、18aは凹部、19は支持部、19aはリブ、20は切り欠き部である。
ここで、足部フレーム10aは、略矩形状の外周部10cと、外周部10cの内側の各隅部から略中央部に向かって延びる支持部19と、支持部19により略中央部に支持されたセンタ部18と、により形成されている。各支持部19の上下部にはリブ19aが形成され剛性を高めている。センタ部19には6軸力覚センサ9が挿入されネジ止め固定される凹部18aが形成されている。6軸力覚センサ9は凹部18aに挿入されている。これにより、2足歩行ロボット1の全高を低くすることができ、重心を低くできるので安定性を向上させることができる。
足部フレーム10aの前部には、減速器17と一体になったモータ等の駆動部12aが駆動部固定部15で固定されている。なお、駆動部固定部15は駆動軸挿通孔(図示せず)を有する板状体からなり足部フレーム10aの前部壁の略中央部に固定されている。駆動部12a及び減速器17はその駆動軸17aが駆動軸挿通孔に挿通されると共に、駆動軸側で駆動部固定部15に取り付け固定されている。また、足部フレーム10aの前部の外側の角部には切り欠き部20が形成され、切り欠き部20に能動車輪部11aが配設されている。能動車輪部11aに軸として固定されたシャフト16は足部フレーム10aの前部に形成された軸受部16aに軸支され、軸継手16bを介して駆動軸17aに接続されている。駆動部12aの駆動力が減速器17を介して減速され駆動軸17a、シャフト16を介して能動車輪部11aが回転駆動される。
足部フレーム10aの能動車輪部11aの後方の角部には受動車輪部13aが配設されている。能動車輪部11aと受動車輪部13aの路面との接地部分は足部フレーム10aの前後に延びる同一直線上に位置するように配設されている。なお、この直線は左右の足部で平行となるように、各足部足部走行機構3,4に各々能動車輪部11aと受動車輪部13aとが配置されている。さらに、摩擦接地部14は足部フレーム10aの能動車輪部11a及び受動車輪部13aの反対側の側部の前後の角部の底部に各々形成され、能動車輪部11a、受動車輪部13a、及び摩擦接地部14の路面に対する各接地点は同一平面上に配設され、その各接地点は同一平面上に支持多角形を形成している。これにより、足部フレーム10aを各々外側に傾けて摩擦接地部14を路面から離隔させ、能動車輪部11aと受動車輪部13aのみを確実に接地させることができる。なお、摩擦接地部14は足部フレーム10aの角部を切り落とした形状に形成されている。これにより、2足歩行ロボットがその場で足踏みしながら旋回する場合等に足部フレーム10aと足部フレーム10bとが互いに接触しないようになっている。
【0041】
以上のように構成された本実施の形態1における2足歩行ロボットについて、以下その動作を図1乃至図3を用いて説明する。
まず、2足歩行ロボットの2足歩行動作について説明する。なお、本実施の形態1においては、2足歩行ロボットの右脚の動作について説明する。左脚の動作については右脚と同様であるので説明を省略する。
右脚を動作させる場合、予め設定された歩行パターンに基づいて右脚の逆運動学を計算し、算出された値に基づいて直動リンク5a〜5c′の各々の図示しないアクチュエータを駆動させ直動リンク5a〜5c′を伸縮させる。直動リンク5a〜5c′とベース部2又は右足部の足部走行機構3との連結部分に配設されているベース部側受動ジョイント6a〜6c′、足部側受動ジョイント7a〜7c、及び回動継手8a〜8cは、直動リンク5a〜5c′の伸縮に追従してこれを妨げることなく円滑に従動する。直動リンク5a〜5c′のアクチュエータの駆動は各々に配設されたロータリエンコーダ等の図示しない検出器により検出され、取得された検出値は角度データとしてフィードバックされ直動リンク5a〜5c′はフィードバック制御される。これにより、右脚は、一歩踏み出す動作やその場で足踏みする動作等を行うことができる。更に、このような動作を右脚と左脚で交互に連続して行うことにより、歩行動作を行うことができる。なお、このとき、能動車輪部11aは路面との摩擦力で回転しないように、すなわち足部走行機構3が滑らないように制御される。
なお、2足歩行時において、能動車輪部11a、受動車輪部13a、及び摩擦接地部14,14により、足部の底部に支持多角形を形成しているので、この支持多角形の内部にZMPが位置するように2足歩行ロボットの姿勢や動作を制御することで安定した2足歩行を行うことができる。このZMPの位置は6軸力覚センサ9の検出値に基づいて求められる。
【0042】
次に、2足歩行ロボットの能動車輪部11a及び受動車輪部13aを用いた走行動作について図4を用いて説明する。
図4(a)は歩行動作時等の右足部及び左足部の足部走行機構を示す要部模式正面図であり、図4(b)は走行動作時の右足部及び左足部の足部走行機構を示す要部模式正面図であり、図4(c)は倒立振子型走行動作時の右足部の足部走行機構を示す要部模式側面図である。
2足歩行ロボット1の歩行動作時等においては、図4(a)に示すように、右足部の足部走行機構3の底部は能動車輪部11a、受動車輪部13a、及び前後の摩擦接地部14,14の4点で接地している。また、左足部の足部走行機構4の底部も同様に、能動車輪部11b、受動車輪部13b,及び前後の摩擦接地部14,14の4点で接地している。
2足歩行ロボット1の走行動作時には、図4(b)に示すように、足部走行機構3及び足部走行機構4の足部フレーム10a,10bを各々外側に傾け、摩擦接地部14が路面から離隔させる。足部フレーム10a,10bを傾けるには、右脚及び左脚のパラレルリンク機構部1a及び1bの所定の直動リンク5を伸縮させる。例えば、足部走行機構3の足部フレーム10aを外側に傾けるには、図2に示す直動リンク5c,5c′を短縮させるか、或いは直動リンク5a,5a′,5b,5b′を伸長させる。
これにより、足部走行機構3及び足部走行機構4の底部は能動車輪部11a,11bと受動車輪部13a,13bのみが接地している状態となる。走行を行うには、予め設定された走行パターン(能動車輪部11a,11bの各々の回転角データ等)に基づいて駆動部12a,12bを駆動することにより能動車輪部11a,11bを回転させることで、2足歩行ロボット1は走行することができる。なお、能動車輪部11aと能動車輪部11bを同じ方向に同じ回転速度で回転させると前進や後退することができ、異なる方向に回転させるとその場で旋回することができ、同じ方向に異なる回転速度で回転させると右方向や左方向に曲線状に走行することができる。
また、走行動作時においては、接地した能動車輪部11a,11bと受動車輪部13a,13bにより形成された支持多角形の内部にZMPが位置するよう2足歩行ロボット1の姿勢を制御している。なお、2足歩行ロボットのZMPは、該支持多角形の中心部より能動車輪部11a,11b側にずれた位置となるように設定されることが好ましい。これにより、2足歩行ロボット1のZMPが中心部より能動車輪部11a,11b側にあるため、能動車輪部11a,11bの空転や滑りを防止でき、円滑な走行動作を行うことができる。
また、2足歩行ロボット1が加速や減速、或いは停止する場合は、慣性力により2足歩行ロボット1が転倒しないように、速度や加速度等を考慮してZMPを設定している。例えば、2足歩行ロボット1が走行中に急停止する場合では、減速に伴って2足歩行ロボット1のZMPが前方(進行方向)に移動するので、これが支持多角形から外れないように2足歩行ロボット1の姿勢を制御している。
【0043】
さらに、2足歩行ロボット1は、能動車輪部11a,11bのみを接地させ略直立した状態で走行(倒立振子型走行)することもできる。倒立振子型走行動作時には、図4(a)に示す状態から、足部走行機構3,4の足部フレーム10a,10bを前方へ傾けることにより、図4(c)に示すように、球状キャスタ13a,13b及び前後の摩擦接地部14を路面から離隔させる。ここで、能動車輪部11a,11bの駆動軸を前部の摩擦接地部14より前方に位置するように配置するか、或いは能動車輪部11a,11bを大径のものとしているので、各足部を外側に傾けることなく、前方へ傾けるだけで前部の摩擦設置部14も路面から離隔させることができる。足部フレーム10a,10bを前方へ傾けるには、右脚及び左脚のパラレルリンク機構部1a,1bの所定の直動リンク5を伸縮させる。例えば、足部走行機構3の足部フレーム10aを前方に傾けるには、図2に示す直動リンク5a,5a′を短縮させるか、或いは直動リンク5b,5b′を伸長させる。
なお、2足歩行ロボット1は、能動車輪部11a,11bのみが接地している状態で転倒しないように、2足歩行ロボット1のベース部2に設けられた3軸姿勢角センサ(図示せず)により計測された姿勢角等をフィードバックして制御し姿勢のバランスを保っている。
バランスを保った状態で駆動部12a,12bを駆動することにより能動車輪部11a,11bを回転させ、2足歩行ロボット1は倒立振子状態で走行することができる。
また、倒立振子型走行動作時においては、能動車輪部11a,11b以外の可動部はすべて固定して姿勢のバランスを保つよう制御している。すなわち、直動リンク5は伸縮しないようにしている。これにより、2足歩行ロボット1を1つの剛体みなすことができるので、モデル化が容易になり制御が簡略化できる。
【0044】
以上のように、本実施の形態1における2足歩行ロボット1は構成されているので、以下のような作用を有する。
(1)脚部が、ベース部2と足部走行機構3,4との間に各々複数のリンクが並列に配設されたパラレルリンク機構部1a,1bにより形成され、各足部3,4がその外側の側部に各々能動車輪部11a,11b及び受動車輪部13a,13bを備え、その内側の側部に前後に摩擦接地部14を備えているので、各足部走行機構3,4を各々外側に傾けて摩擦接地部14を路面から離隔させた状態で能動車輪部11a,11b及び受動車輪部13a,13bにより車輪走行を行うことができると共に、摩擦接地部14を路面に接地させることにより2足歩行を行うことができ、車輪による走行と2足歩行とを容易に且つスムーズに切り換えることができる。
(2)足部走行機構3,4の外側の側部に前後に能動車輪部11a,11b及び受動車輪部13a,13bを備え、能動車輪部11a,11b及び受動車輪部13a,13bは足部フレーム10a,10bの前後に延びる同一直線上に位置するように各々配設され、この直線は各足部走行機構3,4で平行となっているので、車輪走行時には、各足部走行機構3,4を外側に傾けるだけで能動車輪部11a,11b及び受動車輪部13a,13bのみを接地させ略矩形の支持多角形を形成することができ、整地や平坦な路面において安定した高速車輪走行を行うことができる。また、能動車輪部11a,11bや受動車輪部13a,13bに滑りが生じない条件では、2足歩行ロボット1の路面上における位置と方向が能動車輪部11a,11bの回転角のみによって定まるため、2足歩行ロボット1の位置や移動速度等を容易に制御できる。
(3)能動車輪部11a、受動車輪部13a、及び摩擦接地部14の路面に対する各接地点は同一平面上に配設され、その各接地点は同一平面上に支持多角形を形成しているので、2足歩行時には各足の底部に支持多角形を形成することができ、支持多角形の内部にZMPが位置するよう制御することにより安定した2足歩行を行うことができる。また、歩行中の路面との摩擦力により能動車輪部11a,11bが回転しないように制御することにより、各足部走行機構3,4が滑り難くなり安定した2足歩行が可能になる。
(4)足部フレーム10a,10bを前方へ傾けることにより受動車輪部13a,13b及び前後の摩擦接地部14を路面から離隔させ、能動車輪部11a,11bのみを接地させることにより、2足歩行ロボット1を略直立させ、この状態で転倒しないようバランスを保ちながら走行(倒立振子型走行)することができる。
【0045】
(実施の形態2)
図5は本実施の形態2における2足歩行ロボットの全体斜視図であり、図6は駆動系を示すブロック図であり、図6(b)はゲインと内力との関係を示す関係図である。
図中、1aは右脚のパラレルリンク機構部、1bは左脚のパラレルリンク機構部、2はベース部、3a,4aは固定板、5は直動リンク、6はベース部側受動ジョイント、7は足部側受動ジョイント、8は回動受動ジョイント、9は6軸力覚センサであり、これらは実施の形態1において説明したものと同様のものであるので同一の符号を付けて説明を省略する。21は本実施の形態2における2足歩行ロボット、23は右足部の足部走行機構、24は左足部の足部走行機構、25は車輪保持部、26は車軸、27は受動車輪部、28は各直動リンク5に内蔵されたモータを制御するモータ制御部、29はモータ制御部28に各足部の角度指令値及び位置指令値を入力する駆動制御部である。なお、モータ制御部28や駆動制御部29はベース部2上等に搭載されているが、図5においては図示を省略している。
【0046】
以上のように構成された本実施の形態2における2足歩行ロボット21について、以下その動作を図5乃至図7を用いて説明する。
図6に示すように、駆動制御部29はモータ制御部28に位置指令値と角度指令値を出力する。位置指令値とは右足部の足部走行機構23(以下、右足部23という)又は左足部の足部走行機構24(以下、左足部24という)の初期位置からの移動量を示す値であり、角度指令値とは2足歩行ロボット21の進行方向に対する右足部23又は左足部24のなす角度を示す値である。
モータ制御部28は、位置指令値及び角度指令値が入力されると、右足部23及び左足部24が指令された位置及び角度になるように各脚のパラレルリンク機構部1a,1bの各々の直動リンク5に内蔵されたモータを制御する。なお、各々の直動リンク5にはモータ回転軸の回転角を検出するロータリエンコーダ等の検出器が内蔵されており、モータ制御部28には、これら検出器での検出値がフィードバックされる。
このようにして右足部23と左足部24の位置と角度を制御することで、2足歩行ロボット21にいわゆるスウィズル動作を行わせる。以下、スウィズル動作について図7を用いて説明する。
【0047】
図7は2足歩行ロボット21のスウィズル動作を説明する説明図である。なお、図7においては右足部23と左足部24の動きを示し、2足歩行ロボット21のベース部2、パラレルリンク機構部1a,1b、及び固定板3a,4aは説明をわかり易くするために図示を省略している。
図7(a)に示すように、右足部23と左足部24を、前部側を開いて逆ハの字状とした状態で、右足部23と左足部24を各々外側(図6(a)に示す矢印Aの方向)に向けて移動させようとすると、その外側に向けて移動させる力の一部が推進力となって右足部23と左足部24は受動車輪部27の回転により各々外側へ移動しながら前方へ、すなわち各々右斜め前方及び左斜め前方へ移動する。これにより、2足歩行ロボット21を前方に向かって走行させることができる。
図7(b)に示すように、右足部23と左足部24を、後部側を開いてハの字状とした状態で、各々内側(図6(b)に示す矢印Bの方向)に向けて移動させようとすると、右足部23と左足部24は受動車輪部27の回転により各々内側へ移動しながら前方へ、すなわち各々左斜め前方及び右斜め前方へ移動する。これにより、2足歩行ロボット21は前方に向かって走行する。
図7(a)に示す動作と図7(b)に示す動作を繰り返す動作、いわゆるスウィズル動作を行うことにより、右足部23と左足部24は左右対称の波線状の軌跡を描きながら前方へ移動するので、2足歩行ロボットは前進することができる。なお、右足部23と左足部24とを逆ハの字状とした状態で各々内側に向けて移動させる動作と、ハの字状とした状態で各々外側に向けて移動させる動作と、を周期的に繰り返すことにより後退することもできる。
【0048】
2足歩行ロボット21がスウィズル動作を行うと、路面との摩擦力により、右足部23と左足部24には受動車輪部27に直交する方向に内力がかかる。この内力は、図7(a)に示す動作を行う場合には各足部23,24にかかる内向きの力であり、図7(b)に示す動作を行う場合には外向きの力である。この内力は、固定板3a,4aと車輪保持部25との間に介装された6軸力覚センサ9で検出され、駆動制御部29に入力される。
ここで、駆動制御部29からモータ制御部28へ出力される位置指令値は、前回出力された位置指令値に位置指令値の増加分を加えた値であり、予め設定された基本パターン関数(周期関数)に基づいて決定されるが、本実施の形態2においては、位置指令値の増加分は、基本パターン関数から導き出される値に、右足部23又は左足部24にかかる内力に基づいて決定されるゲインを乗じた値となる。以下、図6(b)を用いてゲインについて説明する。なお、図6(b)においては、各足部23,24に内向きにかかる内力を正とし、外向きにかかる内力を負としてグラフ化した。
図6(b)に示すように、ゲインG(0≦G≦1)は内力が予め設定された定常下限値から定常上限値、例えば−8(N)から8(N)の間であればG=1であり、内力が定常上限値から許容最大値、例えば10(N)に近づくにつれ小さくなり、或いは定常下限値から許容最小値、例えば−10(N)に近づくにつれ小さくなり、許容最大値又は許容最小値でG=0になる。すなわち、各足部23,24にかかる内力が定常上限値より大きくなると或いは定常下限値より小さくなると、位置指令値の増加分を減衰させ、増加を緩やかにし、内力が許容最大値又は許容最小値になると位置指令値を増加させないように制御することで、各足部23,24に過大な内力がかかるのを防止でき、円滑なスウィズル動作が可能となる。
なお、角度指令値としては、基本パターン関数(周期関数)と同じ周期で位相を例えば45°ずらした周期関数に基づいて、円滑なスウィズル動作が行われるように設定される。
【0049】
以上のように本実施の形態2における2足歩行ロボット21は構成されているので、以下のような作用を有する。
(1)右足部の足部走行機構23及び左足部の足部走行機構24に前後に直線状に並設された2乃至複数の受動車輪部27を備えているので、各足部走行機構23,24の軌跡が波線状となるように各足部走行機構23,24を周期的に運動させる、いわゆるスウィズル動作を行うことで、進行方向に直交する方向へ各足部走行機構23,24を移動させる力の一部を推進力として取り出すことができ、モータ等の駆動部を用いることなく2足歩行ロボット21を前進、後退させることができる。
【0050】
(実施の形態3)
図8は本実施の形態3における2足歩行ロボットの全体斜視図である。
図8において、1aは右脚のパラレルリンク機構部、1bは左脚のパラレルリンク機構部、2はベース部、3a,4aは固定板、5は直動リンク、6はベース部側受動ジョイント、7は足部側受動ジョイント、8は回動受動ジョイントであり、これらは実施の形態1において説明したものと同様のものであるので同一の符号を付けて説明を省略する。31は本実施の形態3における2足歩行ロボット、33は右足部の足部走行機構、34は足底に摩擦接地部を備えた左足部、35は連結板、36,37は車輪保持部、38は車軸、39は受動車輪部、40は足底板である。
【0051】
以上のように構成された本実施の形態3における2足歩行ロボット31について、以下その動作を図9を用いて説明する。
図9(a)は左足部34による蹴り出し動作を示す模式図であり、図9(b)は左足部34を遊脚とした状態で右足部の足部走行機構33による滑走動作を示す模式図である。
図9(a)に示すように、2足歩行ロボット31は足部走行機構33と左足部34の間にZMPが位置するようにZMP制御をする。この状態から、左足部34を後部側へ移動させるようにパラレルリンク機構部1bの所定の直動リンク5を伸縮させると、左足部34の足底板40は1以上の摩擦接地部を有し路面に摩擦接地しているので、受動車輪部39を有する足部走行機構33が前方へ移動する。このとき、足部走行機構33と左足部34の間に位置していたZMPを足部走行機構33の移動に伴って足部走行機構33に徐々に近づく方向へ移動させるようにZMP制御をする。
足部走行機構33が前方へ移動し左足部34から離れたところで左足部34を路面から離隔させ遊脚とすると、足部走行機構33はそのときの運動エネルギで前方へ移動し滑走する。
図9(b)に示すように、遊脚となった左足部34は足部走行機構33の側部へ近づけていき、ZMPは足部走行機構33の内部に位置するようにZMP制御をする。
【0052】
以上のように本実施の形態3における2足歩行ロボット31は構成されているので、以下のような作用を有する。
(1)摩擦接地部を備えた左足部34の足底板40により路面を蹴って、右足部の足部走行機構33の受動車輪部39により走行することができ、モータ等の駆動部を用いることなく前進することができる。
【0053】
なお、上述した実施の形態1乃至3で説明した各々の足部走行機構は、既存の歩行ロボットの足底に容易に取り付けることができる。なお、この足部走行機構は、上述したような2足歩行ロボットだけでなく、4足や6足等の多足歩行ロボットでにも用いることができ、また、脚部はパラレルリンク機構部を有するものだけでなく、シリアルリンク機構部を有するものであってもよい。
【産業上の利用可能性】
【0054】
以上説明したように、本発明は、歩行ロボットの脚部の足底に配設される車輪を用いた足部走行機構に関し、特に本発明によれば、既存の歩行ロボットの足底に容易に取り付けることができ汎用性に優れ、平坦な路面において高速且つ高効率で移動することができる足部走行機構を提供することができる。
また、以上説明したように、本発明は、足底に該足部走行機構を備えた2足歩行ロボットに関し、特に本発明によれば、凹凸路面等の不整地や段差に2足歩行で対応できると共に、整地や平坦な路面においては車輪による走行ができるので、高い安定性及び移動性を有し、さらに2足歩行と車輪走行との切り換えをスムーズに行うことができる足部走行機構を備えた2足歩行ロボットを提供することができる。
【図面の簡単な説明】
【0055】
【図1】実施の形態1における2足歩行ロボットの全体斜視図
【図2】図1に示す2足歩行ロボットの模式図
【図3】(a)右足部の要部斜視図(b)右足部の要部底面図
【図4】(a)歩行動作時等の右足部及び左足部の足部走行機構を示す要部模式正面図(b)走行動作時の右足部及び左足部の足部走行機構を示す要部模式正面図(c)倒立振子型走行動作時の右足部の足部走行機構を示す要部模式側面図
【図5】実施の形態2における2足歩行ロボットの全体斜視図
【図6】(a)駆動系を示すブロック図(b)ゲインと内力の関係を示す関係図
【図7】(a)2足歩行ロボットのスウィズル動作を説明する説明図(b)2足歩行ロボットの走行動作を説明する説明図
【図8】実施の形態3における2足歩行ロボットの全体斜視図
【図9】(a)左足部による蹴り出し動作を示す模式図(b)左足部を遊脚とした状態で右足部の足部走行機構による滑走動作を示す模式図
【符号の説明】
【0056】
1,21,31 2足歩行ロボット
1a,1b パラレルリンク機構部
2 ベース部
3,4 足部走行機構
3a,4a 固定板
5、5′、5a、5a′、5b、5b′、5c、5c′ 直動リンク
6、6a、6a′、6b、6b′、6c、6c′ ベース部側受動ジョイント
7、7a、7b、7c 足部側受動ジョイント
8、8a、8b、8c 回動受動ジョイント
9 6軸力覚センサ
10a,10b 足部フレーム
10c 外周部
11a,11b 能動車輪
12a,12b 駆動部
13a,13b 球状キャスタ
14 摩擦接地部
15 駆動部固定部
16 シャフト
16a 軸受部
16b 軸継手
17 減速器
18 センタ部
18a 凹部
19 支持部
19a リブ
20 切り欠き部
23,24 足部走行機構
25 車輪保持部
26 車軸
27 受動車輪部
28 モータ制御部
29 駆動制御部
33 足部走行機構
34 左足部
35 連結板
36,37 車輪保持部
38 車軸
39 受動車輪部
40 足底板


【特許請求の範囲】
【請求項1】
歩行ロボットの脚部の足底にそれぞれ配設される足部フレームと、前記足部フレームの一方の側部に前後に配設された能動車輪部及び受動車輪部と、前記能動車輪部を回転駆動する駆動部と、前記足部フレームの他方の側部に前後に配設された摩擦接地部と、を備えていることを特徴とする足部走行機構。
【請求項2】
前記能動車輪部、前記受動車輪部、及び前記摩擦接地部の路面に対する各接地点が同一平面上に配設されると共に、前記各接地点は前記同一平面上に支持多角形を形成することを特徴とする請求項1に記載の足部走行機構。
【請求項3】
歩行ロボットの脚部の足底にそれぞれ配設される車輪保持部と、前記車輪保持部に前後に直線状に並設された2乃至複数の受動車輪部を備えていることを特徴とする足部走行機構。
【請求項4】
歩行ロボットの脚部の足底の内いずれか1以上に配設される車輪保持部と、前記車輪保持部に各接地点が支持多角形を形成するように配設された3乃至複数の受動車輪部と、を備えていることを特徴とする足部走行機構。
【請求項5】
左右の脚部と、前記脚部の各足底又はいずれか一方の足底に配設された請求項1乃至4の内いずれか1項に記載の足部走行機構と、を備えていることを特徴とする2足歩行ロボット。
【請求項6】
ベース部と、右足部及び左足部と、前記右足部及び/又は前記左足部に配設された前記足部走行機構と、前記ベース部の下部に配設された複数のベース部側受動ジョイントと、前記右足部及び前記左足部の上部に配設された複数の足部側受動ジョイントと、前記ベース部側受動ジョイントと前記右足部の前記足部側受動ジョイントとの間、及び、前記ベース側受動ジョイントと前記左足部の前記足部側受動ジョイントとの間に各々配設されたパラレルリンク機構部と、を備えていることを特徴とする請求項5に記載の2足歩行ロボット。
【請求項7】
前記パラレルリンク機構部のリンクとして、上端部で前記ベース部側受動ジョイントに連結され、下端部で前記足部側受動ジョイントに連結された伸縮可能な直動リンクを備えていることを特徴とする請求項5又は6に記載の2足歩行ロボット。
【請求項8】
前記右足部及び前記左足部が、上面に前記足部側受動ジョイントが固定された固定板と、前記固定板の下部と前記足部フレーム又は前記車輪保持部の上部との間に介装された6軸力覚センサと、を備えていることを特徴とする請求項5乃至7の内いずれか1項に記載の2足歩行ロボット。


【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate


【公開番号】特開2006−55972(P2006−55972A)
【公開日】平成18年3月2日(2006.3.2)
【国際特許分類】
【出願番号】特願2004−242725(P2004−242725)
【出願日】平成16年8月23日(2004.8.23)
【出願人】(302022599)
【出願人】(500539561)株式会社テムザック (19)
【Fターム(参考)】