説明

車両搭乗者保護システム用の加速度測定装置および方法

本発明は、車両搭乗者保護システム用の加速測定装置に関し、所定の主測定方向に関して、主測定方向への投影で、第1および第2主投影を形成しかつ主測定方向に対し直角な方向への投影で第1および第2横投影を形成する第1および第2感度方向を持つ第1および第2加速度センサと、処理ずみの第1および第2測定信号を評価する適当な評価手段とが設けられている。第1および第2感度方向の第1および第2横投影は、互いに平行に向けられ、第1および第2感度方向の第1および第2主投影は、互いに逆平行に向けられている。また第1および第2信号に関する基準値が変化する時、少なくとも部分的にエラー補償が行われるように、センサから供給される測定値の評価が行われる。第1および第2基準値の変化の際に、エラー補償が最大となるように、第1および第2感度方向の向きに応じて、評価が行われることが好ましい。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、請求項1記載の車両搭乗者保護システム用の加速度測定装置および請求項13記載の方法に関する。
【背景技術】
【0002】
道路交通の安全性を高めるために、公知の搭乗者保護システムは、障害物や他の車両などとの衝突時に自動車の搭乗者を最適に保護するために改良され続けている。典型的な搭乗者保護システムは、少なくとも1つの加速度センサによって構成されるセンサ装置および評価ユニットを備えた中央制御装置、同様に少なくとも1つの加速度センサによって構成される少なくとも1つのサテライト・センサおよびエアバッグ、ベルト・テンショナあるいはロールバーなどの適した保護手段を備えている。
【0003】
衝突時に発生する加速度を測定、検出あるいは記録(以後これらの概念は同意語として使用する)するためのシステムとして、様々な加速度センサ配置を持つシステムが公知である。センサは、大体において、多くの場合制御装置内の評価ユニットと共に車両中央に配置されるセンサと、車両に分散して設けられるいわゆるサテライト・センサとに分類される。後者の場合、その正確な取り付け位置はセンサの役割によって選択されるが、主に車両の外板付近に配置される。
【0004】
加速度に敏感な装置は、以下「加速度センサ」、「加速検知器」あるいは単に「センサ」と同意的に称される。これらは一般的に、センサの向きに関して、加速度が作用する方向に関する方向特性を有している。方向特性によって主感度方向が規定され、この主感度方向に対して加速度の方向が平行あるいは逆平行であるとき、センサの測定感度すなわち加速度の強さに対する出力信号の強さが、主感度方向において最大となる。
【0005】
次に、上記のすべての方向が、例えば平面上特に車両が走行する平面上にあるものと仮定する。また各センサは、センサが直接発生する測定信号を処理および/あるいは少なくとも部分的に評価して、制御装置の評価ユニットへ送る評価チャネルに、電気的に接続されているものと仮定する。評価チャネルは、アナログ・デジタル変換器、濾波(例えば平滑化)する回路、少なくとも1つの積分回路、信号と所定の閾値とを比較する回路、および/あるいは、同じセンサあるいは他のセンサによりあるいは他の装置により発生された信号を論理結合する論理回路を含んでいる。最も単純な構成の場合、評価チャネルは、センサが発生する測定信号を、評価ユニットに送る手段のみを含んでいる。そして評価ユニットが、評価チャネルから送られてきた信号を処理し、かつ/あるいは、評価し、車両の安全装置を作動させる作動信号を発生する。
【0006】
評価チャネルおよび場合によっては、中央の評価ユニットにおいても、センサのアナログ測定信号(例えば電圧)および処理ステップで発生されるアナログ信号を基準値(例えば基準電圧)に関して解釈することができる。基準値は、異なる評価チャネルに対して異なっていても、ほぼ同じであっても良い。
【0007】
簡単な処理の場合、評価チャネルで、例えば1つのセンサにより発生されて加速度に対応する信号を、低域フィルタで平滑化し、場合によっては積分器で積分し、それにより作用する速度に応じた信号を発生する。加速度信号および/あるいは速度信号は、閾値と比較される。信号が閾値を超える場合、作動信号が出力される。例えば測定エラーあるいは評価回路にあるセンサあるいは他の回路要素の別の誤動作による安全装置の予期しない作動を回避するため、このような作動信号は、その妥当性について、独立した評価から発生される妥当性信号と論理結合される少なくとも1回の検査を受ける。簡単な場合、作動信号を、例えば他の評価チャネルで独立に発生される作動信号と、論理「AND」回路により論理結合することができる。
【0008】
運動平面上で車両に作用する加速度のすべての方向を最適に把握し、作用する加速度の大きさと方向を求めるために、通常、少なくとも2つの(好ましくは互いに直角の)加速度センサが設けられている。これに反し1つの加速度センサしか使用しない場合、1つの作用方向の加速度しか検出できない。加速度センサが、車両の縦軸方向に設置されている場合、側方からの衝突は検出できない。車両の縦軸方向に加速度成分を持つ衝突の場合、測定された加速度成分の符号によって、その成分が前から後ろ(例えば正面衝突した場合)へ向いているか、あるいはその逆(例えば追突の場合)に向いているかを区別することができる。
【0009】
2つの「面を検出する」加速度センサを設けるため、実際には2つの好ましいセンサ配置が明確にされた。
a)2つのセンサを車両縦軸(X設置方向)および車両横軸(Y設置方向)に沿って設けるか、あるいは
b)2つのセンサを車両縦軸に対してほぼ±45°の方向に向ける。
【0010】
配置a)に関しては、以下に詳しくは説明しない。センサ配置b)に関しては、本発明の効果および利点を特に容易に説明できるため、以下図1を参照しながら説明する。ただしこの配置は、車両縦軸または横軸に対し角度をなして向けられているセンサを持つ配置の例として挙げられているに過ぎない。
【0011】
欧州特許出願公開第0311039号明細書は、任意の方向からの加速度成分を測定するため互いにそれぞれ120°ずらして設けられている3つの感度方向を有する3つの加速度センサを持つセンサ装置を開示している。あらゆる方向からの加速度成分を測定できるようにしたセンサ配置形態が挙げられている。ドイツ連邦共和国の特許出願公開第3816589及び第10002471号明細書は、2つのセンサを持つセンサ装置を開示しており、第1センサの感度方向は車両縦軸と45°の角度をなし、第2センサの感度は135°の角度をなしている。しかし前記刊行物のいずれも、搭乗者保護装置の作動挙動に及ぼす基準値の変化の影響の問題については触れていない。
【発明の開示】
【発明が解決しようとする課題】
【0012】
従って本発明の課題は、評価チャネルの基準値の変動に対して僅かな影響しか持たない車両搭乗者保護システム用加速度測定装置および方法を提案することである。
【課題を解決するための手段】
【0013】
この課題は、請求項1の特徴を持つ装置および請求項13の特徴を持つ方法によって解決される。本発明の好ましい実施形態は、従属請求項に記載されている。
【0014】
本発明の重要な思想は、2つの加速度センサの1対を含むセンサ装置を装備した装置において、2つのセンサのうち一方を、他方のセンサおよび加速度を測定するための所望の主方向に対して、一方のセンサの主測定方向に投影さらる主感度方向(主投影)の成分が、他方のセンサの感度方向の主投影とは反対方向になるように配置し、かつ向け、これを両方のセンサの信号の適当に行われる評価と組合わせることである。センサに属する評価チャネルの基準値の変化の影響を、少なくとも一部補償することが可能になる。特に基準値の変化が信号評価に及ぼす影響が軽減され、センサにより発生される測定信号に関する評価アルゴリズムの安定性が、特に評価チャネルにおける基準値の起こり得る変動の際高められ、評価方法の強さが改善される。
【0015】
本発明は、車両搭乗者保護システム用の加速度測定装置に関し、装置が所定の主測定方向に合わされ、かつ主測定方向への投影において第1主投影および主測定方向に対して直角に向く横方向への投影において第1横投影を形成する第1感度方向と、第1基準値に関して第1加速度センサの第1測定信号を処理する第1評価チャネルとを有する少なくとも1つの第1加速度センサを含んでいる。装置は、さらに、主測定方向への投影において第2主投影および横方向への投影において第2横投影を形成する第2感度方向と、第2基準値に関して第2加速度センサの第2測定信号を処理する第2評価チャネルとを有する第2加速度センサ、および少なくとも処理された第1測定信号および処理された第2測定信号を評価しかつ少なくとも部分的にそれに基いて搭乗者保護システム用の作動信号を発生する評価手段を含んでいる。
【0016】
本発明によれば、第1および第2感度方向の第1および第2横投影が互いに平行に向けられ、第1および第2感度方向の第1および第2主投影が互いに逆平行に向けられている。さらに第1および第2評価チャネルにおける第1または第2基準値が変化する時、少なくとも部分的にエラー補償が行われるように、評価が実施される。
【0017】
有利なやり方で、評価が、主測定方向に対する第1および第2感度方向の向きに応じて、第1および第2基準値が変化する際に、エラー補償が最大となるように、実施される。
【0018】
評価が、処理された第1測定信号および処理された第2測定信号の第1評価関数と、第1スタート閾値および第2スタート閾値の第2評価関数との比較を含んでいるのが好ましい。
【0019】
特に第1評価チャネルが、第1スタート閾値を含み、第2評価チャネルが、第2スタート閾値を含み、第1評価関数が、処理された第1測定信号と処理された第2測定信号の重み付けされた差または和であり、第2評価関数が、第1スタート閾値と第2スタート閾値の重み付けされた和または差であるようにすることができる。こうして評価が特に容易に行われる。
【0020】
例えば測定信号あるいは処理された信号が共通の電位に関して測定される電圧である場合、特に第1基準値と第2基準値が、第1および第2評価チャネルに共通な基準値である。
【0021】
第1感度方向および第2感度方向の主測定方向および横方向に対する角度間隔が、0°あるいは90°に等しくなく、特に10°以上であるのがよい。第1感度方向と第2感度方向との間の角度間隔もほぼ90°であるのがよい。特に第1感度方向の主測定方向に対する角度間隔が、ほぼ45°または135°であり、第2感度方向の主測定方向に対する角度間隔が、ほぼ135°または45°であることができる。両方のセンサの配置のそれぞれにより、装置の測定精度および車両に作用する加速度の方向を求めることができる精度が高められる。例としてあげた前記の角度の変わりに、好ましい実施形態では、−45°または−135°、あるいは−135°または−45°、あるいは225°または315°あるいは315°または225°の角度も同様に可能である。
【0022】
主測定方向は、車両のほぼ前進方向であってもよい。その代わりに、主測定方向が、車両の前進方向に対してほぼ直角であってもよい。第1および第2加速センサおよび評価手段が中央制御装置内に配置されていてもよい。このような実施形態は特にこじんまりしており、取り付けが簡単である。
【0023】
装置が、さらに少なくとも1つのアップフロント・センサあるいは少なくとも1つのサイド・センサあるいはいわゆるセーフィング・センサを含むこともできる。付加的なセンサにより、妥当性、安定性の向上および搭乗者保護システムの誤作動の危険の減少のために利用される付加的な情報および信号が得られる。
【0024】
本発明は、さらに車両搭乗者保護システム用の加速度測定方法に関し、次のステップを含んでいる。即ち
i)車両の前進方向に対して主測定方向を定め、
ii)主測定方向に投影して第1主投影および主測定方向に対し直角に向く横方向に投 影して第1横投影を形成する第1感度方向を持つ第1加速度センサを準備し、
iii)主測定方向に投影して第2主投影および横方向に投影して第2横投影を形成する 第2感度方向を持つ第2加速度センサを準備する。
本発明の局面によれば、第1および第2感度方向の第1および第2横投影は互いに平行に、また第1および第2感度方向の第1および第2主投影は互いに逆平行である。本方法には、さらに次のステップを含んでいる。即ち
iv)第1加速度センサの第1測定信号を処理して、第1加速度センサの第1信号を処 理する第1評価チャネルの第1基準値に対して、第1処理ずみ信号を形成し、
v)第2加速度センサの第2測定信号を処理して、第2加速度センサの第2信号を処 理する第2評価チャネルの第2基準値に対して、第2処理ずみ信号を形成し、
vi)第1および第2スタート閾値に対して第1および第2処理ずみ信号を評価して、 第1および第2評価チャネルの第1および第2基準値が変化する時、少なくとも 部分的にエラー補償が行われるようにしている。
【0025】
第1基準値および第2基準値は、第1および第2評価チャネルに共通な基準値であってもよい。
【0026】
評価が主測定方向に対する第1および第2感度方向の向きに応じて行われて、第1および第2基準値が変化した際に、エラー補償が最大となるようにしていると、有利である。有利なようにステップvi)における評価は、
a)第1スタート閾値および第2スタート閾値の重み付けされた閾値和関数または閾値差 関数を形成し、
b)第1処理ずみ測定信号および第2処理ずみ測定信号の重み付けされた差関数または和 関数を形成し、
c)ステップb)からの重み付けされた差関数または和関数をステップa)からの重み付 けされた閾値和関数又は閾値差関数と比較し、ステップb)からの重み付けされた差 関数または和関数がステップa)からの重み付けされた閾値和関数または閾値差関数 を超過する時、作動信号を作動状態にセットする
ことを含んでいる。
【0027】
特にステップb)において第1処理ずみ測定信号および第2処理ずみ測定信号の重み付けされた差関数または和関数は、次式
a1*F1−a2*F2 または a1*F1+a2*F2
で表わすことができ、式中a1およびa2は、正規化係数(0<a1,a2<1)であり、ステップa)において第1スタート閾値および第2スタート閾値の重み付けされた閾値和関数または閾値差関数は、次式
b1*T1+b2*T2 または b1*T1−b2*T2
で表わすことができ、式中b1およびb2は正規化係数(0<b1,b2<1)である。
【0028】
有利なようにa1およびa2が、

であり、式中、α1は主測定方向と第1感度方向との間の角度、α2は主測定方向と第2感度方向との間の角度である。
【0029】
本方法は、ステップiv)とv)において、第1または第2加速度センサの第1または第2測定信号の処理が、少なくとも測定信号の積分であることが好ましい。
【0030】
本発明の別の利点および応用可能性を、図面に示した実施例に基づいて以下に説明する。
【0031】
請求の範囲、明細書、要約および図では、後述する符号の説明において使用される概念および符号が使用される。
【発明を実施するための最良の形態】
【0032】
以下、同一のおよび/あるいは同じ機能を持つ部品には、同一の符号が使用される。なお角度は、「右回転座標系」を基準としている。
【0033】
図1に示されている従来技術によるセンサ配置は、第1および第2加速度センサを含み、第1加速度センサ12は車両前進方向26に対して+45°の第1感度方向14を有し、第2加速度センサ16は、車両前進方向26に対して−45°の第2感度方向18を有している。前進方向26は、この例では、車両の縦軸28に対してほぼ平行に前方へ向く主測定方向20に対応している。このようなセンサ配置では、正面衝突の場合、第1および第2加速度センサ12、16から供給される測定信号に対して、図4Aに示して更に後述する状態が生じ、この状態において第1および第2評価チャネルにおける基準値の変化が、評価アルゴリズムの作動挙動を変化させる。
【0034】
第1および第2評価チャネル基準値の変化の影響の補償は、本発明によれば、図1に示したセンサ配置を、例えば時計回りに90°回転させ、図2に示したセンサ配置とすることにより、行われる。図2に示したセンサ配置における第1加速度センサ12の第1感度方向14と主測定方向20との間の角度は、α1=135°である。主測定方向20は、図1同様に、車両縦軸28に沿った前進方向26である。第2加速度センサ16の感度方向18と主測定方向20との間の角度は、α2=45°である。ただし本発明は、第1感度方向14に対する特別な角度α1=135°および第2感度方向18に対するα2=45°に限定されるものではない。むしろ本発明の方法では、第1および第2感度方向14,18は、主測定方向20およびこれに対して直角な角度30からの特定の角度間隔内のいかなる角度であってもよい。また、本発明の効果は、例として示されている状態、即ち両方の感度方向14,18の間が直角(90°)である状態に限定されるものではない。図3を参照しながら、本発明によるセンサ配置を以下に説明する。
【0035】
図3には、角度α1の第1加速度センサ12の第1感度方向14および角度α2の第2加速度センサ16の第2感度方向18が示され、角度α1とα2は、センサ配置の主測定方向20に対して測定される。第1感度方向14は、主測定方向20への第1主投影22と、車両の運動平面上で主測定方向20に対して90°の角度をなす横方向30への第1横投影32とに分解される。同様に第2感度方向18も、主測定方向20への第2主投影24と横方向30への第2横投影34とに分解される。本発明によるセンサ配置では、第1主投影22が、第2主投影24に対して逆向きであり、第1感度方向14の第1横投影32は、第2感度方向18の第2横投影34と同じ方向に向けられている。言い換えると、本発明によるセンサ配置は、第1感度方向14の角度α1が0°と90°との間(あるいは0°と−90°との間)にある時、第2感度方向18の角度α2が90°と180°との間(あるいは−90°と−180°との間)にあることを特徴としている。
【0036】
第1感度方向14の角度α1は、主測定方向20あるいは横方向30に対して5°より大きいことが好ましく、更に6°より大きく、更に7°より大きく、更に8°より大きく、更に10°より大きいことが好ましい。主測定方向20、これとは逆の方向および横方向30の第2感度方向14の角度間隔についても、同じことが言える。最低角度間隔は、感度特性の「幅」(例えば、センサ感度方向にある最大センサ感度の半分の値の角度目盛の幅)に応じて、縦方向または横方向が感度特性の幅の外側にあるように選ばれる。
【0037】
第1および第2感度方向14,18の間の角度β=|α2−α1|は、前述の主測定方向20および横方向30からの最低角度間隔を考慮して、任意に選択することができる。しかしβは、90°であることが好ましい。第1感度方向14も、前述の最低角度間隔を考慮して、自由に選択することができ、好ましくは45°あるいは135°である。なるべく135°または45°の角度で向けられる第2感度方向18についても、同じことが言える。
【0038】
図4Aでは、図1と同様に、第1加速度センサ12の第1感度方向14が、車両の前進方向20に対して+45°に取り付けられ、第2の感度方向18を持つ第2加速度センサ16が、車両の前進方向20に対して−45°の角度となるように取り付けられているものと仮定される。第1および第2感度方向14,18は、主測定方向と仮定されている車両縦軸方向に対して45°とは異なるように向けられていてもよい。図4Aの中央と右側には、センサにより発生される測定信号およびそれから誘導されて、処理された信号に対する2つの図が示されている。正面衝突を想定した場合、センサ12と16は、センサ12と16に作用する加速度ベクトルの正の成分に相当する正の測定値を供給する。第1または第2評価チャネルには、それぞれ第1または第2スタート閾値T1またはT2が前もって規定されているので、第1加速度センサの測定値F1または第2加速度センサの測定値F2が、スタート閾値T1またはT2に達するのに充分な作動信号値S1またはS2とに達する場合、第1または第2評価チャネルに、搭乗者保護装置の作動信号が発生される。
【0039】
引続く時間経過において、第1評価チャネルの基準値が値△1だけ変化するものと想定する。これは例えば、基準電圧が高まるので、アナログ・デジタル変換器がオフセット成分を測定することによって起こる。そのため、図に示すように、スタート閾値T1との間隔が減少し、第1測定チャネルのスタート閾値T1に達するために、強さS1’の作動信号で充分である。同様に、第2評価チャネルの基準値の変化は、基準値の値△2だけの変化を行う。ここでは、第2評価チャネルの変化△2が、第1評価チャネルの変化△1と同じ向きであると仮定する。
【0040】
さて評価の際、例えば車両縦方向の加速度成分を決定するため、第1測定チャネルの信号S1と第2測定チャネルの信号S2との和が形成され、第1評価チャネルと第2評価チャネルのスタート閾値T1とT2の和から形成されるスタート閾値T1+T2と比較されると、信号和S1+S2が、スタート閾値T1+T2に達する。基準値が、第1評価チャネルで△1だけ、また第2評価チャネルで△2だけ変化すると、作動信号S1またはS2は、言い換えると両評価チャネルのスタート閾値T1またはT2に達するため、S1’またはS2’の値に減少することになる。また、図4Aに示す如く、和信号のスタート閾値は、△1+△2だけ減少するので、和信号S1’+S2’はスタート閾値T1+T2に達するのにも充分である。信号和の形成により、両方の評価チャネルのスタート閾値との間隔は、同じ向きに減少するので、評価システムが、一層敏感に反応する。これによって、正面衝突が起こった場合、一層早い作動が行われる。また同様に第1および第2評価チャネルにおける評価が、互いに無関係に行われ、第1評価チャネルにおけるスタート閾値T1の超過の際の第1スタート作動信号S2と、第2評価チャネルにおけるスタート閾値T2の超過の際の第2作動信号S2が、(例えば論理AND結合におけるように)互いに加算結合され、閾値比較を受ける場合、正面衝突の際早い作動が行われることになる。従って作動挙動の変化は、両方の評価チャネル基準値の変化が、スタート閾値に関して同じ向きに作用するようにする。結局これは、第1センサによって測定される加速度のベクトル成分が、第2加速度センサによって測定される加速度ベクトル成分と同じ向きであるようにする。従って結局これにより、第1および第2加速度センサの感度方向が、互いに平行に向けられる主測定方向への投影成分、即ち全加速度が測定される方向を持つことになる。
【0041】
第1加速度センサ12と第2加速度センサ14が、図3に示す如く配置されると、第1評価チャネルの基準値R1の仮定される変化△1は、第1評価チャネルのスタート閾値T1に対して、第2評価チャネルの基準値R2の仮定される変化△2が第2評価チャネルのスタート閾値T2に対するのとは逆方向に影響を与えることになる。これに関する例を図4Bに示す。図4B左の部分には、図2に示すのと同様の加速度センサの配置が示されている。ここで第1感度方向14は、主測定方向20とは逆に向く主測定方向20への第1主投影を持ち、第2加速度センサの第2感度方向18は、主測定方向20に対して平行に向く第2主投影を持っている。
【0042】
図4に対する上記の説明におけるように、図4Bにおいても、正面衝突が起こったものと仮定する。第1主投影が、主測定方向20とは逆向き(図4A参照)となっているので、第1加速度センサは、図4Aの場合とは逆の符号即ち図4Bの例では負の符号を持つ信号F1(図示せず)を発生する。これとは異なり、第2加速度センサ16が発生する信号F2(図示せず)は、図4Bの例では、正である。第1評価チャネルの基準値が、値△1だけ変化し、図4Aと同様に第2評価チャネルにおいて値△2だけ同じ向きに変化すると、第1評価チャネルにおいて、スタート閾値T1に達するために必要な作動信号は値S1から値S1’に増大し、第2評価チャネルにおいて、スタート閾値T2に達するために必要な作動信号は値S2から、S2’に減少する。第1および第2評価チャネルにおけるスタート閾値T1およびT2に対する基準値の変化△1および△2の影響は、図4Aに示す状態とは異なり、本発明によるセンサ配置に対して逆向きである。
【0043】
主測定方向における第1および第2加速度センサによって測定される加速度の成分の和を計算するため、一方の評価チャネルにおける信号値の符号を他方の評価チャネルにおける信号値の符号に対して反転する必要がある。例えば図4におけるように、第1評価チャネルの信号値F1の符号が反転される。加速度ベクトルの主測定方向20に生じる成分は、第1および第2加速度センサ16,12の信号値F2とF1の和(−F1)+F2、換言すれば、差F2−F1から計算される。さて基準値が、図4Bの例におけるように、第1評価チャネルの作動信号S1に対して逆向きに値△1だけ変化すると、作動信号は値S1から値S1’に増大する。第2評価チャネルの作動信号は、スタート閾値T2の方向へ値△2だけ変化するので、第2評価チャネルの作動信号は値S2から値S2’に減少する。測定信号F2とF1の差形成の結果、両方の評価チャネルにおける基準値の影響は、少なくとも一部補償される。主測定方向20に対し第1主測定方向14が135°、第2主測定方向18が45°の角度をなして、衝突時の加速度がほぼ正確に主測定方向に沿って延び、第1および第2評価チャネルの基準値の変化△1および△2の値がほぼ同じである特別な場合には、両方の評価チャネルにおける基準値の変化△1および△2の影響が、完全に補償される。
【0044】
少なくとも一部行われるエラー補償は、原理的に図4Bの右の部分に示されている。図からわかるように、第1評価チャネルと第2評価チャネルとの組み合わせでは、作動閾値T1+T2との間隔の変化は、測定信号の差F2−F1(図示せず)従って、作動信号の差S2−S1の形成によって補償される。第1評価チャネルの基準信号の変化△1が、第2評価チャネルの基準信号の変化△2に対して逆向きであれば、第1および第2評価チャネルの信号、F2とF1との差の形成により、基準値の変化△1および△2が、第1および第2評価チャネルのスタート閾値T1およびT2に関して、少なくとも部分的に補償される。それにより、作動挙動の変化は、従来の技術によるセンサ配置の図4Aの状態と比べて小さくなり、上述した特別な場合、作動挙動は全く変化しない。
【0045】
評価過程の安定化のため両方の評価チャネルにおける基準値の変化の影響を有利に少なくとも部分的に補償するため、第2および第1評価チャネルにおけるスタート閾値の和T2+T1と閾値比較の際の信号F2とF1の差形成の代わりに、評価方法におけるスタート閾値の差T2−T1との同時閾値比較の際の信号値の和形成も使用することができる。
【0046】
第1感度方向14と主測定方向20の横方向30との角度間隔の値が、第2感度方向18と主測定方向20の横方向30との角度間隔の値と異なっている場合、信号の基準値の変化の影響の一層良好な補償のため、上に説明のため例示した通常の測定信号または基準値の差形成または和形成の代わりに、第1および第2の評価チャネルにおけるスタート閾値の重み付けされる和または重み付けされる差との同時閾値比較の際、測定信号の重み付けされる差形成または重み付けされる和形成も行うことができる。
【0047】
和または差の形成は、第1および第2センサから供給される測定信号に直接適用することができる。和または差の形成は、可能ならば濾波される測定信号、例えば低域フィルタにより平滑化あるいは積分回路で積分される測定信号に、従って一般に処理が線形関数あるいは少なくとも単調関数によって行われる場合で処理される信号F1およびF2(図示せず)にも、適用することができる。
【0048】
第1測定チャネルの第1処理ずみ測定信号F1および第2測定チャネルの第2処理ずみ測定信号F2の重み付けされる差形成または重み付けされる和形成は次式で表される。
a1*F1−a2*F2 あるいは a1*F1+a2*F2
式中a1およびa2は、0から1との間にある正規化係数(すなわち0<a1,a2<1)である。同様に第1評価チャネルにおけるスタート閾値T1の重み付けされる閾値和関数または閾値差関数は、次式で表される。
b1*T1+b2*T2 または b1*T1−b2*T2
式中b1およびb2は、0と1との間にある正規化係数(すなわち0<b1,b2<1)である。
【0049】
両方の評価チャネルにおける基準値変化の影響の特に完全な補償は、正規化係数a1またはa2が主測定方向20に対する第1または第2感度方向14または18の角度α1またはα2に応じて次のように選ばれる時に、行われる。

【0050】
車両において、本発明によるセンサ配置が、センサ信号の評価手段と共に、共通な中央制御装置に収容されている場合、特に有利である。制御装置が自動車のほぼ中央の位置に設けられていると、特に有利である。しかし実際には、特に中級車および高級車における要求を満たすため、更にサテライト・センサを車両に配置して、種々の衝突方向を持つ衝突事象を特に高感度にあるいは正確に測定できるようにする。拡張されたセンサ配置を図5に例示する。拡張されたセンサ配置は、中央に配置されて第1感度方向14を持つ第1加速度センサ12、第2感度方向18を持つ第1加速度センサ16、付加的に車両の前面に配置されて、車両の前進方向26に向く感度方向を持つアップフロント・センサ40(例えば左アップフロント・センサ40aと右アップフロント・センサ40b)、車両の側面に配置されて、車両縦軸に対して横に向く感度方向を持つサイド・センサ42(例えば車両左側に配置されて左方へ向く感度方向を持つ左サイド・センサ42a、および車両右側に配置されて、左方へ向く感度方向を持つ右サイド・センサ42b)、および例えば中央制御装置内に配置されたセンサ(例えばいわゆるセーフィング・センサ44)を含んでいる。
【0051】
中級車および高級車において、中央制御装置内に配置されている第1および第2センサの信号を評価し、アップフロント、サイドあるいはセーフィング・センサの信号と論理結合して、適当な搭乗者保護装置の作動信号を発生するため、出願人の作動方策が現在頻繁に使用されている。そしてこの方策に従って、種々の搭乗者保護システムを、衝突事象の方向に応じて制御しかつ場合によっては作動させる。この場合、適当な衝突方向に特に適した特定のセンサの信号に、他のセンサの信号と比べて優勢な影響が適当に割り当てられる。例えば正面衝突が起こった場合、アップフロント・センサ40の信号に、サイド・センサ42の信号と比べて、搭乗者の前方に設置されているエアバッグ・システムの作動信号の発生の際優勢な影響が割り当てられる。同様に、搭乗者の側方に設置されて、側方からの衝撃方向を持つ衝突事象の際に、保護するサイドエアバッグ・システムが、発生の際サイド・センサ42の測定信号がアップフロント・センサ40の信号より優勢な影響を持つような作動信号により、作動せしめられる。
【0052】
第1および第2センサを備えた本発明の装置は、上記の作動方策において簡単かつ特に有利に統合することができる。衝突事象の衝撃方向に応じて、この作動方策では、前方、側方または後方からの衝突の場合、本発明に従って配置される両方のセンサから誘導される作動信号は、妥当性検証のため種々のやり方で図5に示されている他のセンサから誘導される作動信号と、図6A、6Bおよび6Cに示されているように論理結合される。
【0053】
正面衝突の場合、全作動信号を発生するため、本発明に従って配置される両方のセンサから本発明により誘導されて、例えば第1評価チャネルおよび第2評価チャネルの処理ずみ信号の差形成により発生される作動信号f(S1−S2)がアップフロント・センサ40あるいはセーフィング・センサ44の情報と論理結合されて、アップフロント・センサまたはセーフィング・センサが、本発明に従って設けられる両センサの妥当性検証を与えるようにする。特に上記の作動方策では、妥当性検証されるフロント・エアバッグシステム用の全信号を発生するため、図6Aに示すような論理AND結合が考慮されている。
【0054】
追突の場合、作動方策では、全作動信号を発生する際、他のセンサから誘導される作動信号により本発明に従って配置される両方の加速度センサから誘導される作動信号の妥当性検証は、考慮されていない。図6Bにおいてこれは、論理AND結合では、妥当性検証信号が常に「高」に設定されているので、本発明に従って設けられる両方のセンサから誘導される作動信号f(S1−S2)が、追突の際適当に作動すべき保護装置用の全作動信号も供給する。
【0055】
最後に側方衝突の場合、本発明により設けられる両方のセンサから本発明により誘導される作動信号f(S1−S2)は、サイド・センサ42の情報と、妥当性を検証するように論理結合することができる。特に作動方策では、図6Cに示すように、サイド・エアバッグ用の妥当性検証ずみ全作動信号を発生するため、作動信号f(S1−S2)とサイド・センサ42から誘導される作動信号との論理AND結合が考慮されている。
【0056】
自動車において、本発明により第1および第2評価チャネルの処理ずみ信号の適当な評価を伴う本発明のセンサ配置は、主測定方向20が車両の縦軸28の方向にある場合、特に有利に使用される。正面衝突事象の評価に対して、第1および第2評価チャネルにおける基準値の起こり得る変化は、図3に関して上述したように、本発明によるセンサ配置において、図4Bに関して上述したように、特に僅かな影響しか及ぼさない。他方、図2による特に有利なセンサ配置では、側方衝突事例において基準値の変化の際外乱感受性が高まる。なぜならば、このような衝突事例では、衝突の衝撃方向が、第1および第2センサに関して図1同様に示され、第1および第2評価チャネルにおける測定信号、作動信号およびスタート閾値が、図4Aに示した状態と同様になるからである。その結果生じる可能性のある安全装置の作動挙動の変化は、全作動信号の発生の際側方範囲に配置されているサイド・センサが、本発明により設けられる両方のセンサより優勢な影響力を持つ時、本発明に従って配置された両方のセンサから誘導される作動情報を他のセンサから誘導される作動情報により妥当性検証する際、減少あるいは回避される。
【0057】
本発明により方向づけられる両方のセンサが、車両のほぼ中央例えば中央の制御装置に設けられていると、側方衝突の際サイド・センサが、側方衝突点から大きく離れて中央に設けられる第1および第2センサ(および同様に車軸縦軸に沿う加速度の測定のために設けられているアップ・フロントおよびセーフィング・センサ)より、衝突点に近い所にあり、加速度を早く直ちに検出することにより、側方衝突の検出の際側方範囲に配置されるサイド・センサの他のセンサに対して優勢な影響が生じる。特に(車両縦軸に沿う押しつぶし区域に比較して)車両縦軸に対して直角な「軟らかい」押しつぶし区域により、信号伝送経路が悪いため、車両縦軸に沿う加速度の測定のために設けられるセンサは、サイド・センサに比較して二次的な役割しか果たさない。
【0058】
本発明によるセンサ配置および信号評価によって得られる利点は、評価アルゴリズムの安定性の向上とそれに伴う単純エラーに対する安全性の向上である。別の利点は、特に現在使用されている上記の作動方策による他のセンサとの論理結合または妥当性検証の際、正面衝突または追突事象の際の作動挙動に関して充分なシステム信頼性の確保の際、トリガ・スイッチとして役立つセーフィング・センサがなくてもよいことである。
【図面の簡単な説明】
【0059】
【図1】 従来技術によりα1=45°およびα2=−45°の角度で向けられる2つの加速度センサを持ちかつ車両縦軸に沿って前方への主測定方向のため車両にあるセンサ配置の概略図を平面図で示す。
【図2】 本発明によりα1=135°およびα2=45°の角度で向けられる2つの加速度センサを持ちかつ車両縦軸線に沿って前方への主測定方向のため車両にあるセンサ配置の概略図を平面図で示す。
【図3】 本発明による配置および主測定方向と第1および第2加速度センサの感度方向との間の角度の向きを説明するための線図を示す。
【図4A】 技術説明によるセンサ配置を持つ装置における基準信号の変化の際測定エラーの増大の発生を説明するための線図を持つ概略図を示す。
【図4B】 本発明による装置における基準信号の変化の際測定エラーの少なくとも部分的な補償の発生を説明するための線図を持つ対応する図を示す。
【図5】 車両にある付加的なサテライト・センサを持つ本発明によるセンサ配置の概略図を平面図で示す。
【図6】 6A,6Bおよび6Cは付加的に設けられるアップ・フロント、セーフィングまたはサイド・センサと共に本発明により設けられて加速度センサの処理される測定信号の評価の段階の概略図を示す。
【符号の説明】
【0060】
10 測定装置
12 第1加速度センサ
14 第1感度方向
16 第2加速度センサ
18 第2感度方向
20 主測定方向
22 第1主投影
24 第2主投影
26 車両の前進方向
28 車両の縦軸
30 横方向
32 第1横投影
34 第2横投影
α1 主測定方向と第1感度方向の間の角度
α2 主測定方向と第2感度方向の間の角度
β 第1および第2感度方向の間の角度、|α1−α2|
40,40a,40b アップフロント・センサ、左および右のアップフロント・センサ
42,42a,42b サイド・センサ、左および右のサイド・センサ
44 セーフィング・センサ
F1 第1加速度センサの処理ずみ信号
F2 第2加速度センサの処理ずみ信号
T1 第1評価チャネルのスタート閾値
T2 第2評価チャネルのスタート閾値
S1 第1評価チャネルの作動信号
S2 第2評価チャネルの作動信号
R1 第1評価チャネル基準信号
R2 第2評価チャネル基準信号
△1 第1評価チャネルにおける基準信号の変化
△2 第2評価チャネルにおける基準信号の変化

【特許請求の範囲】
【請求項1】
車両搭乗者保護システム用の加速度測定装置(10)であって、装置が所定の主測定方向(20)に合わされ、かつ
主測定方向(20)への投影において第1主投影(22)および主測定方向(20)に対して直角に向く横方向(30)への投影において第1横投影(32)を形成する第1感度方向(14)と、第1基準値(R1)に関して第1加速度センサの第1測定信号を処理する第1評価チャネルとを有する少なくとも1つの第1加速度センサ(12)、
主測定方向(20)への投影において第2主投影(24)および横方向(30)への投影において第2横投影(34)を形成する第2感度方向(18)と、第2基準値(R2)に関して第2加速度センサの第2測定信号を処理する第2評価チャネルとを有する第2加速度センサ(16)、および
少なくとも処理された第1測定信号(F1)および処理された第2測定信号(F2)を評価しかつ少なくとも部分的にそれに基いて搭乗者保護システム用の作動信号を発生する評価手段を含み、
第1および第2感度方向(14,18)の第1および第2横投影(32,34)が互いに平行に向けられ、第1および第2感度方向(14,18)の第1および第2主投影(22,24)が互いに逆平行に向けられ、
第1および第2評価チャネルにおける第1または第2基準値(R1またはR2)が変化する時、少なくとも部分的にエラー補償が行われるように、評価が実施される、
加速度測定装置。
【請求項2】
評価が、主測定方向に対する第1および第2感度方向の向きに応じて、第1および第2基準値が変化(△1および△2)する際に、エラー補償が最大となるように、実施されることを特徴とする、請求項1記載の装置。
【請求項3】
第1評価チャネルが、第1スタート閾値(T1)を含み、第2評価チャネルが、第2スタート閾値(T2)を含み、評価が、処理された第1測定信号(F1)および処理された第2測定信号(F2)の第1評価関数と、第1スタート閾値(T1)および第2スタート閾値(T2)の第2評価関数との比較を含んでいることを特徴とする、請求項1あるいは2記載の装置。
【請求項4】
第1評価関数が、処理された第1測定信号(F1)と処理された第2測定信号(F2)の重み付けされた差または和であり、第2評価関数が、第1スタート閾値(T1)と第2スタート閾値(T2)の重み付けされた和または差であることを特徴とする、請求項3記載の装置。
【請求項5】
第1基準値(R1)と第2基準値(R2)が、第1および第2評価チャネルに共通な基準値であることを特徴とする、先行請求項の1つに記載の装置。
【請求項6】
第1感度方向(14)および第2感度方向(18)の主測定方向(20)および横方向に対する角度間隔が、0°あるいは90°に等しくなく、特に10°以上であることを特徴とする、先行請求項の1つに記載の装置。
【請求項7】
第1感度方向(14)と第2感度方向(18)との間の角度間隔がほぼ90°であることを特徴とする、先行請求項の1つに記載の装置。
【請求項8】
第1感度方向(14)の主測定方向(20)に対する角度間隔が、ほぼ45°または135°あるいは−45°または−135°あるいは225°または315°であり、第2感度方向(18)の主測定方向(20)に対する角度間隔が、ほぼ135°または45°あるいは−135°または−45°あるいは315°または225°であることを特徴とする、先行請求項の1つに記載の装置。
【請求項9】
主測定方向(2)が、車両のほぼ前進方向(26)であることを特徴とする請求項1〜8の1つに記載の装置。
【請求項10】
主測定方向(20)が、車両の前進方向(26)に対してほぼ直角であることを特徴とする請求項1〜8の1つに記載の装置。
【請求項11】
第1および第2加速センサ(12,16)および評価手段が中央制御装置内に配置されていることを特徴とする、先行請求項の1つに記載の装置。
【請求項12】
装置が、さらに少なくとも1つのアップフロント・センサ(40)あるいは少なくとも1つのサイド・センサ(42)あるいはセーフィング・センサ(44)を含んでいることを特徴とする、先行請求項の1つに記載の装置。
【請求項13】
車両搭乗者保護システム用の加速度測定方法であって、
i)車両の前進方向(26)に対して主測定方向(20)を定め、
ii)主測定方向(20)に投影して第1主投影(22)および主測定方向(20)に 対し直角に向く横方向(30)に投影して第1横投影(32)を形成する第1感 度方向(14)を持つ第1加速度センサ(12)を準備し、
iii)主測定方向(20)に投影して第2主投影(24)および横方向(30)に投影 して第2横投影(34)を形成する第2感度方向(18)を持つ第2加速度セン サ(16)を準備し、その際第1および第2感度方向(14,18)の第1およ び第2横投影(32,34)は互いに平行に、第1および第2感度方向(14, 18)の第1および第2 主投影(22,24)は互いに逆平行に向けられ、
iv)第1加速度センサ(12)の第1測定信号を処理して、第1加速度センサ(12 )の第1信号を処理する第1評価チャネルの第1基準値(R1)に対して、第1 処理ずみ信号(F1)を形成し、
v)第2加速度センサ(16)の第2測定信号を処理して、第2加速度センサ(16 )の第2信号を処理する第2評価チャネルの第2基準値(R2)に対して、第2 処理ずみ信号(F2)を形成し、
vi)第1および第2スタート閾値(T1およびT2)に対して第1および第2処理ず み信号(F1およびF2)を評価して、第1および第2評価チャネルの第1およ び第2基準値(R1およびR2)が変化する時、少なくとも部分的にエラー補償 が行われるようにしている
ステップを含む、加速度測定方法。
【請求項14】
評価が主測定方向に対する第1および第2感度方向の向きに応じて行われて、第1および第2基準値が変化した際に、エラー補償が最大となるようにしていることを特徴とする請求項13記載の方法。
【請求項15】
ステップvi)における評価が、
a)第1スタート閾値(T1)および第2スタート閾値(T2)の重み付けされた閾値和 関数または閾値差関数を形成し、
b)第1処理ずみ測定信号(F1)および第2処理ずみ測定信号(F2)の重み付けされ た差関数または和関数を形成し、
c)ステップb)からの重み付けされた差関数または和関数をステップa)からの重み付 けされた閾値和関数又は閾値差関数と比較し、ステップb)からの重み付けされた差 関数または和関数がステップa)からの重み付けされた閾値和関数または閾値差関数 を超過する時、作動信号を作動状態にセットする
ことを含んでいることを特徴とする請求項13あるいは14記載の方法。
【請求項16】
ステップb)において第1処理ずみ測定信号(F1)および第2処理ずみ測定信号(F2)の重み付けされた差関数または和関数は、次式
a1*F1−a2*F2 または a1*F1+a2*F2
で表わすことができ、式中a1およびa2は、正規化係数(0<a1,a2<1)であり、ステップa)において第1スタート閾値(T1)および第2スタート閾値(T2)の重み付けされた閾値和関数または閾値差関数は、次式
b1*T1+b2*T2 または b1*T1−b2*T2
で表わすことができ、式中b1およびb2は正規化係数(0<b1,b2<1)であることを特徴とする請求項13〜15の1つに記載の方法。
【請求項17】
a1およびa2が、

であり、式中、α1は主測定方向(20)と第1感度方向(14)との間の角度、α2は主測定方向(20)と第2感度方向(18)との間の角度であることを特徴とする、請求項16記載の方法。
【請求項18】
第1基準値(R1)および第2基準値(R2)が、第1および第2評価チャネルの共通な基準値であることを特徴とする、請求項13〜17の1つに記載の方法。
【請求項19】
ステップiv)およびv)において、第1または第2加速度センサ(12および16)の第1または第2測定信号の処理が、測定信号の少なくとも1つの積分を含んでいることを特徴とする、請求項13〜18の1つに記載の方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4A】
image rotate

【図4B】
image rotate

【図5】
image rotate

【図6A】
image rotate

【図6B】
image rotate

【図6C】
image rotate


【公表番号】特表2007−502994(P2007−502994A)
【公表日】平成19年2月15日(2007.2.15)
【国際特許分類】
【出願番号】特願2006−524211(P2006−524211)
【出願日】平成16年6月3日(2004.6.3)
【国際出願番号】PCT/DE2004/001142
【国際公開番号】WO2005/014342
【国際公開日】平成17年2月17日(2005.2.17)
【出願人】(503355292)コンティ テミック マイクロエレクトロニック ゲゼルシャフト ミット ベシュレンクテル ハフツング (79)
【氏名又は名称原語表記】Conti Temic microelectronic GmbH
【住所又は居所原語表記】Sieboldstrasse 19, D−90411 Nuernberg, Germany
【Fターム(参考)】