説明

較正システム及び較正方法

【課題】較正液として使用する懸濁液中の固体粒子の沈降を抑制することにより血液成分測定装置の較正を精度良く行うことができる較正システム及び較正方法を提供する。
【解決手段】較正システム10Aは、赤外光が透過可能であり且つ所定濃度の血液成分を含む懸濁液からなる較正液26を内部に流通可能な第1透過部44及び第2透過部46と、第1透過部44及び第2透過部46に較正液26を送液するポンプ32とを備える。ポンプ32は、第1透過部44及び第2透過部46内の較正液26の線流速が0.005〜4.2cm/sとなるように較正液26を送液する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、赤外光を身体に透過させて血液に含まれる所定成分の測定を行う血液成分測定装置を較正するために用いられる較正システム及び較正方法に関する。
【背景技術】
【0002】
糖尿病患者は、日常的に血糖値の変動を自分自身で測定することが推奨されており、例えば、従来から患者自身が手指等を穿刺して血液を採取し、測定装置を用いて血糖値を測定することが行われていた。しかしながら、上述した測定方法は、患者に対して多大な負担を強いることとなるため、近年、近赤外光を患者に照射して血液中に含まれる血液成分を測定可能な非侵襲技術を用いた血液成分測定装置が開発されている。
【0003】
この血液成分測定装置を用いた測定方法では、例えば、血液中に含まれるグルコースが近赤外光の一部を吸収することを利用し、患者の身体の一部(例えば、手指等)に近赤外光を照射して前記身体を透過した近赤外光を受光し、その透過率又は吸光度を測定することにより血糖値(グルコース濃度)を算出している。また、この血糖値を測定する際、測定された透過率又は吸光度が、血液中のグルコース濃度か体組織に含まれたグルコース濃度であるかを判断することが困難であるため、血管の拍動を利用して周期的に変化するグルコース量に基づいて血液のグルコース濃度を算出している(例えば、特許文献1参照)。
【0004】
一方、上述したような血液成分測定装置では測定精度が要求されるため、その測定誤差を小さくするために較正作業が行われる。この較正作業は、例えば、装置の工場出荷時や定期的なメンテナンス時及び血糖値の測定前に行われ、所定の較正体を用いて行われる。較正体は、近赤外光を透過し、且つ、内部に所定濃度のグルコースを含む水溶液の充填されたものである。そして、異なる濃度のグルコース水溶液が充填された複数の較正体に対して近赤外光を順に透過させ、その透過率又は吸光度に基づいて得られる信号強度から検量線を作成して血液成分測定装置においてデータベース化する。この検量線に基づいて血糖値を算出することにより、血糖値の測定において精度向上が図られる(例えば、特許文献2参照)。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特許第3903340号公報
【特許文献2】特開2000−258344号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
光学測定では、血液中の30〜50%を占める赤血球が光散乱因子となり測定誤差が生じる。このような測定誤差を低減するため、従来では、固体粒子(不溶粒子)を懸濁させたグルコース溶液や、標準血液(グルコース濃度が既知の血液)等の懸濁液を較正液として使用する場合がある。しかしながら、このような懸濁液を用いた較正にあっては、懸濁液中の固体粒子が沈降する場合がある。この場合、較正体からの透過光強度にバラツキが生じるため、較正精度が低下するという問題がある。
【0007】
本発明はこのような課題を考慮してなされたものであり、較正液として使用する懸濁液中の固体粒子の沈降を抑制することにより血液成分測定装置の較正を精度良く行うことができる較正システム及び較正方法を提供することを目的とする。
【課題を解決するための手段】
【0008】
上記の目的を達成するため、本発明は、赤外光を身体に透過させて血液成分の測定を行う血液成分測定装置を較正するために用いられる較正システムであって、前記赤外光が透過可能であり、且つ所定濃度の前記血液成分を含む懸濁液からなる較正液を内部に流通可能な透過部と、前記透過部に前記較正液を送液する送液機構とを備え、前記送液機構は、前記透過部内の較正液の線流速が0.005〜4.2cm/sとなるように前記較正液を送液することを特徴とする。
【0009】
このような流速範囲で較正液を透過部内に通液させることで、透過部内を流れる較正液中の固体粒子の沈降が抑制され、透過部に通液する較正液において、固体粒子が均一に分散した状態が維持されるため、固体粒子の沈降による測定精度への影響を排除することができる。すなわち、透過体からの透過光強度をバラツキなく受光することができるので、較正精度を好適に向上させることができる。
【0010】
上記の較正システムにおいて、前記送液機構は、前記透過部内の較正液の線流速が0.01〜4cm/sとなるように前記較正液を送液するとよい。これにより、実際の血液の線流速とほぼ同等の線流速にて較正を実施することができるので、較正精度をより好適に向上させることができる。
【0011】
また、上記の較正システムにおいて、前記送液機構は、前記透過部における前記較正液の線流速について、複数の流速設定が可能であるとよい。この構成によれば、測定対象部位に合わせて流速設定することで、測定対象部位の実際の流速と同等の流速で較正することができ、較正精度をより効果的に向上させることができる。
【0012】
また、本発明は、赤外光を身体に透過させて血液成分の測定を行う血液成分測定装置に対して較正を行うための較正方法であって、赤外光が透過可能な第1透過部内に所定濃度の前記血液成分を含む懸濁液からなる較正液を0.005〜4.2cm/sの線流速で流通させながら、前記第1透過部を透過した赤外光を受光して、透過スペクトルを得る工程と、赤外光の光路長が前記第1透過部と異なる第2透過部内に前記較正液を0.005〜4.2cm/sの線流速で流通させながら、前記第2透過部を透過した赤外光を受光して、透過スペクトルを得る工程と、得られた少なくとも2つ以上の前記透過スペクトルから差分解析によって信号強度を算出し、前記信号強度に基づいた検量線を得る工程と、を含むことを特徴とする。
【0013】
このような較正方法により、透過体からの透過光強度をバラツキなく受光することができるので、較正精度を好適に向上させることができる。
【発明の効果】
【0014】
本発明の較正システム及び較正方法によれば、較正液として使用する懸濁液中の固体粒子の沈降を抑制することにより血液成分測定装置の較正を精度良く行うことができる。
【図面の簡単な説明】
【0015】
【図1】血液成分測定装置及び本発明の第1実施形態に係る較正システムを示す概略構成図である。
【図2】図1の血液成分測定装置の一部断面側面図である。
【図3】較正システムを構成するフローセルの外観斜視図である。
【図4】図1に示す血液成分測定装置に対して、較正システムの本体部を基端側へと移動させた場合を示す概略構成図である。
【図5】較正システムを用いて得られる近赤外光の信号強度と較正液の濃度との関係に基づいた検量線を示すグラフである。
【図6】異なる濃度を有した複数の較正液を用いて得られた信号強度と該較正液の濃度との関係に基づいた検量線を示すグラフである。
【図7】較正液の線流速と透過光量との関係を調べるための実験装置の概略構成図である。
【図8】図7に示した試験装置を用いた試験の結果を示すグラフであって、図8Aは較正液の線流速が0、0〜0.02cm/sの場合を示すグラフであり、図8Bは、0.05〜2.5cm/sの場合を示すグラフである。
【図9】図7に示した試験装置を用いた試験の結果を示す第3のグラフであって、図9Aは、較正液の線流速が2.8〜4.2cm/sの場合を示すグラフであり、図9Bは、線流速が10〜25cm/sの場合を示すグラフである。
【図10】図7に示した実験装置を用いた実験における各線流速での透過光量の標準偏差を示すグラフである。
【図11】血液成分測定装置及び本発明の第2実施形態に係る較正システムの概略構成図である。
【図12】図12Aは、図11に示した較正システムにおける第1フロー系の一部省略斜視図であり、図12Bは、図11に示した較正システムにおける第2フロー系の一部省略斜視図である。
【発明を実施するための形態】
【0016】
以下、本発明に係る較正システム及び較正方法について好適な実施形態を挙げ、添付の図面を参照しながら説明する。
【0017】
[第1実施形態]
図1は、血液成分測定装置12及び本発明の第1実施形態に係る較正システムを示す概略構成図である。この較正システムは、血液成分測定装置12を較正するために用いられる較正用構造体である。先ず、較正システム10Aによって較正がなされる血液成分測定装置12について図1及び図2を参照しながら簡単に説明する。
【0018】
この血液成分測定装置12は、血液中のグルコース濃度を非侵襲で測定するものであり、図1及び図2に示されるように、ベースボディ14と、該ベースボディ14の先端側の上部に設けられ、血液成分を測定する際に、例えば、被検者の手指が挿入されるソケット16と、前記ベースボディ14の内部に設けられ前記ソケット16側に向けて発光可能な発光部18と、該発光部18から発光されて手指を透過した光が入射される受光部20とを含む。なお、血液成分測定装置12は、発光部18および受光部20を含めてコンピュータ(図示せず)によって統合的に制御されている。
【0019】
なお、図1において、ソケット16を有する血液成分測定装置12の上側を「先端」側(矢印A方向)、前記血液成分測定装置12の下側を「基端」側(矢印B方向)と呼び、他の各図についても同様とする。
【0020】
ベースボディ14は、その上面が平面状に形成され、例えば、手指等を前記上面に沿ってソケット16側(矢印A方向)へと移動可能に形成される。
【0021】
ソケット16は、例えば、手指の先端を挿入可能な空間を内部に有したカバー状に形成され、前記空間及びベースボディ14の上面に臨むように受光部20が設けられている。この受光部20は、例えば、フォトダイオードからなる。
【0022】
発光部18は、例えば、近赤外光を取り出す分光器を備えたハロゲンランプ、若しくは、近赤外光を発光可能なLEDからなり、ベースボディ14において受光部20と対向する位置に設けられる。換言すれば、発光部18及び受光部20は、ソケット16の空間を介してベースボディ14及びソケット16において上下方向に対向配置される。すなわち、血液成分測定装置12では、下方に設けられた発光部18から鉛直上方向に向かって発光され受光部20で受光される(図2参照)。
【0023】
そして、血液成分測定装置12では、ソケット16の内部に手指(例えば、人差し指)を挿入した後、作業者が図示しない測定ボタンを押すことにより、発光部18から発光された近赤外光が前記手指において動脈、静脈及びその他の組織を透過し、受光部20で受光される。コンピュータでは、脈拍に相当する期間において受光部20から信号を受信し、スペクトル解析、差分解析を経て血糖値を求める。
【0024】
次に、較正システム10Aについて、図1〜図6を参照しながら説明する。この較正システム10Aは、図1〜図3に示されるように、光散乱体22が内装された本体部24と、その一部が前記本体部24の内部に設けられ較正液26が充填されたフローセル28と、前記フローセル28の端部に設けられ前記較正液26が貯えられたリザーバタンク30と、前記較正液26を前記フローセル28に沿って循環させるポンプ32とからなる。較正液26としては、所定濃度のグルコースを含む懸濁液が用いられる。このような懸濁液としては、例えば、グルコース溶液に固体粒子(光散乱性粒子)を混入させたものや、標準血液(グルコース濃度や各種血球数が既知の血液)が挙げられる。
【0025】
本体部24は、例えば、手指を模して先端が円弧状となった断面長円状に形成され、光散乱体22である寒天等が内部に充填されている。すなわち、較正システム10Aでは、光散乱体22を内部に設けることによって被検者の手指に近赤外光を透過させた際に血管周辺の生体組織で生じる散乱を再現している。
【0026】
また、本体部24において幅方向に沿った側面には、2組の第1及び第2凹部34、36が該本体部24の軸線方向(矢印A、B方向)に沿って互いに所定間隔離間して形成される。この第1及び第2凹部34、36は、例えば、断面三角形状に窪んで形成され、該第1凹部34が本体部24の基端側(矢印B方向)、第2凹部36が前記本体部24の先端側(矢印A方向)に設けられ、較正システム10Aがソケット16の内部に挿入された際、前記第1及び第2凹部34、36のいずれか一方に対して前記ソケット16の内壁面に形成された断面三角形状の凸部38が係合される。これにより、ソケット16に対して本体部24を含む較正システム10Aが位置決めされて固定されることとなる。
【0027】
すなわち、第1及び第2凹部34、36と凸部38とは、血液成分測定装置12に対する較正システム10Aの位置決めを行う位置決め機構として機能する。
【0028】
フローセル28は、例えば、近赤外光を透過可能な透明なガラス又は樹脂製材料からなり中空状に形成された透過体40と、該透過体40の両端部にそれぞれ接続されるチューブ42とからなり、前記透過体40及びチューブ42の内部がそれぞれ連通し、較正液26が充填されている。透過体40は断面長方形状に形成され、本体部24の幅方向に沿って幅広状に形成された第1透過部44と、前記第1透過部44の端部に接合され、前記本体部24の幅方向と直交した高さ方向に沿って幅広状に形成された第2透過部46とを有する(図3参照)。
【0029】
第1及び第2透過部44、46は、図3に示されるように、中空且つ断面長方形状でほぼ同一形状に形成され、その端部同士が中央部分で互いに略直角に交差するように接合されると共に、本体部24の内部において、第1透過部44が基端側(矢印B方向)、第2透過部46が先端側(矢印A方向)となるように配置される。したがって、第2透過部46における光路長L2は、第1透過部44における光路長L1よりも大きく設定されている(L2>L1)。
【0030】
チューブ42の軸線方向(矢印A、B方向)に沿って見た第1透過部44の水平断面の面積と第2透過部46の縦断面の面積とは、同一となるように形成されている。ここで、第1及び第2透過部44、46は容積が同一となるように形成されているので、較正液26を透過体40の内部に流通させる際に、その流速が変化することがなく好適である。
【0031】
そして、透過体40は、図1に示されるように、本体部24の第1凹部34が血液成分測定装置12の凸部38に係合された状態で、第1透過部44が発光部18及び受光部20に臨む位置に配置され、一方、図4に示されるように、第2凹部36が前記凸部38に係合された状態では、第2透過部46が前記発光部18及び受光部20に臨む位置に配置される。
【0032】
なお、第1透過部44及び第2透過部46の光路長L1、L2が大きすぎると、正確な吸光度を測定することが困難となる。よって、第1透過部44における光路長L1及び第2透過部46における光路長L2は、正確な吸光度を測定するために1.0cm以下であるのがよい。
【0033】
チューブ42は、透過体40における第1透過部44とリザーバタンク30との間を接続する第1管路48と、前記透過体40における第2透過部46と前記リザーバタンク30とを接続する第2管路50とを備え、前記第1管路48は、前記第1透過部44から本体部24の基端側(矢印B方向)に向かって延在し、一方、前記第2管路50は、第2透過部46から本体部24の先端側(矢印A方向)に向かって延在した後、U字状に折曲されて前記基端側(矢印B方向)に向かって延在している。
【0034】
第1管路48の途中には、ポンプ(送液機構)32が設けられている。ポンプ32は、較正液26に含有された固体粒子が沈降しないように、透過体40(第1透過部44及び第2透過部46)に較正液26を送液して、較正液26を循環・流動させるための機構である。図示した構成例に係るポンプ32は、リザーバタンク30内の較正液26を前記第1管路48を通じて透過体40へと流動させ、第2管路50を通じて再び前記リザーバタンク30へと循環させている。すなわち、フローセル28とリザーバタンク30は、較正液26の循環路を構成している。
【0035】
ポンプ32としては、所望の流量で精度良く較正液26を送液することができれば特に限定されず、ターボ型(遠心ポンプ、斜流ポンプ、軸流ポンプ)、や容積型(ピストンポンプ、プランジャーポンプ、ダイヤフラムポンプ、ローラーポンプ等)を適用することができる。
【0036】
図1及び図4に示されるように、例えば、異なる濃度の較正液26が貯えられた別のリザーバタンク30aを設け、図示しない切換手段を介して複数のリザーバタンク30、30aとフローセル28との接続状態を選択的に切換可能としてもよい。この場合、単一の較正システム10Aにおいて、異なる濃度の較正液26を前記フローセル28に対して供給して血液成分測定装置12の較正作業を行うことが可能となる。
【0037】
ここで、ポンプ32によって透過体に送液される較正液26の線流速の好ましい範囲について説明する。本発明者は、血液成分測定装置12を較正する際の較正液26の好ましい流速(線流速)を調べるため、種々の線速度での較正液26の通液実験を実施した。図7に実験装置60の概略を示す。図7に示す実験装置60は、較正用セル62と、較正用セル62に連結された供給チューブ64及び排出チューブ66と、供給チューブ64に接続された送液ポンプ68と、較正用セル62の両側に対向配置された投光部70及び受光部72とを備える。
【0038】
この実験では、較正液26として、グルコース濃度及び各種血球数が既知の標準血液を使用した。較正用セル62は、第1透過部44又は第2透過部46に相当するものであり、近赤外光を透過可能な透明なガラス又は樹脂製材料からなり中空状に形成されている。供給チューブ64は、送液ポンプ68からの較正液26を較正用セル62に移送する流路であり、排出チューブ66は、較正用セル62から流出した較正液26を外部まで移送し排出する流路である。図示した構成例の送液ポンプ68は、シリンジポンプとして構成されたものであり、較正液26が充填されたシリンジ74と、シリンジ74が装着される装置本体76とを有する。装置本体76は、シリンジ74の外筒74aを保持固定する固定部76aと、シリンジ74の押し子74bを押圧して前進させる駆動部76bとを有する。装置本体76の駆動部76bが前進してシリンジ74の押し子74bを押圧することで、シリンジ74内の較正液26が吐出され、供給チューブ64を介して較正用セル62に送液される。駆動部76bによる押し子74bの移動速度は可変であり、これにより、較正用セル62内での較正液26の線流速は、駆動部76bの駆動能力の範囲内で任意の速度に設定することができる。
【0039】
このような実験装置60を用いて、種々の線流速で較正液26を較正用セル62に送液するとともに、較正用セル62からの透過光の強度(透過光量)を線流速ごとに測定した。その結果を図8A〜図9Bに示す。図8A〜図9Bにおいて、横軸は通液時間[min]であり、縦軸は透過光量[count]である。図8Aにおいて、a、b、c、dは、それぞれ、較正液26の線流速が0、0.0005、0.01、0.02cm/sの場合を示している。図8Bにおいて、e、f、g、h、i、jは、それぞれ、0.05、0.1、0.5、1.0、2.0、2.5cm/sの場合を示している。図9Aにおいて、k、lは、それぞれ、線流速が2.8、4.2cm/sの場合を示している。図9Bにおいて、m、n、o、pは、それぞれ、線流速が10、12、15、25cm/sの場合を示している。なお、線流速が10〜25cm/sの実験においては、図7に示した送液ポンプ68(シリンジポンプ)に代えて、ペリスタポンプを使用した。
【0040】
図10は、上述した実験における各線流速での透過光量の標準偏差を示している。標準偏差は、線流速ごとに0〜1分、1〜2分、…9〜10分の間(各60ポイント)での標準偏差をとったものである。すなわち、1種類の線流速ごとに10個の標準偏差を算出した(ただし、10分まで測定したもののみ)。また図10では、エアー混入などの人為的エラーの影響で特異的に大きくなった標準偏差を排除するため、10個の標準偏差の中で、最も値が小さいものを掲載した。
【0041】
図8A、図8B及び図9Aから了解されるように、0.005〜4.2cm/sでは、時間経過に伴う透過光量の変化はほとんど無く、透過光量ほぼ一定であることが確認された。また、図10から了解されるように、0.005〜4.2cm/sでは標準偏差が小さく、つまりバラツキが小さい。このような結果から、線流速が0.005〜4.2cm/sの場合、較正液26中の固体粒子の沈降が有効に防止されていることが分かる。
【0042】
一方、図8A及び図9Bから了解されるように、0cm/s及び10cm/s以上の場合は、時間経過に伴って透過光量が変化することが認められた。よって、0cm/s及び10cm/s以上の場合は、較正液26中の固体粒子の沈降やシェアストレスによる溶血、乱流などが発生し、その影響によって透過光量が不安定となったことが分かる。
【0043】
次に、血液成分測定装置12の較正方法について説明する。なお、ここでは、グルコース濃度が濃度Qの較正液26が用いられると共に、較正システム10Aを構成する透過体40及びチューブ42の内部に予め較正液26が満たされ、ポンプ32を介して常に循環している状態とする。
【0044】
先ず、この準備状態にある較正システム10Aを作業者が把持し、本体部24の先端側から血液成分測定装置12におけるソケット16の内部に挿入していく。そして、図1に示されるように、ソケット16の凸部38に対して前記本体部24の第1凹部34を係合させることにより、透過体40を構成する第1透過部44が、血液成分測定装置12の発光部18及び受光部20に対峙する位置で位置決めされて固定される。
【0045】
次に、作業者が、血液成分測定装置12の計測ボタン(図示せず)を押すことにより、発光部18から照射された近赤外光が較正システム10Aにおける本体部24及び第1透過部44を透過して受光部20において受光される。この際、本体部24は光散乱体22を有しているため、近赤外光が散乱され、且つ、前記近赤外光が第1透過部44を透過する際に較正液26に含まれるグルコース分子によって該近赤外光の一部が吸収された後に受光部20で受光される。詳細には、固有の波長を有する近赤外光の一部が、グルコース分子によって吸収される。
【0046】
そして、受光部20で受光した透過光の強度に基づいた出力信号が図示しないコンピュータへと出力され、該コンピュータにおいて行われるスペクトル解析を経て透過スペクトルPAが作成される。詳細には、コンピュータでは、発光部18から較正システム10Aに対して照射される光の強度と、受光部20からの出力信号に基づいた透過光の強度とから吸光度が算出され、前記吸光度に基づいて透過スペクトルPAが作成される。
【0047】
この場合、本実施形態に係る血液成分測定装置12では、第1透過部44内の較正液26の線流速は、0.005〜4.2cm/sに設定され、より好ましくは0.01〜4.2cm/sに設定される。これにより、第1透過部44内を流れる較正液26中の固体粒子の沈降が抑制され、受光部20において、第1透過部44からの透過光強度をバラツキなく受光することができる。すなわち、第1透過部44内を流れる較正液26中の固体粒子の沈降が生じると、第1透過部44からの透過光強度にバラツキが生じるため、透過スペクトルPAを精度良く作成することができないが、較正液26中の固体粒子の沈降が防止されることで、透過スペクトルPAを精度良く作成することができる。
【0048】
次に、作業者が、較正システム10Aを血液成分測定装置12のソケット16から離間させる方向、すなわち、血液成分測定装置12の基端側(矢印B方向)へと引っ張ることにより、第1凹部34から凸部38が離脱して第2凹部36に係合される(図4参照)。これにより、図4に示されるように、血液成分測定装置12の発光部18及び受光部20に対して較正システム10Aの第2透過部46が対峙した位置で位置決めされる。
【0049】
そして、作業者が再び計測ボタンを押すことにより、発光部18から発光された近赤外光が較正システム10Aの本体部24及び第2透過部46を透過して受光部20において受光される。この際、図3に示されるように、近赤外光の透過する第2透過部46は、該近赤外光の照射方向に沿った光路長L2(断面積)が、第1透過部44における光路長L1(断面積)に対して大きく形成されているため(L2>L1)、前記近赤外光の較正液26を透過する距離が長くなる。
【0050】
その結果、第2透過部46では、近赤外光を第1透過部44に透過させた場合と比較し、較正液26によって吸収される光が増加し、それに伴って、受光部20において受光される近赤外光の光が減少することとなる。すなわち、近赤外光を較正システム10Aに透過させる際、第2透過部46を透過させた際の吸光度が、第1透過部44を透過させた際の吸光度に対して大きくなる。
【0051】
すなわち、光路長L1が短い第1透過部44は、血管が拍動によって収縮して血液量が減少した場合における身体の透過スペクトルを再現するためのものであり、一方、光路長L2の長い第2透過部46は、前記血管が拍動によって拡張して前記血液量が増加した場合における前記身体の透過スペクトルを再現するために設けられている。
【0052】
そして、この受光部20で受光した透過光の強度に基づいた出力信号が再び図示しないコンピュータへと出力され、該コンピュータでは、スペクトル解析を行い、吸光度に基づいて透過スペクトルPBが作成される。
【0053】
この場合、本実施形態に係る血液成分測定装置12では、本実施形態に係る血液成分測定装置12では、第2透過部46内の較正液26の線流速は、0.005〜4.2cm/sに設定され、より好ましくは0.01〜4.2cm/sに設定される。これにより、第2透過部46内を流れる較正液26中の固体粒子の沈降が防止され、受光部20において、第2透過部46からの透過光強度をバラツキなく受光することができる。すなわち、第2透過部46内を流れる較正液26中の固体粒子の沈降が生じると、透過体からの透過光強度にバラツキが生じるため、透過スペクトルPBを精度良く作成することができないが、較正液26中の固体粒子の沈降が防止されることで、透過スペクトルPBを精度良く作成することができる。
【0054】
最後に、較正システム10Aにおける第1及び第2透過部44、46を透過させた際に得られた透過スペクトルPA、PBに基づいて差分解析を行い、較正液26における信号強度Sを算出することにより、図5に示されるような前記信号強度Sと前記較正液26の濃度Qとの関係に基づいた直線状の検量線Kが得られる。
【0055】
そして、血液成分測定装置12では、この検量線Kをデータベースとして保存し、血糖値を測定する際に参照することで高精度な測定を行うことができる。
【0056】
上述した説明においては、所定濃度Qを有した単一の較正液26を用いて血液成分測定装置12の較正を行う場合について説明したが、例えば、図1及び図3に示されるように複数のリザーバタンク30、30aを較正システム10Aに設け、異なる濃度Q、Q1〜Q3の較正液26を順番にフローセル28へと送り込み、各較正液26における信号強度S、S1〜S3を得るようにしてもよい。この場合、図6に示されるように、信号強度S、S1〜S3と較正液26の濃度Q、Q1〜Q3との関係からより高精度な検量線K1を作成することが可能である。その結果、血液成分測定装置12において、より高精度に作成された検量線K1を用いて血糖値の測定精度を向上させることができる。
【0057】
以上のように、第1実施形態では、血液成分測定装置12の較正を行う較正システム10Aにおいて、ポンプ32により0.005〜4.2cm/sの線流速で較正液26を送液することで、第1透過部44及び第2透過部46内を流れる較正液26中の固体粒子の沈降が抑制され、第1透過部44及び第2透過部46に通液する較正液26において、固体粒子が均一に分散した状態が維持されるため、固体粒子の沈降による測定精度への影響を排除することができる。すなわち、第1透過部44及び第2透過部46からの透過光強度をバラツキなく受光することができる。よって、血液成分測定装置12の較正を精度良く行うことができる。
【0058】
すなわち、高精度に得られた透過スペクトルPA、PBに基づいた信号強度Sから検量線K、K1を作成し、例えば、血液成分測定装置12内にデータベースとして保存し利用することにより、該血液成分測定装置12で被検者の血糖値を測定する際に高精度な測定結果を得ることが可能となる。換言すれば、血液成分測定装置12における血糖値の測定誤差をより一層低減することができる。
【0059】
較正システム10Aにおいて、ポンプ32は、第1透過部44及び第2透過部46内の較正液26の線流速が0.1〜4cm/sとなるように較正液26を送液することがより好ましい。ヒトの手指等の末梢血管における血液の線流速は、0.1〜4cm/sである。したがって、0.1〜4cm/sの線流速で較正液26を送液することで、実際の血液の線流速とほぼ同等の線流速にて較正を実施することができるので、較正精度をより好適に向上させることができる。
【0060】
また、較正システム10Aにおいて、ポンプ32は、第1透過部44及び第2透過部46における較正液26の線流速について、複数の流速設定ができるように構成されるとよい。血液の流速は身体の部位に応じて異なるため、測定対象部位に合わせて流速設定することで、測定対象部位の実際の流速と同等の流速で較正することができ、較正精度をより効果的に向上させることができる。
【0061】
[第2実施形態]
次に、第2実施形態に係る較正システム10Bを図11及び図12に示す。なお、上述した第1実施形態に係る較正システム10Aと同一の構成要素には同一の参照符号を付して、その詳細な説明を省略する。
【0062】
図11において、較正システム10Bによって較正がなされる血液成分測定装置12は、図1等に示した血液成分測定装置12と同様に構成されている。較正システム10Bは、較正液26を流通させる第1フロー系80及び第2フロー系82により構成されている。
【0063】
第1フロー系80は、光散乱体22が内装された第1本体部84と、その一部が第1本体部84の内部に設けられ較正液26が充填された第1フローセル86と、前記第1フローセル86の端部に設けられ前記較正液26が貯えられた第1リザーバタンク88と、前記較正液26を前記第1フローセル86に沿って循環させる第1ポンプ90とからなる。
【0064】
第1本体部84は、図1等に示した本体部24と同様に、例えば、手指を模して先端が円弧状となった断面長円状に形成され、被検者の手指に近赤外光を透過させた際に血管周辺の生体組織で生じる散乱を再現すべく、光散乱体22である寒天等が内部に充填されている。
【0065】
第1本体部84において幅方向に沿った左右の側面には、一対の凹部92が形成される。凹部92は、例えば、断面三角形状に窪んで形成され、第1本体部84がソケット16の内部に挿入された際、凹部92に対して前記ソケット16の内壁面に形成された凸部38が係合される。これにより、ソケット16に対して第1本体部84が位置決めされて固定されることとなる。
【0066】
図12Aは、第1フローセル86の先端部を示す一部省略斜視図である。図11及び図12Aに示すように、第1フローセル86は、例えば、近赤外光を透過可能な透明なガラス又は樹脂製材料からなり中空状に形成された第1透過部94と、該第1透過部94の一端に接続された第1管路96と、第1透過部94の他端に接続された第2管路98とを有し、第1透過部94、第1管路96及び第2管路98の内部がそれぞれ連通し、較正液26が充填されている。第1透過部94は、断面長方形状に形成され、第1本体部84の幅方向に沿って幅広状に形成されている。
【0067】
第1管路96は、透過体40における第1透過部94と第1リザーバタンク88との間を接続するチューブであり、前記第1管路96は、前記第1透過部94から第1本体部84の基端側(矢印B方向)に向かって延在する。第2管路98は、第2透過部108と第1リザーバタンク88とを接続するチューブであり、第2透過部108から第1本体部84の先端側(矢印A方向)に向かって延在した後、U字状に折曲されて前記基端側(矢印B方向)に向かって延在している。
【0068】
第1管路96の途中には、第1ポンプ(送液機構)90が設けられている。第1ポンプ90は、較正液26に含有された固体粒子が沈降してしまわないように、第1透過部94及び第2透過部108に較正液26を送液して、較正液26を循環・流動させるための機構であり、図1等に示したポンプ32と同様に構成されている。第1ポンプ90は、第1透過部94内の較正液26の線流速が0.005〜4.2cm/sとなるように較正液26を送液する。
【0069】
図11に示すように、第2フロー系82は、光散乱体22が内装された第2本体部100と、その一部が前記第2本体部100の内部に設けられ較正液26が充填された第2フローセル102と、前記第2フローセル102の端部に設けられ前記較正液26が貯えられた第2リザーバタンク104と、前記較正液26を前記第2フローセル102に沿って循環させる第2ポンプ106とからなる。第2本体部100は第1本体部84と同様に構成され、第2リザーバタンク104は第1リザーバタンク88と同様に構成され、第2ポンプ106は第1ポンプ90と同様に構成されている。
【0070】
図12Bは、第2フローセル102の先端部を示す一部省略斜視図である。図11及び図12Bに示すように、第2フローセル102は、例えば、近赤外光を透過可能な透明なガラス又は樹脂製材料からなり中空状に形成された第2透過部108と、該第2透過部108の一端に接続された第1管路110と、第1透過部94の他端に接続された第2管路112とを有し、第2透過部108、第1管路110及び第2管路112の内部がそれぞれ連通し、較正液26が充填されている。第2透過部108は、断面長方形状に形成され、第1本体部84の幅方向と直交した高さ方向に沿って幅広状に形成されている。第2透過部108における光路長L4(図12B参照)は、第1透過部94における光路長L3(図12A参照)よりも大きく設定されている(L4>L3)。
【0071】
第1透過部94及び第2透過部108の光路長L3、L4が大きすぎると、正確な吸光度を測定することが困難となる。よって、第1透過部94における光路長L3及び第2透過部108における光路長L4は、正確な吸光度を測定するために1.0cm以下であるのがよい。
【0072】
図12A及び図12Bに示すように、第1透過部94及び第2透過部108は、中空且つ断面長方形状でほぼ同一形状に形成されている。換言すれば、第1本体部84の軸線方向(矢印A、B方向)に沿って見た第1透過部94の水平断面の面積と、第2本体部100の軸線方向(矢印A、B方向)に沿って見た第2透過部108の縦断面の面積とが同一となるように形成されている。ここで、第1透過部94及び第2透過部108は容積が同一となるように形成されているので、較正液26を透過体40の内部に流通させる際に、その流速が変化することがなく好適である。
【0073】
次に、較正システム10Bを用いた血液成分測定装置12の較正方法について説明する。なお、ここでは、グルコース濃度が濃度Qの較正液26が用いられると共に、第1フロー系80を構成する第1透過部94、第1管路96及び第2管路98の内部に予め較正液26が満たされ、透過スペクトルを得るべく第1透過部94に赤外光を透過させる際には、第1ポンプ90を介して常に循環している状態とする。また、第2フロー系82についても、第2透過部108、第1管路110及び第2管路112の内部に予め較正液26が満たされ、透過スペクトルを得るべく第2透過部108に赤外光を透過させる際には、第2ポンプ106を介して常に循環している状態とする。
【0074】
先ず、第1フロー系80を作業者が把持し、第1本体部84の先端側から血液成分測定装置12におけるソケット16の内部に挿入していく。そして、図11に示されるように、ソケット16の凸部38に対して第1本体部84の凹部92を係合させることにより、第1透過部94が、血液成分測定装置12の発光部18及び受光部20に対峙する位置で位置決めされて固定される。
【0075】
次に、作業者が、血液成分測定装置12の計測ボタン(図示せず)を押すことにより、発光部18から照射された近赤外光が第1本体部84及び第1透過部94を透過して受光部20において受光される。この際、固有の波長を有する近赤外光の一部が、グルコース分子によって吸収される。
【0076】
そして、受光部20で受光した透過光の強度に基づいた出力信号が図示しないコンピュータへと出力され、該コンピュータにおいて行われるスペクトル解析を経て透過スペクトル(以下、「第1の透過スペクトル」という)が作成される。詳細には、コンピュータでは、発光部18から較正システム10Bに対して照射される光の強度と、受光部20からの出力信号に基づいた透過光の強度とから吸光度が算出され、前記吸光度に基づいて第1の透過スペクトルが作成される。
【0077】
この場合、本実施形態において、第1透過部94内の較正液26の線流速は、0.005〜4.2cm/sに設定され、より好ましくは0.01〜4.2cm/sに設定される。これにより、第1透過部94内を流れる較正液26中の固体粒子の沈降が防止され、受光部20において、透過体からの透過光強度をバラツキなく受光することができ、第1の透過スペクトルを精度良く作成することができる。
【0078】
次に、作業者が、第1フロー系80の第1本体部84を血液成分測定装置12の基端側(矢印B方向)へと引っ張って、ソケット16から第1本体部84を引き抜く。そして、第1本体部84をソケットから引き抜いたら、第2フロー系82を作業者が把持し、第2本体部100の先端側からソケット16の内部に挿入し、ソケット16の凸部38に対して第2本体部100の凹部92を係合させる。これにより、第2透過部108が、血液成分測定装置12の発光部18及び受光部20に対峙する位置で位置決めされて固定される。
【0079】
そして、作業者が再び計測ボタンを押すことにより、発光部18から発光された近赤外光が第2本体部100及び第2透過部108を透過して受光部20において受光される。この際、近赤外光の透過する第2透過部108は、該近赤外光の照射方向に沿った光路長L4が、第1透過部94における光路長L3に対して大きく形成されているため(L4>L3)、前記近赤外光の較正液26を透過する距離が長くなる。
【0080】
その結果、第2透過部108では、近赤外光を第1透過部94に透過させた場合と比較し、較正液26によって吸収される光が増加し、それに伴って、受光部20において受光される近赤外光の光が減少することとなる。すなわち、近赤外光を較正システム10Bに透過させる際、第2透過部108を透過させた際の吸光度が、第1透過部94を透過させた際の吸光度に対して大きくなる。
【0081】
すなわち、光路長L3が短い第1透過部94は、血管が拍動によって収縮して血液量が減少した場合における身体の透過スペクトルを再現するためのものであり、一方、光路長L4の長い第2透過部108は、前記血管が拍動によって拡張して前記血液量が増加した場合における前記身体の透過スペクトルを再現するために設けられている。
【0082】
そして、この受光部20で受光した透過光の強度に基づいた出力信号が再び図示しないコンピュータへと出力され、該コンピュータでは、スペクトル解析を行い、吸光度に基づいて透過スペクトル(以下、「第2の透過スペクトル」という)が作成される。この場合、本実施形態において、第2透過部108内の較正液26の線流速は、0.005〜4.2cm/sに設定され、より好ましくは0.01〜4.2cm/sに設定される。これにより、第2透過部108内を流れる較正液26中の固体粒子の沈降が防止され、受光部20において、透過体からの透過光強度をバラツキなく受光することができ、第2の透過スペクトルを精度良く作成することができる。
【0083】
最後に、較正システム10Bにおける第1透過部94及び第2透過部108を透過させた際に得られた第1及び第2の透過スペクトルに基づいて差分解析を行い、較正液26における信号強度Sを算出することにより、図5に示した場合と同様に、前記信号強度Sと前記較正液26の濃度Qとの関係に基づいた直線状の検量線Kが得られる。そして、血液成分測定装置12では、この検量線Kをデータベースとして保存し、血糖値を測定する際に参照することで高精度な測定を行うことができる。
【0084】
以上のように、血液成分測定装置12の較正を行う較正システム10Bにおいて、第1ポンプ90により0.005〜4.2cm/sの線流速で第1透過部94内に較正液26を送液することで、第1透過部94内を流れる較正液26中の固体粒子の沈降が防止され、第1透過部94からの透過光強度をバラツキなく受光することができる。また、第2ポンプ106により0.005〜4.2cm/sの線流速で第2透過部108内に較正液26を送液することで、第2透過部108内を流れる較正液26中の固体粒子の沈降が抑制され、第2透過部108からの透過光強度をバラツキなく受光することができる。よって、血液成分測定装置12の較正を精度良く行うことができる。
【0085】
較正システム10Bにおいて、第1ポンプ90及び第2ポンプ106は、それぞれ第1透過部94及び第2透過部108内の較正液26の線流速が0.1〜4cm/sとなるように較正液26を送液することがより好ましい。ヒトの手指等の末梢血管における血液の線流速は、0.1〜4cm/sである。したがって、0.1〜4cm/sの線流速で較正液26を送液することで、実際の血液の線流速とほぼ同等の線流速にて較正を実施することができるので、較正精度をより好適に向上させることができる。
【0086】
また、較正システム10Bにおいて、第1ポンプ90及び第2ポンプ106は、第1透過部94及び第2透過部108における較正液26の線流速について、複数の流速設定ができるように構成されるとよい。血液の流速は身体の部位に応じて異なるため、測定対象部位に合わせて流速設定することで、測定対象部位の実際の流速と同等の流速で較正することができ、較正精度をより効果的に向上させることができる。
【0087】
上記において、本発明について好適な実施の形態を挙げて説明したが、本発明は前記実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において、種々の改変が可能なことは言うまでもない。
【符号の説明】
【0088】
10A、10B…較正システム 12…血液成分測定装置
44、94…第1透過部 46、108…第2透過部
30、30a…リザーバタンク 32…ポンプ
80…第1フロー系 82…第2フロー系
88…第1リザーバタンク 90…第1ポンプ
104…第2リザーバタンク 106…第2ポンプ

【特許請求の範囲】
【請求項1】
赤外光を身体に透過させて血液成分の測定を行う血液成分測定装置を較正するために用いられる較正システムであって、
前記赤外光が透過可能であり、且つ所定濃度の前記血液成分を含む懸濁液からなる較正液を内部に流通可能な透過部と、
前記透過部に前記較正液を送液する送液機構とを備え、
前記送液機構は、前記透過部内の較正液の線流速が0.005〜4.2cm/sとなるように前記較正液を送液する、
ことを特徴とする較正システム。
【請求項2】
請求項1記載の較正システムにおいて、
前記送液機構は、前記透過部内の較正液の線流速が0.01〜4cm/sとなるように前記較正液を送液する、
ことを特徴とする較正システム。
【請求項3】
請求項1記載の較正システムにおいて、
前記送液機構は、前記透過部における前記較正液の線流速について、複数の流速設定が可能である、
ことを特徴とする較正システム。
【請求項4】
赤外光を身体に透過させて血液成分の測定を行う血液成分測定装置に対して較正を行うための較正方法であって、
赤外光が透過可能な第1透過部内に所定濃度の前記血液成分を含む懸濁液からなる較正液を0.005〜4.2cm/sの線流速で流通させながら、前記第1透過部を透過した赤外光を受光して、透過スペクトルを得る工程と、
赤外光の光路長が前記第1透過部と異なる第2透過部内に前記較正液を0.005〜4.2cm/sの線流速で流通させながら、前記第2透過部を透過した赤外光を受光して、透過スペクトルを得る工程と、
得られた少なくとも2つ以上の前記透過スペクトルから差分解析によって信号強度を算出し、前記信号強度に基づいた検量線を得る工程と、を含む、
ことを特徴とする較正方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate


【公開番号】特開2012−210324(P2012−210324A)
【公開日】平成24年11月1日(2012.11.1)
【国際特許分類】
【出願番号】特願2011−77519(P2011−77519)
【出願日】平成23年3月31日(2011.3.31)
【出願人】(000109543)テルモ株式会社 (2,232)
【Fターム(参考)】