説明

電気化学的センサ及びその製造方法

【課題】格別に信頼性のある方法で、化学的な標的物質の非常に僅かな量又は濃度であっても、高精度で検出又は定量化することができる電気化学的センサを提供する。
【解決手段】本発明によれば、電気化学的センサ(1)が、マトリックス(12)内に埋め込まれたナノ粒子(14)からなる検出領域(10)を含み、ナノ粒子(14)はマトリックス材料に比べて高い電気伝導率を有する。検出領域(10)の電気伝導率(σ)が、ナノ粒子(14)間の電子のトンネル、イオン化又はホッピングプロセスと、ナノ粒子(14)と検出すべき標的物質との電気化学的相互作用とによって規定されている。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、電気化学的センサ、特に非常に僅かな量又は濃度の化学的な物質又は成分を検出及び/又は定量化するための電気化学的センサ、に関する。更に、本発明は、この種のセンサの製造方法に関する。
【背景技術】
【0002】
選ばれた化学物質を非常に僅かな量又は濃度であっても検出する高感度のセンサは、多くの用途に使用することができる。この種のセンサは、特に、例えば次の分野において、非常に少量のガス又は生体分子の如き化学的及び生化学的な物質を測定する際に、有利に使用することができる。
●環境保護)大気の質及び水質を測定する場合
●軍隊及び居住地の防護)毒物又は爆発物を検出する場合
●クロマトグラフィ
●例えば食品・飲料又は化粧品工業での品質保証における人工嗅覚としての使用
【発明の概要】
【発明が解決しようとする課題】
【0003】
本発明の課題は、格別に信頼性のある方法で、非常に僅かな量又は濃度の化学的な標的物質であっても、高精度で検出又は定量化することができるセンサ、特に電気化学的センサ、を提供することにある。更に、本発明の課題は、このようなセンサを製造するのに格別に適した方法を提供することにある。
【課題を解決するための手段】
【0004】
センサに関しては、この課題は、本発明によれば、とりわけ局在状態又はナノ粒子の間での電子的なトンネルプロセス、イオン化プロセス又はホッピングプロセスによって、そして、検出領域と検出すべき標的物質との電気化学的な相互作用によって規定されている電気伝導率を有する検出領域により解決される。
【0005】
本発明は、供給される測定値又は信号のできるだけ有利な利用可能性及び後処理可能性を考慮して、センサを都合よく電気的又は電子的な測定原理に合わせるべきであるという考えから出発している。従って、化学的な標的物質の粒子の存在に関する所望の格別に高い感度を提供するためには、測定技術的に格別に容易にアクセスできるセンサパラメータ、即ち、特に電気伝導率又は電気抵抗、は、センサが、センサ周辺における化学的な標的物質の粒子数又は濃度の極めて小さい変化にも、センサ電気伝導率又はセンサ電気抵抗の比較的強い明確な変化を伴って非常に感度よく反応するように、設定されなければならない。
【0006】
これは、検出領域内に次のシステムを用意することによって達成することができる。即ち、このシステムにおいては、電気的に絶縁されたナノ粒子、ドーピング、格子欠陥若しくはトラップによって又は構造上の無秩序によって局在状態が形成され、或いは零次元の電子ガスが形成され、或いは電荷キャリヤのための他の方法で捕獲されるエネルギー状態が形成される。この場合に、電荷伝達は、支援する外部の電気的、電磁的又は熱的な活性化エネルギーを供給する際にのみ熱的に活性化されて行なわれる。可能な伝導メカニズムは、局在点又は格子欠陥若しくはトラップの間の電子的ないわゆるホッピング(Hopping)メカニズム、電界放出若しくはイオン化効果、プール・フレンケル効果、又は異なった性質のトンネル効果である。まさに電子伝達が主としてトンネル効果、イオン化効果又はホッピング効果に基づくこの種のシステムでは、電気伝導率が個々の局在状態相互の電気的結合に極度に依存する。
【0007】
電気伝導率は、例えば材料選択、ジオメトリパラメータ、局在状態の平均間隔等の他のシステムパラメータを適切に設定した場合に、非常に高感度に標的物質との電気化学的相互作用に依存するので、検出領域周辺における標的物質の濃度又は粒子数が非常に僅かに変化した際に既に、電気伝導率に対して比較的大きな影響が及ぼされる。この理由は、とりわけ、この種のシステムにおける抵抗又は電気伝導率のような電気量が、前述の相互作用によって影響を及ぼされ得るトンネルパートナー間の結合強度を指数関数的に変化させるからである。
【0008】
その際に、前述のトンネルプロセス又はホッピングプロセスと、検出すべき標的物質との電気化学的な相互作用は、直接的に、特に標的物質を背負わされているキャリヤ媒体と検出領域との接触によって行なわれるか、又は間接的に、つまり或る短い距離を介して行われる。特に、その際に、気相又は液相で存在する標的物質とセンサの検出領域との接触又は相互作用によって、センサと標的物質との間において、電子若しくはイオンの交換、又は静電的若しくは電磁的な相互作用が行なわれる。その交換又は相互作用は、検出領域の材料内の電子濃度又は電子移動度、及び/又は特にナノ粒子間の結合を変化させる。それにより、例えば水の如き電気的に中性の物質それ自体さえも検出可能である。何故ならば双極子モーメントも検出領域内の局部的な電子濃度を乱し得るからである。
【0009】
例えばアモルファスシリコンの如き、一般に無秩序で構造のないシステムにおいて発生する検出領域の電気伝導率σ(T)にとって、ホッピングプロセスが支配的であるならば、この検出領域に関して、検出領域の電気伝導率の温度依存性は、近似的にσ〜T-γなる関係式によって与えられる。この場合に検出領域は、この関係式の特性指数γが0と1の間の値、好ましくは約0.25の値、約0.5の値又は約1の値、を有するように構成されているのが有利である。
【0010】
検出領域は、マトリックス中に埋め込まれていてそのマトリックス材料に比べて高い電気伝導率を有するナノ粒子から形成されているのが有利である。
【0011】
検出領域の電気伝導率にとって電子的なトンネルプロセス、イオン化プロセス又はホッピングプロセスが支配的であることを保証するために、検出領域を形成する材料が格別に好適な形態を有するのが有利である。特に、検出領域における形態は、比較的高い電気伝導率を有する多数の比較的小さい広がり領域が形成されていて、これらの領域が比較的低い電気伝導率を有する中間領域を介して互いに接続又は隣接しているように選ばれるとよい。そのために、検出領域を形成する材料が、例えばアモルファスのナノ結晶又は多結晶の構造を有するとよい。しかし、検出領域は、適切に選ばれた比較的低い電気伝導率の材料、特に非導電材料、からなるマトリックス中に埋め込まれたそのマトリックス材料に比べて高い電気伝導率を有するナノ粒子から形成されているのが有利である。従って、このように低い電気伝導率と高い電気伝導率とを有する局部的に変化する領域は、例えば電気絶縁性のマトリックス中に埋め込まれた導電性のナノ結晶、格子欠陥若しくはトラップ、又はドーピングからなる複合材料システムによって形成される。ナノ結晶構造によって特徴づけられるこの種のシステムはナノ複合材料とも呼ばれる。
【0012】
ナノ粒子は、適切に高い電気伝導率を有する材料、例えば半導体材料又は超伝導材料、から形成されているとよい。しかし、所望特性の格別に需要に即した調整は、ナノ粒子が金属、特に金(Au)、タングステン又は白金(Pt)、から形成されていることによって達成可能である。
【0013】
マトリックスの形成のために、無機材料、有機材料又は誘電材料を使用するとよく、またポリマー材料を使用してもよい。
【0014】
センサの能動材料として設けられて検出領域を形成する材料は、各パラメータの選定に関して、標的物質との相互作用に対する電気伝導率の所望の強い依存性が格別に出せるように設計されているのが有利である。これを保証するために、特にナノ粒子又は局在状態を生じさせる格子欠陥の大きさ、間隔、性質及び粒子数密度が、マトリックスへの埋め込みの際に狙いを定めて且つ選択的に標的物質との可能な相互作用を考慮して選ばれている。
【0015】
それに加えて、上述のパラメータは、結果として生じる電気伝導率が殆ど上述の電子のトンネルプロセス、イオン化プロセス又はホッピングプロセスによって支配されているように適切に選ばれているのが有利である。この場合に、ナノ粒子は、例えば10nmまでの、好ましくは1nmまでの、平均粒子サイズを有する。しかし、その代わりに、粒子間においてトンネル効果が生じ得るように、ナノ粒子が互いに電気的に十分に絶縁され且つ粒子間隔が十分に小さい場合には、100nm以上までの粒子サイズも考えられ得る。粒子サイズを調整する際に次のことを考慮するのが有利である。即ち、ナノ複合材料を使用する場合に、比較的小さい粒子が、より大きな粒子に比べて大きい固有(内部)表面、つまり体積に対する割合として大きい表面を有するので、それらが標的物質との格別に高いエネルギーの反応性を有する。従って、ナノ結晶の表面を有するセンサは、基本的には、電気化学的反応に対して、滑らかな表面を有するセンサよりも高感度である。
【0016】
有利な発展形態では、検出領域が担持体又は基板の上に設けられた被膜によって形成されている。
【0017】
センサはナノ複合材料を基礎とする検出領域に構築されているので、格別に適した製造法又は蒸着法に立ち戻って、センサを横方向に非常に小さく設計した寸法で実施することができる。それによって、センサ及び特にセンサの検出領域を、ナノセンサ様式で正確なドット精度で且つ需要に即して、大きな構造体、例えば大きな基板、上におけるその都度の標的物質の検出にとって例えば格別に適した予定位置に、配置することができる。これは、特に、複数の異なった種類のセンサ機能を有する比較的複雑なシステムを基板に装備させることも可能にする。例えば、簡単な方法で、装備、サイズ及び/又は標的物質との相互作用のための設計に関して異なる複数のナノセンサのマイクロアレイ又はマイクロ格子を提供することができる。その場合に、各ナノセンサは、それぞれ特有の化学物質種類の検出ができるように設計されている。それにより、さもなければ時間のかかるやり方で逐次的に分析する必要があった、異なる化学製品又は物質の混合状態も、並行検出又は並行処理の様式で唯一の同時の測定ステップで検出することができる。格別に有利な実施態様では、上述の目的のために、1つの共通な担持体上に、マトリックス及び/又はナノ粒子の材料選択及び/又はナノ粒子のサイズ及び/又は密度に関して互いに異なる複数の検出領域が配置されている。
【0018】
センサ及び特に検出領域を製造するために、基本的に種々の技術が考えられ得る。しかしながら、センサの設計原理、特に検出領域の作製に格別に良好に適合し得る、従って製造に適した方法、つまり方法に関する課題を本発明に従って解決する方法は、例えばイオンビーム誘起蒸着、熱分解誘起蒸着又は光子ビーム誘起蒸着のような局部的エネルギー励起による蒸着であり、格別に有利であるのは電子ビーム誘起蒸着(EBID)である。この場合に、「局部的エネルギー励起」とは、特に、エネルギー励起によって生じる蒸着の横方向の広がりが、蒸着に使用される例えば数百μm又は数mmの基板の寸法よりも明らかに小さく、例えば数nm〜数μmであると理解すべきである。上述の方法は、電子、イオン若しくは光子からなる走査される粒子ビーム又は電磁波からなるビームのもとで行なわれる次のプロセス、即ちビーム位置に存在する前駆体ガスの物理化学的な転移プロセス、に基づいている。この方法によって、特に微細な尺度での蒸着物構造化の意味において、機能的なナノ構造の狙いを定めた材料堆積が可能であり、しかも適切に蒸着パラメータを選択することによって、最終生成物において望まれる空間的組成に限定された所望構造の狙いを定めた空間的構成が可能である。
【0019】
従って、小型の最終生成物において所望の空間的形状を発生させるために、例えばリソグラフィ・エッチング等による従来方法の意味での一度蒸着させられた構造の後からの追加処理は必要でない。特に、特殊なシリコン技術、マスキング技術、半導体を基礎とする担持体下地又はクリーンルーム環境がもはや必要でない。その場合に、蒸着物の構造化プロセスは次の原理に基づいている。即ち、気相で存在していて真空環境内で表面に吸着される出発構成物質(前駆体)の分子が、集束させた電子、イオン若しくは光子又はその他のエネルギービームからなる局部集中エネルギーの照射により励起され、それらの分子の結合の分解プロセス又は転移プロセスによって近傍の基板の表面に堆積物又は蒸着物として永続固着されるという原理である。最初の材料堆積は、同時に、エネルギー作用の局部的位置及び滞在時間によって案内される新たな堆積のための核部として役立つので、エネルギー源の集束可能性に依存してナノメータまでの精密な精度で任意の3次元の対象を下地の上に堆積させることができる。
【0020】
出発物質又は前駆体材料の適切な選択によって、そして蒸着プロセスの際に使用されるパラメータの適切な選択によっても、格別に柔軟に且つ広範な方法で最終生成物の微細特性への影響力の行使が可能である。特に、ナノ結晶のサイズもそれらの間隔及び出発物質も、製造プロセス中に、例えばビーム加速電圧、ビーム電流、前駆体材料等の周辺パラメータによって調整可能であるので、予め設定し得る標的物質との相互作用に狙いを定めて合わせたその都度の標的物質に対して高い選択性を有する特有のセンサ材料を作製することができる。
【0021】
検出領域において、前述の相互作用に対する電気伝導率の所望の強い依存性と、そのために用意され狙いを定められた、適切なマトリックス内のナノ粒子の比較的均一な分布とを保証するために、前駆体材料としては、有機、無機、誘電性若しくは金属有機の合成物、モノマー、オリゴマー、ポリマー、又はこれらのモノマー、オリゴマー及びポリマーの混合物を使用するのが有利であり、これらは気相で存在し、蒸着のために格別に有利な蒸気圧を有するとよい。前駆体物質としては、特にCH3、C527、C5234、C526H、C55、Me2Au(acac)[合成化学式:(CH32AuC527]、Me2Au(tfac)[合成化学式:(CH32AuC5234]、Me2Au(hfac)[合成化学式:(CH32AuC526H]、Cu(hfac)2[合成化学式:Cu(C526H)2]、CpPtMe3[合成化学式:C55Pt(CH33]、CpMePtMe3[合成化学式:C54(CH3)Pt(CH33]、Mo(CO)6、W(CO)6、WF6、[RhCl(PF322、Co2(Co)8、AuCl(PF3)及び/又はNi(CO)4を使用するのが有利である。
【0022】
上述の蒸着方法は、特に、担持体として用いられる基板上に、担持体を後から加工する様式で検出領域を発生させるべく表面被膜を形成するのにも、次の如きバルク体を作製するのにも適している。即ち、このバルク体では、センサの基体そのものが、既にマトリックス中に埋め込まれたナノ粒子から形成されていて、それゆえにその基体の側で全体として検出領域を成している。この種の構造を作製するためには、蒸着物の予め与えられた目標ジオメトリに依存して、前駆体物質のエネルギー励起のために用意されたエネルギー粒子ビームを又は、例えばレーザビームによる、局部熱分解処理を、基板に対して横方向又は3次元方向に案内すると有利である。その際に、特に1つの共通な基板又は担持体の上に、複合センサシステムを構成すべく、複数のその都度互いに異なる検出領域を堆積させるとよい。
【0023】
蒸着中の基板温度を適切に調節すると有利である。それによって、基板上における表面拡散プロセスの速度が影響を及ぼされ、これが前駆体材料の調節可能な補給速度をもたらし、それに伴い蒸着物の制御された成長速度をもたらす。代わりに、補給速度は、前駆体源の温度を増減することによっても調節可能である。何故ならば、これは前駆体の蒸気圧に直接に影響を及ぼすからである。
【0024】
代わりに、熱分解蒸着又は熱分解誘起蒸着も使用することができる。その際に基板を、前駆体分子の方向性のない吸着後に、例えば下から加熱線を介して又は上からレーザビームを介して、加熱することによって、固体の蒸着物を基板上に堆積させてもよい。その際に、エネルギー供給が局部的に前駆体材料の所望の転移を生じさせる。
【0025】
前述の蒸着物構造化を適用することによって、特に電子ビーム誘起蒸着、又はイオンビーム誘起、熱分解誘起若しくは光子ビーム誘起蒸着による検出領域又はセンサ基体全体の作製によって、最終生成物の所望の特性を発生させる際に格別に高い柔軟性が得られる。特に、適切なマトリックス構造の選択によって、周辺との相互作用の変化時における所望の感度という意味において電気伝導率が適切に調整可能であるだけでなく、むしろ構造蒸着時の製造パラメータの狙いを定めた影響が、その他の微細特性に対する狙いを定めた影響力行使も可能にする。
【0026】
本発明により得られる利点は、特にマトリックス中に埋め込まれたナノ粒子に基づく検出領域の提供によって、センサの周辺条件の変化に対する、特に選択された標的物質の粒子密度の変化に対する、検出領域の電気伝導率の格別に高感度の依存性を、微細尺度で達成することができる。それにより、標的物質の非常に僅かな量変化に付随して現れる格別に高感度の測定を行なうことができる。それにより、標的物質の局部的濃度が格別に精密に測定可能であるので、この種の測定に基づく高精度のセンサを提供することができる。とりわけナノ粒子相互の結合に対する電気伝導率の依存性によって、特に、周辺に存在する標的物質の粒子との相互作用は、直接的な接触を介して、又は電気的若しくは磁気的な相互作用によって間接的にも、センサの周辺における粒子量又は粒子濃度に対する電気伝導率の格別に高感度の依存性という結果に直接的に帰着する。それにより、標的物質の粒子の格別に高感度の検出が可能であり、そして当該粒子の定量的な算定も可能であり、例えば水のような電気的に中立な物質自体すらも、それの双極子に基づいて検出可能である。
【0027】
この種のセンサは、非常に少量の、例えばガス又は生体分子の如き、化学的又は生化学的な物質を測定する際に、例えば次の分野において有利に使用することができる。
●環境保護)大気の質及び水質を測定する場合
●軍隊及び居住地の防護)毒物又は爆発物を検出する場合
●クロマトグラフィ
●例えば食品・飲料又は化粧品工業での品質保証における人工嗅覚としての使用
【0028】
更に、特に電子ビーム誘起蒸着のような蒸着物構造化方法により検出領域又はセンサ全体を作製することによって、所望特性の高い帯域幅を有する微細構造の狙いを定めた作製が可能である。特に、材料及びパラメータの適切な選択によって、選択された標的物質に対して格別に有利に狙いを定めて選択的に電気特性を調整することができる。特に、電子ビーム誘起蒸着の使用によって極めて小型のセンサ又はセンサ素子が製造可能であり、特に検出ジオメトリが殆ど自由に選択可能である。
【図面の簡単な説明】
【0029】
【図1】図1は、小型の電気化学的センサを示す概略図である。
【図2】図2は、基板上に成長する蒸着物を示す概略図である。
【図3】図3は、図1によるセンサを有する測定装置を示す概略図である。
【図4】図4は、複数のエネルギー準位を示すダイアグラムである。
【図5】図5は、複数の検出領域を有する図1によるセンサを示す概略図である。
【発明を実施するための形態】
【0030】
本発明の実施例を図面に基づいて更に詳細に説明する。全ての図において、同じ部分には同一の参照符号が付されている。
【0031】
図1による小型センサ1は、非常に僅かな量又は濃度の化学的な成分又は物質さえも検出及び/又は定量化する電気化学的センサとして使用するために設けられている。しかし、その代わりとしてマイクロセンサ技術やバイオセンサ技術等における多くの他の応用可能性も考えられ得る。小型センサ1は、検出領域10を備えた基板又は基体4を含み、検出領域10は、マトリックス12内に埋め込まれた好ましくは金属のナノ粒子14によって形成されている。マトリックス12は、本実施例では、金属のナノ粒子14が埋め込まれたポリマーマトリックスとして構成されている。この場合、ナノ粒子14は、埋め込まれた電荷局在状態を成している。ナノ粒子14は、それに代えて又はそれに加えて、格子欠陥若しくはトラップによって、又は例えばアモルファス媒体内の構造上の無秩序によって、形成されていてもよい。
【0032】
しかし、センサ作用自体にとっては、ナノ結晶がどうしても必要というわけではない。しかしながら、ナノ結晶は、センサ作用を増幅することから、センサの動作の際に有利である。これは、本発明による製造方法により、晶子が1ナノメートル以下程度の直径を有するように晶子を作り上げることができるからである。これらの粒子は、体積に対して格別に大きい割合の表面を有する。従って、粒子は、それらの微細な表面粗さのおかげで、検出すべき標的物質に対して、平らな表面を有する均一な体積物体よりも高いエネルギーの反応性又は増大させられた有効センサ表面を持つ。それによって、ホッピング伝導性及びトンネル伝導性のような電気伝導メカニズムへの外部の影響が助長又は増幅され、全体として電気化学的センサ作用が同様に増幅される。
【0033】
マトリックス12及びナノ粒子14の材料選択に関して、並びに本実施例では約1nmの粒子断面サイズ及びナノ粒子14の密度に関して、マトリックス12内でのナノ粒子14間の電気伝導がホッピングプロセスによって特徴づけられ且つトンネルプロセスを介して案内されるように適切なパラメータが選ばれている。従って、検出領域10内の伝導メカニズムは、局在点の間における熱的に活性化されるホッピングメカニズム(ホッピング、最寄りの隣接ホッピング、可変範囲ホッピング)によって起こり、且つ量子メカニズムのトンネル効果によって発生する。この周辺条件を維持することによって、検出領域10の電気伝導率が、ナノ粒子14間の結合にも依存し、従ってセンサ1の電磁気的な環境にも非常に強く且つ高感度に依存することが保証されているので、センサ1は、この電磁気的な環境を高感度及び高分解能で検出することができる。
【0034】
図1によるセンサ1は、シリコンを基礎とする従来の構造様式の基板に立ち戻って構成されており、その基板は担持体16として使用され、検出領域10を形成すべく表面被膜を備えている。従って、図1によるセンサ1の構造は従来の基板の改良に相当し、この基板の場合には、所望の高い測定分解能のために設けられる検出領域10が、後からの成膜によって形成されている。
【0035】
センサ製造のために提案された電子ビーム誘起蒸着のような蒸着法は、基板下地としてどうしてもシリコンが頼りであるというわけではないので、センサは、シリコンのほかに他のあらゆる任意の固体下地の上にも堆積可能である。それゆえ、本発明により提案される蒸着方法は、格別に柔軟な方法で、種々の材料、表面、又は既に予め作られた若しくは既存の構造に、後からセンサ機能を装備若しくは加工するのに適している。
【0036】
例として、例えばガス又は液体のための多くの流動通路又は測定室を有し得る「ラブオンチップ」応用が挙げられる。この種のラブオンチップは、通常、シリコンマスキング技術により予め作られている。電気化学的センサの製造のための本発明による方法は、このようなチップのあらゆる任意の個所に後からセンサ機能を備え付けることを可能にする。
【0037】
センサ1の検出領域10が、場合によっては基体4の全体も、いわゆる蒸着物構造化によって作製される。その際に、それぞれの構造の部分的な成長は、所望構造の発生が予定された空間範囲内において発生させられ、その上、更に当該空間範囲までに制限される。それにより、通常の小型造形物の場合には必要な、後からの、例えばリソグラフィ・エッチングが省略される。その都度の構造を作製するために、この実施例では、いわゆる電子ビーム誘起蒸着又はイオンビーム誘起蒸着が用意されている。相応の構造の発生段階が図2に示されている。
【0038】
図2の概略図から分かるように、適切な環境において、特に真空において、図2に粒子50に基づいて示されているように、前駆体物質が、ガス状で基板52の近傍に運び込まれる。前駆体分子と基板との間の付着力によって基板上で前駆体材料の吸着が起きる。
【0039】
基板52の直近の蒸着領域54では、前駆体物質がエネルギーにより転移を励起させられる。固体の不揮発性の形の転移生成物が堆積物又は蒸着物56として永続的に基板52上に付着される。基板52上における最初の材料堆積は同時に新たな堆積のための核部として役立ち、新たな堆積はエネルギー作用の局部的位置及び滞在時間によって案内されるので、殆ど任意の3次元の対象を基板52上に発生させることができる。その際に転移への励起、従って蒸着への励起は、局部的なエネルギー励起又はエネルギー印加によって行なわれ、この目的のために、この実施例では電子ビーム58が用意されている。電子ビーム58の横方向の広がりが基板52の表面におけるよりも遥かに小さいので、エネルギー励起は、実際には局部的に限定されて基板表面の比較的僅かな割り当てに対して行なわれる。
【0040】
センサ1を備えた測定装置60が概略的に図3に示されている。センサ1の検出領域10は、特に定電流源として構成することができる電流源62に電気的に接続されている。電圧センサ64により、予め与えられた電流の流れにおいて検出領域10を介して降下する電圧Vを取り出すことができるので、この装置により、検出領域10の電気抵抗又は電気伝導率を測定することができる。この電気抵抗又は電気伝導率は、検出領域10の特有の構成に基づいて、その周辺における検出すべき標的物質、例えば水(H2O)、塩酸(HCl)等、との電気化学的相互作用によって変化する。
【0041】
標的物質の存在に対する検出領域10の反応の様相が図4によるエネルギーダイアグラムに概略的に示されている。このエネルギーダイアグラムにおいて、x軸には位置特性値が取られ、y軸にはエネルギー値Eが取られている。検出領域10内には局在電子状態が存在し、これらの局在電子状態は、図4に書き込まれているように、それらに対応するエネルギー準位70,72,74,76,78によって特徴づけられている。図4による例において、エネルギー準位70,72,74は局在エネルギー状態であり、それらの局在エネルギー状態の間において、熱的に活性化されるホッピングメカニズムによって、電子が位置を交換する。図4による例では、この種のホッピングプロセスが、例えば2つの隣接するナノ結晶14に割り当てられたエネルギー準位72,74の間において、模範的に示されている。
【0042】
検出領域10の周辺領域に、検出すべき標的物質、例えば化学物質HClが存在する場合には、標的物質との電気的又は電気化学的相互作用によって、2つの隣接する局在エネルギー状態76,78の相互のエネルギー間隔が大きさΔEだけ増大させられ得る。この場合に、電子eは、今や、エネルギー準位76,78に割り当てられた位置を交換するためには、(例えばエネルギー準位72,74のような)変化されていないエネルギー準位に比べて大きいエネルギーの大きさを乗り越えなければならない。それゆえに、これらのエネルギー準位の間のエネルギー間隔の増大によって電子移動性が低減され、又は検出領域10の電気抵抗が増大させられる。検出領域10内の材料選択及び局在エネルギー状態の濃度によって、予定された標的物質への検出領域10の個別的な適合化及びこの標的物質との相互作用が行なわれるとよい。それにより、直近周辺領域における所定の標的物質の存在に対する検出領域10の反応を個別的に調整することができる。
【0043】
図5による実施例には、共通な担持体16上に複数の検出領域10が配置されているセンサ1’が示されている。これらの検出領域10は、それぞれ互いに独立して適切な電流源62及び電圧センサ64に接続されているので、各検出領域10の電気抵抗又は電気伝導率を、他の検出領域に対して独立して、測定可能である。従って、検出領域10の互いの相対的な適切な空間配置によって、予定された標的物質の位置分解能を持った検出が可能である。それに加えて又はその代わりに、検出領域10は、マトリックス及び/又はナノ粒子の材料選択又はその他の微細特性に関して互いに異なった、従って周辺との相互作用に関して異なった、標的物質に適合化されていてよい。それゆえに、比較的簡単な手段により、マイクロアレイ又はマイクロ格子の様式で種々のセンサ機能を有する比較的複雑なシステムを提供することができる。並行検出又は並行処理の様式で異なった化学物質等の混合状態を唯一の同時の測定ステップで検出することもできる。
【符号の説明】
【0044】
1 センサ
4 基体
10 検出領域
12 マトリックス
14 ナノ粒子
16 担持体
50 粒子
52 基板
54 蒸着ゾーン
56 蒸着物
γ 指数
σ 電気伝導率

【特許請求の範囲】
【請求項1】
電子的なトンネルプロセス、イオン化プロセス又はホッピングプロセス、及び検出すべき標的物質と検出領域(10)との相互作用によって、その検出領域(10)の電気伝導率(σ)が規定されている、検出領域(10)を備えた電気化学的センサ(1)。
【請求項2】
検出領域(10)の電気伝導率(σ)の温度(T)に対する依存性が、σ〜T-γなる式によって近似的に与えられていて、その特性指数(γ)が0と1との間の値、好ましくは約0.25の値、約0.5の値、又は約1、の値を有する請求項1記載の電気化学的センサ(1)。
【請求項3】
検出領域(10)が、マトリックス(12)の中に埋め込まれていてそのマトリックス材料に比べて高い電気伝導率を有するナノ粒子(14)から、形成されている請求項1又は2記載の電気化学的センサ(1)。
【請求項4】
ナノ粒子(14)が金属である請求項3記載の電気化学的センサ(1)。
【請求項5】
金属のナノ粒子(14)が、化学的に安定な金属、好ましくは金(Au)又は白金(Pt)、からなる請求項4記載の電気化学的センサ(1)。
【請求項6】
マトリックス(12)が、ポリマー材料、好ましくは有機又は無機の構造要素、から、炭素を基礎とする化合物から、炭素・酸素化合物から、水素化合物から、フッ素化合物から及び/又は金属を含む構造要素から、形成されている請求項1乃至5の1つに記載の電気化学的センサ(1)。
【請求項7】
マトリックス(12)が有機材料、無機材料又は誘電材料から形成されている、請求項1乃至5の1つに記載の電気化学的センサ(1)。
【請求項8】
マトリックス(12)形成材料及び/又はナノ粒子(14)形成材料が、予定された標的物質との期待される相互作用を考慮して選択されている請求項1乃至7の1つに記載の電気化学的センサ(1)。
【請求項9】
ナノ粒子(14)が、100nmまでの、好ましくは10nmまでの、とりわけ好ましくは1nmまでの、平均粒子サイズを有する請求項1乃至8の1つに記載の電気化学的センサ(1)。
【請求項10】
検出領域(10)が、担持体(16)上に形成された被膜によって、構成されている請求項1乃至9の1つに記載の電気化学的センサ(1)。
【請求項11】
1つの共通な担持体(16)上に、マトリックス(12)及び/若しくはナノ粒子(14)の材料選択並びに/又はナノ粒子(14)のサイズ及び/若しくは密度に関して互いに異なる複数の検出領域(10)が配置されている請求項10記載の電気化学的センサ(1)。
【請求項12】
検出領域(10)が、局部的なエネルギー印加によって、好ましくは電子ビーム誘起蒸着によって、作製される請求項1乃至11の1つに記載の電気化学的センサ(1)を製造するための方法。
【請求項13】
基板(52)の近くの蒸着領域(54)にガス状で供給される多数の前駆体物質(50)がエネルギー励起により転移させられ、その際に転移生成物が固体の不揮発性の形で基板(52)上に付着する請求項12記載の方法。
【請求項14】
前駆体物質(50)として、有機の、無機の、誘電性の又は有機金属のモノマー、オリゴマー及び/又はポリマーが使用される請求項13記載の方法。
【請求項15】
前駆体物質(50)のエネルギー励起のために用意されたイオンビーム、光子ビーム又は電子ビームが、蒸着物(56)の予め与えられた目標ジオメトリに依存して基板(52)に対して横方向又は3次元方向に案内される請求項13又は14記載の方法。
【請求項16】
基板(52)の温度及び/又は前駆体源の温度が、蒸着中に蒸着領域(54)内で検出される前駆体物質(50)の蒸気圧に依存して調節される請求項13乃至15の1つに記載の方法。
【請求項17】
前駆体物質(50)の量及び/又は組成、蒸着領域(54)内のガス圧、局部的エネルギー印加の強度、それの入射時間、それの焦点サイズ、基板材料及び/又は基板温度が、検出領域(10)が予め与えられた電気伝導率を有するように、調整される請求項13乃至16の1つに記載の方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate


【公表番号】特表2012−506543(P2012−506543A)
【公表日】平成24年3月15日(2012.3.15)
【国際特許分類】
【出願番号】特願2011−532535(P2011−532535)
【出願日】平成21年10月22日(2009.10.22)
【国際出願番号】PCT/EP2009/007563
【国際公開番号】WO2010/046105
【国際公開日】平成22年4月29日(2010.4.29)
【出願人】(508234039)ナノスカレ システムズ、ナノス ゲゼルシャフト ミット ベシュレンクテル ハフツング (2)
【Fターム(参考)】