説明

電池用電極の製造方法、電池の製造方法、電池、車両および電子機器

【課題】活物質層間に電解質層を介在させてなる電池であって、小型で充放電特性の優れた電池およびこれを利用した各種機器を構成することのできる技術を提供する。
【解決手段】リチウムイオン二次電池モジュールに使用される、負極集電体層と負極活物質層とを有する負極用電極を以下のように製造する。例えば銅箔、樹脂シート等の基材を準備し(ステップS101)、集電体として機能する例えば銅粉末を含む導電性ペーストをノズルスキャン法により基材表面にライン状に塗布して負極集電体層を形成する(ステップS102)。こうして形成された負極集電体層表面に負極活物質材料を含む塗布液を塗布して、負極集電体表面の凹凸に倣う凹凸パターンを有する負極活物質層を形成する(ステップS103)。集電体と活物質とが広い面積で接触しており、また活物質層の表面積が大きいので、薄型で高性能の電池を構成することができる。

【発明の詳細な説明】
【技術分野】
【0001】
この発明は、活物質層間に電解質層を介在させてなる電池の技術分野に関するものであり、特に該電池用電極および電池の製造方法、電池ならびに該電池を利用した車両および電子機器に関する。
【背景技術】
【0002】
例えばリチウムイオン二次電池のような化学電池を製造する方法としては、従来より、正極活物質および負極活物質をそれぞれ付着させた集電体としての金属箔をセパレータを介して重ね合わせ、セパレータに電解液を含浸させる技術が知られている。しかしながら、電解液として揮発性の高い有機溶剤を含んだ電池は取り扱いに注意が必要であり、またさらなる小型化・大出力化が求められることから、近年では電解液に代えて固体電解質を用い、微細加工により全固体電池を製造するための技術が提案されてきている。
【0003】
例えば特許文献1に記載の電池用電極の製造技術においては、金属箔上にインクジェット法により金属材料を含む液滴を吐出することによって表面が部分的に凸形状となった集電体を形成し、これを活物質層に埋め込むことによって、集電体と活物質との接触面積を増大させて電池の内部抵抗の低減が図られている。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開2010−040277号公報(例えば、図2)
【発明の概要】
【発明が解決しようとする課題】
【0005】
電池としての性能を高めるためには、集電体と活物質との接触面積だけではなく、電解質層を介した正負両極の活物質同士の対向面積を大きくすることが必要である。しかしながら、上記従来技術の電池用電極においては、集電体を埋め込んだ活物質層の表面はほぼ平坦に形成されており、活物質の使用量に対してその表面積が限定されているために、電池として十分な性能を引き出すには至っていなかった。特に、充放電特性に優れた電池を小型に構成するという点において、上記従来技術には改善の余地が残されている。
【0006】
この発明は上記課題に鑑みなされたものであり、活物質層間に電解質層を介在させてなる電池であって、小型で特性の優れた電池およびこれを利用した車両、電子機器を構成することのできる技術を提供することを目的とする。
【課題を解決するための手段】
【0007】
この発明にかかる電池用電極の製造方法は、上記目的を達成するため、基材の表面に導電性材料を含む塗布液を塗布して、前記基材と接する面と反対側の表面が凹凸を有する集電体層を形成する集電体層形成工程と、前記集電体層の表面に活物質材料を含む塗布液を塗布して、前記集電体層表面の凹凸に倣った凹凸を有する活物質層を形成する活物質層形成工程とを備えることを特徴としている。
【0008】
このように構成された発明では、基材上に表面が凹凸を有する集電体層と、さらにその凹凸に倣った凹凸を有する活物質層とが積層されてなる電池用電極を製造することができる。こうして形成された電池用電極では、集電体層と活物質層とが広い接触面積を持つだけでなく、集電体層と接する側とは反対側の活物質層の表面も凹凸を有し表面積が広くなっているので、この表面に接触する電解質との接触面積も大きくすることが可能である。このため、この電池用電極を用いた電池を小型かつ高性能、特に充放電特性を良好なものとすることができる。
【0009】
この集電体層形成工程では、例えば、基材の表面に対して相対移動するノズルから導電性材料を含む塗布液を線状に吐出させて、互いに平行な複数の線状パターンからなる集電体層を形成するようにしてもよい。塗布方式としてこのような、いわゆるノズルスキャン法を適用することで、1回のスキャンで厚みのある、つまり凹凸高低差が大きく表面積の大きな集電体層を形成することができる。
【0010】
この場合において、例えば、活物質層形成工程では、集電体層の線状パターンに沿って基材の表面に対し相対移動する第2のノズルから活物質材料を含む塗布液を線状に吐出させて、線状パターンの表面を覆う活物質層を形成するようにしてもよい。第2のノズルを集電体層の線状パターンに沿って相対移動させることで、集電体層の表面を覆う活物質層を短時間で形成することができる。
【0011】
また、例えば、活物質層形成工程では、集電体層の線状パターンの表面と、線状パターン間に露出した基材の表面とをともに覆う活物質層を形成するようにしてもよい。こうすることで活物質層の表面積をさらに増大させることができる。
【0012】
この場合、活物質層形成工程では、例えば集電体層の線状パターン間に露出した基材の表面に活物質材料を含む塗布液を流し込み、さらに線状パターンに沿って基材の表面に対し相対移動する第2のノズルから活物質材料を含む塗布液を線状に吐出させて、基材の表面および線状パターンの表面を覆う活物質層を形成するようにしてもよい。このように、まず露出した基材表面に塗布液を流し込んでおき、次いで線状パターンを覆うように塗布液を塗布することで、線状パターンに塗布した塗布液がパターンの頂部から周囲に流れ広がって頂部が露出するのを防止することができる。
【0013】
これらの場合において、基材の表面を覆う活物質層の厚さについては、集電体層の線状パターンの高さよりも小さくてもよく、またこれと同程度としてもよい。活物質層の厚さを集電体層のパターン高低差より小さくすることで、線状パターンの側面を有効に利用することが可能となる。また、活物質層の厚さを集電体層の線状パターンの高さと同程度とした場合には、線状パターンを覆うように塗布液を塗布する際に、塗布液が線状パターンの頂部から流れ落ちることが防止される。
【0014】
これらの発明において、基材のうち集電体層を形成される面は、導電性を有するものであってもよく、活物質層を構成する活物質と同極の活物質で構成されてもよい。集電体層を形成される側の基材表面が導電性を有するものである場合、基材表面と集電体層とを一体的に集電体として機能させることができる。また、活物質により構成された場合には、基材表面と活物質層とを一体的に活物質層として機能させることができる。
【0015】
さらに、この発明では、基材上に集電体層、活物質層を順次形成するので、基材自体は絶縁体であってもよい。このように、この発明では種々の基材表面に対して電池用電極を形成することが可能であり、例えば電子機器の筐体や基板に電池用電極を作り込むことも可能である。
【0016】
また、この発明にかかる電池の製造方法は、上記目的を達成するため、上記したいずれかの製造方法により製造された電池用電極の活物質層側の面に、電解質層、第2活物質層および第2集電体層をこの順番に積層することを特徴としている。このように構成された発明では、活物質層が上記のように広い表面積を有するため、これに電解質層以下の機能層を順次積層することで、小型で高性能の電池を、優れた生産性で製造することが可能である。
【0017】
この場合において、例えば、活物質層に電解質材料を含む塗布液を塗布して、活物質層表面の凹凸に倣った凹凸を有する電解質層を形成する電解質層形成工程と、電解質層に第2活物質材料を含む塗布液を塗布して、電解質層と接する面が電解質層表面の凹凸に倣った凹凸を有する一方、反対側の面が略平坦な第2活物質層を形成する第2活物質層形成工程とを備えるようにしてもよい。このような構成では、電解質層が活物質層の凹凸に倣った凹凸構造となるため、活物質層と第2活物質層との対向面積が大きく充放電特性の良好な電池を製造することが可能となる。
【0018】
また、この発明にかかる電池は、上記目的を達成するため、基材と、前記基材と接する面と反対側の表面が凹凸を有する第1集電体層と、前記第1集電体層表面の凹凸に倣った凹凸を有する第1活物質層と、前記第1活物質層表面の凹凸に倣った凹凸を有する電解質層と、前記電解質層と接する面が前記電解質層表面の凹凸に倣った凹凸を有する一方、反対側の面が略平坦な第2活物質層と、第2集電体層とを、この順番で積層してなる構造を有することを特徴としている。このように構成された発明では、小型で高性能であり、しかも優れた生産性で製造可能な電池を構成することが可能である。
【0019】
この場合、第1集電体層は、所定方向に沿って延びる互いに平行な複数の線状パターンからなるものとしてもよい。このようなパターンを有する第1集電体層は、材料の使用量に対して表面積が大きいので、第1活物質層との接触面積を大きく取ることができる。また、このようなパターンは例えばノズルスキャン法によって製造することができ、微細なパターンを形成することも可能である。
【0020】
また、この発明にかかる車両は、上記目的を達成するため、上記製造方法により製造された電池を搭載したことを特徴としている。さらに、この発明にかかる電子機器は、上記目的を達成するため、回路部と、前記回路部を保持する筐体と、前記筐体を前記基材として上記製造方法により製造され、前記回路部に電力を供給する電池とを備えることを特徴としている。これらの発明では、小型で高性能な電池を搭載した種々の車両または電子機器を構成することができる。また、電池を電子機器の筐体に組み込むことで、当該電子機器自体を小型に構成することができる。
【発明の効果】
【0021】
本発明によれば、表面が凹凸パターンを有し表面積の広い集電体層と、この凹凸パターンに倣った凹凸を有する集電体層とを積層して電池用電極を構成しているため、該電極を用いて、小型、高性能で生産性の良好な電池およびこれを使用した電子機器を構成することが可能である。
【図面の簡単な説明】
【0022】
【図1】この発明にかかる電池用電極の製造方法の一実施形態を示すフローチャートである。
【図2】ノズルスキャン法による導電性ペースト塗布の様子を模式的に示す図である。
【図3】ノズルスキャン法による負極活物質塗布液塗布の様子を模式的に示す図である。
【図4】図1の製造方法により製造される負極用電極の断面構造を例示する図である。
【図5】図1の電池用電極の製造方法の第1の変形例を示す図である。
【図6】銅箔と負極集電体とを導通させるための構造の一例を示す図である。
【図7】図1の電池用電極の製造方法の第2の変形例を示す図である。
【図8】集電体間を導通させるための構造の一例を示す図である。
【図9】この発明にかかる電池の製造方法の一実施形態を示すフローチャートである。
【図10】図9の製造方法により製造される電池の一例を示す図である。
【図11】この発明にかかる電池を搭載した機器の一例としての車両を模式的に示す図である。
【図12】この発明にかかる電池を適用した電子機器の一例を示す図である。
【発明を実施するための形態】
【0023】
図1はこの発明にかかる電池用電極の製造方法の一実施形態を示すフローチャートである。この製造方法は、例えばリチウムイオン二次電池の電極として作用する、集電体と活物質とを一体的に積層してなる電極を製造するための製造方法である。詳しい製造プロセスについては後述するが、ここではまずその製造方法の概略について説明する。なお、以下では負極用電極を製造する場合を例示するが、正極用電極の製造においても材料を変えて同じプロセスを適用することが可能である。
【0024】
まず最初に、負極用電極の基材を準備する(ステップS101)。後で説明するように、この基材としては導体、絶縁体のいずれをも用いることができる。そして、基材の一方表面に対し、負極集電体として機能する導電性材料を含む導電性ペーストを適宜の塗布方法、例えばノズルスキャン法により塗布して、所定の凹凸パターンを有する負極集電体層を形成する(ステップS102)。
【0025】
負極集電体のパターンについては特に限定されないが、ここでは線状に塗布した導電性ペーストによる複数のラインを互いに平行に配置した、いわゆるラインアンドスペース構造の負極集電体層を形成するものとする。以下の説明では、基材表面に直交する方向をZ方向、導電性ペーストによるラインの延設方向をY方向、該ラインの配列方向をX方向とする。
【0026】
さらに、こうして形成された、凹凸パターンを有する負極集電体層の表面を覆うように、負極活物質材料を含む負極活物質塗布液を塗布して、負極集電体層の凹凸に倣う(追従する)凹凸を有する負極活物質層を形成する(ステップS103)。このようにして負極用電極が製造される。
【0027】
導電性ペーストとしては、負極集電体として機能する導電性材料としての例えば銅粉末、有機バインダーおよび有機溶剤などを含むものを用いることができる。また負極活物質塗布液としては、例えば、負極活物質としてのLi4Ti512(LTO)を主体とする有機系LTO材料を用いることができる。塗布液には、負極活物質の他に、導電助剤としてのアセチレンブラックまたはケッチェンブラック、結着剤としてのポリフッ化ビニリデン(PVDF)、スチレンブタジエンラバー(SBR)、ポリビニルピロリドン(PVP)、ポリビニルアルコール(PVA)またはポリテトラフルオロエチレン(PTFE)、溶剤としてのN−メチル−2−ピロリドン(NMP)などを混合したものを用いることができる。なお、負極活物質材料としては上記したLTOの他に例えば黒鉛、金属リチウム、SnO2、合金系などを用いることが可能である。
【0028】
図2はノズルスキャン法による導電性ペースト塗布の様子を模式的に示す図である。より詳しくは、図2(a)はノズルスキャン法による塗布の様子をX方向から見た図、図2(b)および図2(c)は同じ様子をそれぞれY方向、斜め上方から見た図である。ノズルスキャン法によって塗布液を基材に塗布する技術は公知であり、本方法においてもそのような公知技術を適用することが可能であるので、装置構成については説明を省略する。
【0029】
ノズルスキャン法では、塗布すべき材料を含む塗布液を吐出口311を1つまたは複数穿設されたノズル31を基材10の上方に配置し、吐出口311から一定量の塗布液32を吐出させながら、ノズル31を基材10に対し相対的に矢印方向Dnに一定速度で走査移動させる。こうすることで、基材10上には塗布液32がY方向に沿ったライン状に塗布される。ノズル31に複数の吐出口311を設けることで1回の走査移動で複数のストライプを形成することができ、必要に応じて走査移動を繰り返すことで、基材10の全面にライン状に塗布液を塗布することができる。これを乾燥硬化させることで、基材10の上面にライン状パターンからなる負極集電体層11が形成される。また、塗布後に加熱して乾燥を促進したり、塗布液に光硬化性樹脂を添加し塗布後に光照射して硬化させるようにしてもよい。上記したノズルスキャン法については、以下に説明するように、負極活物質塗布液を塗布する際にも採用することができる。
【0030】
図3はノズルスキャン法による負極活物質塗布液塗布の様子を模式的に示す図である。より具体的には、図3(a)は負極集電体層表面に塗布液を塗布する際の様子、図3(b)は基材の露出表面に塗布液を塗布する際の様子をそれぞれ示している。導電性ペーストの塗布に用いたノズル31の吐出口311と同じピッチで吐出口331を設けたノズル33を、負極集電体層11形成後の基材10の上方に配置する。そして、ノズル33を方向Dnに走査移動させることで、吐出口331を基材10上の負極集電体によるライン状パターン11に沿って移動させる。こうすることで、図3(a)に示すように、ライン状パターンの負極集電体層11の表面を覆う負極活物質層12を形成することが可能である。
【0031】
また、図3(b)に示すように、開口ピッチがノズル31の吐出口311と同じであるノズル34の吐出口341を、ライン状パターンの配列ピッチの約1/2だけX方向に変位させた状態で走査移動を行うようにすれば、ライン状パターン間に露出した基材10の露出表面10aに対して負極活物質塗布液を塗布して負極活物質層12を形成することができる。
【0032】
図4は図1の製造方法により製造される負極用電極の断面構造を例示する図である。図4(a)に示す例では、負極集電体として機能することのできる材料、例えば銅箔からなる基材101の表面に負極集電体層111および負極活物質層121を積層している。この例では、基材101と負極集電体層111とが一体的に負極集電体として機能する。そのため、集電体の面積が大きく、電荷を効率よく集めることができるので、内部抵抗の低い電極を構成することができる。
【0033】
また、図4(b)に示す例では、基材102として銅箔を用い、これに負極集電体層112を積層した点については図4(a)の例と同じであるが、負極活物質層122は、負極集電体層112により覆われていない基材102の露出表面102aを覆う平坦部122aと、負極集電体層112の頂部を覆う凸部122bとを有している。基材102の露出表面102a近傍では、負極集電体層112を構成するライン状パターンの間の空間が負極活物質層の平坦部122aによって埋められている。つまり、基材102の露出表面102aを覆う負極活物質層の平坦部122aの厚さT2は、負極集電体層112の高さH2と同程度である。
【0034】
さらに、負極集電体層112の頂部を覆うように、負極活物質による凸部122bが形成されている。この構造例では、負極活物質の体積が大きいので、蓄積可能な電荷量が多く、高容量の電極を構成することができる。また、負極集電体と負極活物質との接触面積が大きいので低抵抗とすることができる。
【0035】
また、図4(c)に示す例では、基材103として銅箔を用いる点、負極集電体層113間の基材103の露出表面103aが負極活物質層123の平坦部123aにより覆われる点、および負極集電体層113の頂部が負極活物質層123の凸部123bにより覆われる点において図4(b)の例と共通する。ただし、基材103の露出表面103aを覆う負極活物質層の平坦部123aが薄く、具体的には、平坦部123aの厚さT3は負極集電体層113の高さH3よりもずっと小さい。この例では、負極活物質の体積が少ないため容量の点では図4(b)の例よりも小さいが、負極活物質層が薄いため内部抵抗については格段に小さくすることができる。図4(b)および図4(c)の構造については、例えば以下のようにして形成することができる。
【0036】
図5は図1の電池用電極の製造方法の第1の変形例を示す図である。図4(b)または図4(c)に示す構造を得るためには、図1のフローチャートにおけるステップS102を、図5(a)に示すサブステップS102a、S102bの2段階で実行すればよい。サブステップS102aでは、ステップS101で基材10上に形成された負極集電体層11のライン状パターン間に負極活物質塗布液を流し込んで塗布する。一方、サブステップS102bでは、負極集電体層11のライン状パターン上に重ねてその頂部を覆うように、負極活物質塗布液を塗布する。
【0037】
より具体的には、図5(b)に示すように、基材102上の負極集電体層112の高さH2と同程度まで、負極集電体層112の間を埋めるように塗布液を塗布し(サブステップS102a)、その後で負極集電体層112の頂部を覆うように塗布液を塗布することで(サブステップS102b)、図4(b)に示す構造を得ることができる。一方、図5(c)に示すように、負極集電体層113の間に薄く塗布液を塗布し(サブステップS102a)、その後で負極集電体層113の頂部を覆うように塗布液を塗布すれば(サブステップS102b)、図4(c)に示す構造を得ることができる。
【0038】
また、図4(d)に示す例では、基材104が、銅箔104aの上面(負極集電体層114を形成される側の面)に負極活物質による薄膜104bを形成した構造を有している。そして、このような構造の基材104に対して、図4(a)と同様に、負極集電体層114および負極活物質層124が順次形成される。なお、以下に説明するように、銅箔104aと負極集電体層114とは電気的に接続されており、これらは一体的に負極集電体として機能する。この構造例では、負極集電体と負極活物質との接触面積が大きいので低抵抗の電極とすることができる。
【0039】
図6は銅箔と負極集電体とを導通させるための構造の一例を示す図である。より詳しくは、図6(a)は図4(d)に示す負極用電極の基材104の構造を示す斜視図であり、図6(b)はそのA−A’線断面図である。基材104は、銅箔104aの表面に負極活物質104bが塗布されてなる構造を有している。
【0040】
ここで、図6(a)に示すように、負極活物質104bは銅箔104aの全面に塗布されているのではなく、Y方向下流側端部においては銅箔104aの表面が一部露出している。そして、導電性ペースト塗布により形成される負極集電体層114は、こうして露出した銅箔104aの表面まで延びている。このため、図6(b)に示すように、基材104を構成する銅箔104aと塗布による負極集電体114とは部分的に接触しており、これにより両者間の導通が確保される。したがって、銅箔104aと負極集電体層114とは電気的には一体となって負極集電体として機能することとなる。一方で、基材104の負極活物質層104bと集電体上に塗布された負極活物質層124(図4(d))とは一体的に負極活物質層として機能するので、その表面積が大幅に増大される。
【0041】
図7は図1の電池用電極の製造方法の第2の変形例を示す図である。図4(d)に示す構造を得るためには、図1のフローチャートにおけるステップS101を、図7(a)に示すサブステップS101a、S101bの2段階で実行すればよい。サブステップS101aでは、まず基材104の一部であり負極集電体として機能する銅箔104aを用意する。そして、サブステップS101bでは、銅箔104aの表面にその一部を残して負極活物質塗布液を塗布することで、負極活物質層104bを形成する(図7(b))。そして、これらを一体的に基材104とみなしてステップS102以降の処理、すなわち集電体層および活物質層の積層を行う。
【0042】
また、図4(e)に示す例では、基材105は絶縁体であり、その上面105aに負極集電体層115および負極活物質層125が形成されている。このような構造であっても電池の負極用電極として機能する。そして、上記例のように導体を基材とするものだけでなく、絶縁体を基材105としても電池用電極を形成することができることから、この製造方法によれば、電池としての動作を阻害するものを除く実質的に任意の基材上に、電池用電極を形成することが可能である。
【0043】
絶縁体である基材105表面にラインアンドスペース構造で形成された負極集電体層115では、各ラインが互いに電気的に孤立してしまう。これを互いに導通させて外部との電荷のやり取りを容易にするために、例えば次のような構造とすることが考えられる。
【0044】
図8は集電体間を導通させるための構造の一例を示す図である。この例では、互いに離隔したライン状パターンからなるラインアンドスペース構造の負極集電体層115は、各ラインに交わるように塗布された塗布液により形成されたライン115aによって電気的に一体化されている。こうすることにより、各ライン状パターン間の導通が確保され、これらが一体的に負極集電体として機能する。また、各ライン状パターンに交わるように、例えば銅リボン等の導体を貼り付けてもよい。
【0045】
なお、電池用電極としてはここに例示したものの他にも種々の構造が考えられる。例えば、樹脂シート等の絶縁体表面に銅箔を貼り付けたり、導電性ペーストを塗布することによって、絶縁体表面に集電体として機能する導電層を作り込んだものを基材として用いることができる。このような構造では、基材に作り込まれた導電層と、それに塗布される導電性ペーストにより形成される集電体層とが一体の集電体として機能する。
【0046】
また、基材は独立したシート状のものである必要はなく、例えば電子機器の筐体を基材として、その表面に電池用電極を作り込むことも可能である。このような例については後に説明する。
【0047】
以上のように、この発明にかかる電池用電極の製造方法では、優れた特性を有する種々の電池用電極を形成することができる。次に、このようにして製造される電池用電極を用いた電池の製造方法について説明する。なお、電池用電極の製造から電池を完成させるまでの処理の流れは一連のものとして連続的に行うことが可能である。
【0048】
図9はこの発明にかかる電池の製造方法の一実施形態を示すフローチャートである。また、図10は図9の製造方法により製造される電池の一例を示す図である。より詳しくは、図10(a)は本発明にかかる電池の一実施形態としてのリチウムイオン二次電池モジュールの概観斜視図であり、図10(b)はその断面構造を示す図である。以下では、図4(a)に構造を例示する負極用電極を用いて電池を製造する場合について説明するが、他の構造を有する電極を用いた場合でも、製造手順は基本的に同じである。
【0049】
このリチウムイオン二次電池モジュール1は、上記のようにして製造された負極用電極100に対して、電解質層13、正極集電体層14および正極集電体15をさらに積層した構造を有する。このような構造を得るために、まず上記方法により負極用電極100(基材101、負極集電体111、負極活物質121)を形成する(ステップS201)。次に、こうして形成された負極用電極100のうち、負極集電体層111および負極活物質層121を形成された側の表面に、負極活物質層121の表面を覆うように電解質層13を形成する。具体的には、固体電解質材料を含む塗布液を適宜の塗布方法、例えばスピンコート法により塗布し、これを乾燥硬化させることで、固体電解質からなる電解質層13を得る。
【0050】
スピンコート法による塗布技術は公知であるので、装置構成については説明を省略する。電解質塗布液としては、高分子電解質材料、例えばポリエチレンオキシド、ポリスチレンなどの樹脂、支持塩としての例えばLiPF6(六フッ化リン酸リチウム)および溶剤としての例えばジエチレンカーボネートなどを混合したものを用いることができる。
【0051】
スピンコート法では、略水平に保持された負極用電極100が鉛直軸周りに所定の回転速度で回転され、その回転軸上の上部位置に設けられたノズルから高分子電解質材料を含む塗布液が吐出される。負極用電極100に滴下された塗布液は遠心力によって周囲に広がり、余分な液は端部から振り切られる。こうすることで、負極用電極100の上面は薄く均一な塗布液によって覆われる。スピンコート法では、塗布液の粘度および回転速度によって膜厚を制御することができ、また本件負極用電極100のような表面に凹凸構造を有する被処理物に対してもその凹凸に沿った厚さの均一な薄膜を形成することについても十分な実績がある。
【0052】
固体電解質層13の厚さについては任意であるが、正負の活物質層間が確実に分離され、また内部抵抗が許容値以下となるような厚さであることが必要である。例えば20μm〜50μmとすることができる。なお、表面積を増大させるために設けた負極活物質層121の凹凸の意義を滅却しない、という観点からは、固体電解質層13の厚さ(図10(b)の符号t13)が負極活物質層121の凹凸の高低差(図10(b)の符号t12)よりも小さいことが望ましい。
【0053】
こうして形成された、銅箔101、負極集電体層111、負極活物質層121、固体電解質層13を積層してなる積層体に対して、適宜の方法、例えば公知のナイフコート法により正極活物質を含む正極活物質塗布液が塗布されて、正極活物質層14が形成される(ステップS203)。正極活物質を含む塗布液としては、例えば、正極活物質としての例えばLiCoO2(LCO)、導電助剤としての例えばアセチレンブラック、結着剤としてのSBR、分散剤としてのカルボキシメチルセルロース(CMC)および溶剤としての純水などを混合した水系LCO材料を用いることができる。正極活物質材料としては、上記したLCOの他、LiNiO2またはLiFePO4、LiMnPO4、LiMn24、またLiMeO2(Me=Mxyz;Me、Mは遷移金属、x+y+z=1)で代表的に示される化合物、例えばLiNi1/3Mn1/3Co1/32、LiNi0.8Co0.15Al0.052などを用いることができる。また、塗布方法としては、以下に例示するナイフコート法のほか、バーコート法やスピンコート法のように、平面上に平坦な膜を形成することが可能な公知の塗布方法を適宜採用することができる。
【0054】
ナイフコート法による塗布技術は公知であるので、そのための装置構成についての説明は省略する。ナイフコート法では、正極活物質を含む塗布液が塗布対象物に吐出され、塗布対象物の上面に近接配置されたブレードがその下端を塗布液に接触させながら塗布対象物上面を水平方向に移動する。これにより、塗布液の上面が平らに均される。
【0055】
このようにして正極活物質を含む塗布液をブレードにより均しながら塗布することで、下面が固体電解質層13の凹凸に沿った凹凸を有する一方、上面が略平坦な正極活物質層14が、銅箔101、負極集電体111、負極活物質層121、固体電解層13を積層してなる積層体上に形成される。正極活物質層14の厚さとしては20μm〜100μmが適当である。
【0056】
そして、こうして形成された正極活物質層14の上面に、正極集電体15となる金属箔、例えばアルミニウム箔を積層する(ステップS204)。このとき、先のステップS203で形成された正極活物質層14が硬化しないうちに、その上面に正極集電体15を重ねることが望ましい。こうすることで、正極活物質層14と正極集電体15とを互いに密着させて接合することができる。また正極活物質層14の上面は平らに均されているので、正極集電体15を隙間なく積層することが容易となっている。こうしてリチウムイオン二次電池モジュール1が形成される。このリチウムイオン二次電池モジュール1に適宜タブ電極が設けられたり、複数のモジュールが積層されてリチウムイオン電池が構成される。
【0057】
このようにして製造されるリチウムイオン二次電池モジュール1は、薄型でありながら、正負の活物質層が薄い固体電解質層を介して広い面積で対向する高性能なものであり、また各機能層を主に塗布により形成しているので、工程が少なく、優れた生産性で製造可能なものである。
【0058】
また、電解質層13を固体電解質により構成した場合、こうして形成された電池は有機溶剤を含まない全固体電池であり、取り扱いが容易であるとともに、小型で優れた性能を有するものである。このような電池は、電気自動車、電動アシスト自転車、電動工具、ロボットなどの機械類や、パーソナルコンピュータ、携帯電話や携帯型音楽プレイヤー、デジタルカメラやビデオカメラなどのモバイル機器、スマートICカード、ゲーム機、ポータブル型の測定機器、通信機器や玩具など各種の電子機器に使用することが可能である。
【0059】
以下に、本発明にかかる電池を搭載した機器の例について説明するが、これらは本実施形態の電池を応用しうる機器の態様の一部を例示するものであって、本発明にかかる電池の適用範囲がこれらに限定されるものではない。
【0060】
図11はこの発明にかかる電池を搭載した機器の一例としての車両、具体的には電気自動車を模式的に示す図である。この電気自動車70は、車輪71と、該車輪71を駆動するモータ72と、該モータ72に電力を供給する電池73とを備えている。この電池73として、上記したリチウムイオン二次電池モジュール1を多数直並列接続した構成を採用することができる。このように構成された電池73は、高い電流供給能力を有するとともに短時間での充電が可能であるため、電気自動車70のような車両の駆動用電源として好適なものである。
【0061】
この分野においては、航続距離の延長および充電時間の短縮が求められており、本発明にかかる電池はこれらの要求に応えることのできるものである。すなわち、本発明によれば薄型で高出力の電池モジュールを構成することができ、重量当たりの出力が大きいので長い航続距離を得ることができる。また、集電体と活物質層との接触面積、電解質層を介した正負活物質層間の対向面積をいずれも大きく取ることができるので、充放電特性が良好であり、短時間での充放電が可能である。
【0062】
図12はこの発明にかかる電池を適用した電子機器の一例を示す図である。より具体的には、図12は電子機器の一例としての電池内蔵型のICカードの外観斜視図である。このICカード80は、薄いプラスチック製のカード本体81に、本発明にかかる電池800、ICを含む回路ブロック82およびループ状のアンテナ83が作り込まれた構造となっている。
【0063】
アンテナ83は外部機器との間で電波を送受信して、外部機器と回路ブロック82とのデータ通信を担う。回路ブロック82は外部機器から受信したデータに対し所定のデータ処理を施したり、該データを記憶したり、送信すべきデータをアンテナ83に送出したりする。電池800は回路ブロック82が動作するための電源として機能する。
【0064】
電池800は前記したリチウムイオン二次電池モジュール1(図10)と同様の構成を有するものであり、カード本体81の内部に収容することができるほか、該カード本体81の表面に作り込むことが可能である。すなわち、カード本体81を基材として、その表面に負極集電体層を塗布により形成し、その上に活物質層、電解質層等の機能層を順次積層してゆくことで、カード本体81の表面に電池800を構成することができる。このような利用形態においては、電池の形成後に電池表面を覆う絶縁保護層をさらに設けることが望ましい。
【0065】
以上説明したように、この実施形態では、負極用電極100が本発明の「電池用電極」に相当しており、これを構成する基材10,101,102,103,104,105が本発明の「基材」に、負極集電体11,111,112,113,114,115が本発明の「集電体層」および「第1集電体層」に、それぞれ相当している。また、図1のフローチャートにおいては、ステップS102およびS103がそれぞれ本発明の「集電体層形成工程」および「活物質層形成工程」に相当している。
【0066】
また、この実施形態では、負極活物質層12,121,122,123,124,125が本発明の「活物質層」および「第1活物質層」として機能している。また、固体電解質層13、正極活物質層14および正極集電体層15がそれぞれ本発明の「電解質層」、「第2活物質層」および「第2集電体層」として機能している。また、図9のフローチャートにおけるステップS202およびS203が、それぞれ本発明の「電解質層形成工程」および「第2活物質層形成工程」に相当している。
【0067】
また、この実施形態では、ノズル31、33がそれぞれ本発明の「ノズル」、「第2のノズル」として機能している。さらに、この実施形態では、電気自動車70およびICカード80がそれぞれ本発明の「車両」および「電子機器」に相当しており、カード本体81および回路ブロック82がそれぞれ本発明の「筐体」および「回路部」に相当している。
【0068】
なお、本発明は上記した実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて上述したもの以外に種々の変更を行うことが可能である。例えば、各工程において適用する塗布方法は上記に限定されるものではなく、当該工程の目的に適うものであれば他の塗布方法を適用してもよい。例えば、上記した実施形態では、固体電解質層13を形成するのにスピンコート法を適用しているが、塗布対象面の凹凸に追従した薄膜を形成することのできる方法であれば他の方法、例えばスプレーコート法によって高分子電解質を含む塗布液を塗布するようにしてもよい。
【0069】
また例えば、上記実施形態では、負極集電体層11を互いに平行な多数のライン状パターンからなるラインアンドスペース構造としているが、負極集電体の塗布パターンはこれに限定されるものではなく、表面に凹凸構造を設けて表面積を大とされたパターンであれば任意のパターンを用いることができる。また、各ライン状パターンが互いにつながっていてもよい。また、この実施形態では、負極集電体層11を形成された基材10の一部表面が露出しているが、基材10の表面全体が凹凸を有する負極集電体層によって覆われた構造であってもよい。
【0070】
また例えば、上記実施形態では、正極活物質層14を形成するのにナイフコート法を適用しているが、塗布対象面と接する下面がその凹凸に追従し、かつ上面を略平坦に仕上げることが可能な塗布方法であれば他の方法であってもよい。このような目的を達成するには塗布液の粘度があまり高くないことが望ましいが、言い換えれば、塗布液の粘度が適切に選ばれていれば他の塗布方法でも下面を凹凸にかつ上面を略平坦に仕上げることは可能であり、例えばノズルスキャン法によって塗布対象面の凹凸のうち凹部に塗布液を流し込むようにしてもよい。
【0071】
また、上記実施形態では基材上に負極集電体、負極活物質層、固体電解質層、正極活物質層および正極集電体を順次積層しているが、これとは反対に、基材上に正極集電体、正極活物質層、固体電解質層、負極活物質層および負極集電体をこの順番に積層するようにしてもよい。また、正極集電体層と正極活物質層とを有する正極用電極の製造に本発明を適用するようにしてもよく、さらに、本発明の製造方法によってそれぞれ個別に製造した正極用電極と負極用電極とを組み合わせて電池を構成するようにしてもよい。
【0072】
また、上記実施形態で例示した集電体、活物質、電解質等の材料はその一例を示したものであってこれに限定されず、リチウムイオン電池の構成材料として用いられる他の材料を使用してリチウムイオン電池を製造する場合においても、本発明の製造方法を好適に適用することが可能である。また、リチウムイオン電池に限らず、他の材料を用いた化学電池(全固体電池)全般の製造に本発明を適用することが可能である。
【産業上の利用可能性】
【0073】
この発明は、特に小型で電気化学特性が良好であり、しかも生産性にも優れた電池、およびこれを備えた電子機器を構成するのに適している。
【符号の説明】
【0074】
10,101,102,103,104,105 基材
11,111,112,113,114,115 負極集電体層(集電体層、第1集電体層)
12,121,122,123,124,125 負極活物質層(活物質層、第1活物質層)
13 固体電解質層(電解質層)
14 正極活物質層(第2活物質層)
15 正極集電体層(第2集電体層)
31 ノズル(ノズル)
33 ノズル(第2のノズル)
70 電気自動車(車両)
80 ICカード(電子機器)
81 カード本体(筐体)
82 回路ブロック(回路部)
100 負極用電極(電池用電極)
S102 集電体層形成工程
S103 活物質層形成工程
S202 電解質層形成工程
S203 第2活物質層形成工程

【特許請求の範囲】
【請求項1】
基材の表面に導電性材料を含む塗布液を塗布して、前記基材と接する面と反対側の表面が凹凸を有する集電体層を形成する集電体層形成工程と、
前記集電体層の表面に活物質材料を含む塗布液を塗布して、前記集電体層表面の凹凸に倣った凹凸を有する活物質層を形成する活物質層形成工程と
を備えることを特徴とする電池用電極の製造方法。
【請求項2】
前記集電体層形成工程では、前記基材の表面に対して相対移動するノズルから前記導電性材料を含む塗布液を線状に吐出させて、互いに平行な複数の線状パターンからなる前記集電体層を形成する請求項1に記載の電池用電極の製造方法。
【請求項3】
前記活物質層形成工程では、前記集電体層の前記線状パターンに沿って前記基材の表面に対し相対移動する第2のノズルから前記活物質材料を含む塗布液を線状に吐出させて、前記線状パターンの表面を覆う前記活物質層を形成する請求項2に記載の電池用電極の製造方法。
【請求項4】
前記活物質層形成工程では、前記集電体層の前記線状パターンの表面と、前記線状パターン間に露出した前記基材の表面とをともに覆う前記活物質層を形成する請求項2に記載の電池用電極の製造方法。
【請求項5】
前記活物質層形成工程では、前記集電体層の前記線状パターン間に露出した前記基材の表面に前記活物質材料を含む塗布液を流し込み、さらに前記線状パターンに沿って前記基材の表面に対し相対移動する第2のノズルから前記活物質材料を含む塗布液を線状に吐出させて、前記基材の表面および前記線状パターンの表面を覆う前記活物質層を形成する請求項4に記載の電池用電極の製造方法。
【請求項6】
前記基材の表面を覆う前記活物質層の厚さを、前記集電体層の前記線状パターンの高さよりも小さくする請求項4または5に記載の電池用電極の製造方法。
【請求項7】
前記基材の前記集電体層を形成される面が、導電性を有する請求項1ないし6のいずれかに記載の電池用電極の製造方法。
【請求項8】
前記基材の前記集電体層を形成される面を、前記活物質層を構成する活物質と同極の活物質で構成する請求項1ないし6のいずれかに記載の電池用電極の製造方法。
【請求項9】
請求項1ないし8のいずれかに記載の製造方法により製造された電池用電極の前記活物質層側の面に、電解質層、第2活物質層および第2集電体層をこの順番に積層することを特徴とする電池の製造方法。
【請求項10】
前記活物質層に電解質材料を含む塗布液を塗布して、前記活物質層表面の凹凸に倣った凹凸を有する前記電解質層を形成する電解質層形成工程と、
前記電解質層に第2活物質材料を含む塗布液を塗布して、前記電解質層と接する面が前記電解質層表面の凹凸に倣った凹凸を有する一方、反対側の面が略平坦な前記第2活物質層を形成する第2活物質層形成工程と
を備える請求項9に記載の電池の製造方法。
【請求項11】
基材と、
前記基材と接する面と反対側の表面が凹凸を有する第1集電体層と、
前記集電体層表面の凹凸に倣った凹凸を有する第1活物質層と、
前記第1活物質層表面の凹凸に倣った凹凸を有する電解質層と、
前記電解質層と接する面が前記電解質層表面の凹凸に倣った凹凸を有する一方、反対側の面が略平坦な第2活物質層と、
第2集電体層と
をこの順番で積層してなる構造を有することを特徴とする電池。
【請求項12】
前記第1集電体層は、所定方向に沿って延びる互いに平行な複数の線状パターンからなる請求項11に記載の電池。
【請求項13】
請求項9または10に記載の製造方法により製造された電池を搭載することを特徴とする車両。
【請求項14】
回路部と、
前記回路部を保持する筐体と、
前記筐体を前記基材として請求項9または10に記載の製造方法により製造され、前記回路部に電力を供給する電池と
を備えることを特徴とする電子機器。


【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate


【公開番号】特開2012−18785(P2012−18785A)
【公開日】平成24年1月26日(2012.1.26)
【国際特許分類】
【出願番号】特願2010−154465(P2010−154465)
【出願日】平成22年7月7日(2010.7.7)
【出願人】(000207551)大日本スクリーン製造株式会社 (2,640)
【Fターム(参考)】