説明

電流制御回路および電流制御装置

【課題】簡単な回路構成で、高速動作と、出力電流のグリッチの低下を実現する。
【解決手段】電流源トランジスタ212は、端子255から引き込む電流を決定する。スイッチトランジスタ222は、DN信号に応じて、電流源トランジスタ212に電流を流す。カスコードトランジスタ232は、スイッチトランジスタ222と端子255との間に接続される。容量242は、カスコードトランジスタ232と、スイッチトランジスタ222との間に接続され、xDN信号に応じて、交流的に電荷を注入または放出する。本発明は、例えば、チャージポンプに適用することができる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、電流制御回路および電流制御装置に関し、特に、簡単な回路構成で、高速動作と、出力電流のグリッチの低下を実現することができるようにした電流制御回路および電流制御装置に関する。
【背景技術】
【0002】
図1は、チャージポンプを用いたPLL(Phase Locked Loop(位相ロックループ))回路の構成の一例を示している。
【0003】
図1のPLL回路10は、入力端子11、PFD(Phase Frequency Detector(位相周波数検出器))12、チャージポンプ13、ループフィルタ14、VCO(Voltage Controlled Oscillator)15、出力端子16、および分周器17より構成される。
【0004】
PFD12は、入力端子11から入力される、所定の周波数のクロック信号である入力参照信号Refと、分周器17から入力される生成比較信号Vcfの位相を比較し、それらの位相の差を表す位相差情報として、UP信号またはDOWN信号(以下、DN信号という)をチャージポンプ13に出力する。ここで、UP信号は、入力参照信号Refに対する生成比較信号Vcfの位相の遅れ分を表す信号であり、DN信号は、進み分を表す信号である。
【0005】
チャージポンプ13は、電源21、定電流源22および25、並びに、スイッチ23および24により構成され、電源21、定電流源22、スイッチ23、スイッチ24、および定電流源25が、順に直列に接続されて接地される。また、スイッチ23とスイッチ24の間には、ループフィルタ14が接続される。
【0006】
スイッチ23は、PFD12から入力されるUP信号に応じて、電源21から定電流源22を介して供給される定電流をループフィルタ14に流し込み、これにより、ループフィルタ14に電荷が蓄積される。スイッチ24は、PFD12から入力されるDN信号に応じて、ループフィルタ14から定電流を引き込み、定電流源25を介してアースに出力し、これにより、ループフィルタ14に蓄積された電荷が放出される。以上のようにして、チャージポンプ13では、PFD12から入力されるUP信号またはDN信号が、電流に変換される。
【0007】
ループフィルタ14は、例えば抵抗31とコンデンサ32により構成され、抵抗31とコンデンサ32は直列に接続されて接地される。抵抗31の一端は、チャージポンプ13のスイッチ23およびスイッチ24、並びにVCO15の入力端子に接続される。スイッチ23から流し込まれる電流は、抵抗31を介してコンデンサ32に蓄積され、これにより、VCO15の入力端子の電圧が上昇する。また、コンデンサ32に蓄積された電荷は、抵抗31を介してスイッチ24に引き込まれ、これにより、VCO15の入力端子の電圧が低下する。
【0008】
VCO15は、抵抗31に接続される入力端子の電圧に応じて、出力端子から出力するクロック信号の発振周波数を変化させる。VCO15の出力端子は、出力端子16と分周器17の入力端子に接続される。VCO15の出力端子から出力されたクロック信号は、出力信号COとして、出力端子16を介して外部に出力されるとともに、分周器17に入力される。分周器17は、VCO15から入力されるクロック信号の周波数をN分周し、N分周後のクロック信号を生成比較信号Vcfとして、PFD12にフィードバックする。以上のようにして、PLL回路10は、出力信号COを入力参照信号Refに同期した信号にする。
【0009】
次に、図2を参照して、ディスクに記録された信号を再生する再生装置のPLLクロック再生回路の構成の一例を示す。
【0010】
図2のPLLクロック再生回路40は、ループフィルタ14、VCO15、分周器17、入力端子41、ADC(Analog to Digital Converter(A/Dコンバータ))42、DPD(Digital Phase Detector(デジタル位相検出器))43、およびIDAC(電流モードD/Aコンバータ)44により構成される。なお、図1と同一のものには同一の符号を付してあり、説明は適宜省略する。
【0011】
ディスクから光ピックアップ(図示せず)を用いて読み出されたアナログ信号が、読み出し信号Ainとして、イコライザ等を経て入力端子41に入力される。入力端子41に入力された読み出し信号AinはADC42に供給される。ADC42は、分周器17から供給されるサンプリングクロック信号CKに基づいて、読み出し信号Ainに対してA/D変換を行い、その結果得られるAビットのデジタル信号をDPD43に供給する。
【0012】
DPD43は、ADC42から供給されるAビットのデジタル信号を用いて、ウォブル波形と、サンプリングクロック信号CKの位相の差を求める。具体的には、例えば、ウォブル波形がサイン波である場合、DPD43は、1周期内の正の振幅を有するウォブル波形から得られるデジタル信号の積算値と、負の振幅を有するウォブル波形から得られるデジタル信号の積算値の差を位相の差として求める。従って、例えば、両方の積算値が一致する場合、即ちサンプリングクロック信号CKがウォブル波形に同期している場合、位相差はゼロとなる。DPD43は、位相の差を表すBビットの位相差情報をIDAC44に供給する。
【0013】
IDAC44は、図1のチャージポンプ13と同様の機能を有している。即ち、IDAC44は、ループフィルタ14に電流を流し込んだり、ループフィルタ14から電流を引き込むことにより、VCO15の入力端子の電圧を変化させる。VCO15から分周器17を介して出力されるN分周後の出力信号は、サンプリングクロック信号CKとして、ADC42に供給される。以上のようにして、PLLクロック再生回路40は、出力信号COを読み出し信号Ainに同期した信号にする。
【0014】
ところで、例えば、図1のPLL回路10が、出力信号COの位相と周波数を変化させない、即ちロックするとき、PFD12は、リセットパルス幅を有するUP信号とDN信号を、スイッチ23と24に入力する。このリセットパルス幅とは、入力参照信号Refと生成比較信号Vcfの位相差が微小である場合であっても、位相差情報を電流に正確に変換するために必要な最低限の時間幅である。即ち、実際の回路が信号に反応して動作するためには、その信号は所定の時間幅以上の時間幅を有する必要があり、リセットパルス幅は、その最低限の時間幅である。
【0015】
そして、チャージポンプ13のスイッチ23と24は、そのリセットパルス幅に対応する期間、ループフィルタ14に対する電流の流し込みと引き込みを同時に行い、チャージポンプ13から出力される出力電流の全体の電流量をゼロにすることで、ループフィルタ14の電圧変動、即ちVCO15の入力端子の電圧の変動を停止する。
【0016】
しかしながら、リセットパルス幅に対応する期間において、実際には、電流源22と25でノイズが発生し、それらのノイズのミスマッチにより、VCO15の入力端子の電圧が変動するという問題がある。このミスマッチによる電圧変動は、出力信号COのジッタの要因になるため、リセットパルス幅に対応する期間を、可能な限り短くする必要がある。また、実際には、チャージポンプ13の電流源22と25のそれぞれの出力電流には、制御が困難なグリッチ、および、出力先であるループフィルタ14とのチャージシェアによるエラー成分があり、これらのミスマッチにより、ループフィルタ14に流し込む電流と、ループフィルタ14に引き込む電流に誤差が発生すると、VCO15の入力端子の電圧が変動し、出力信号COにジッタや定常的な位相誤差といった悪影響を与えるという問題がある。
【0017】
なお、これらの問題は、チャージポンプ13だけでなく、図2のIDAC44においても同様に発生する。従って、PLL回路10やPLLクロック再生回路40においては、高速動作と、出力電流のグリッチの低下を実現することが望まれる。
【0018】
そこで、高速で動作し、出力電流のエラー成分が小さいPLL回路が考えられている(例えば、特許文献1参照)。
【0019】
図3は、特許文献1に記載されているPLL回路のチャージポンプと等価のチャージポンプの構成を示している。
【0020】
図3のチャージポンプ50は、電圧Vddを出力する電源51乃至53、電流源トランジスタ61乃至63、カスコードトランジスタ71乃至75、スイッチトランジスタ81乃至84、および端子91乃至99により構成される。
【0021】
電源51には、pMOSトランジスタである電流源トランジスタ61とカスコードトランジスタ71が直列に接続され、カスコードトランジスタ71のドレインには出力端子93が接続されている。また、カスコードトランジスタ71のドレインには、nMOSトランジスタであるカスコードトランジスタ72と74が並列に接続されている。カスコードトランジスタ72には、nMOSトランジスタであるスイッチトランジスタ81と電流源トランジスタ62が直列に接続されて接地される。カスコードトランジスタ74には、nMOSトランジスタであるスイッチトランジスタ83と電流源トランジスタ63が直列に接続されて接地される。
【0022】
一方、電源52には、nMOSトランジスタであるカスコードトランジスタ75とスイッチトランジスタ84が直列に接続され、スイッチトランジスタ84のソースには、電流源トランジスタ63のドレインが接続される。また、電源53には、nMOSトランジスタであるカスコードトランジスタ73とスイッチトランジスタ82が直列に接続され、スイッチトランジスタ82のソースには、電流源トランジスタ62のドレインが接続される。
【0023】
端子91,92,97,98には、それぞれ、バイアス電圧Vbsp、Vbcasp,Vbsn,Vbcasnが入力される。電流源トランジスタ61乃至63は、端子91または97からゲートにバイアス電圧VbspまたはVbsnが入力されたとき、電流Icpを流すように動作する。また、カスコードトランジスタ71乃至75は、端子92または98からゲートにバイアス電圧VbcaspまたはVbcasnが入力されたとき動作する。
【0024】
また、端子94,95,96,99には、それぞれ、xUP信号、UP信号、DN信号、xDN信号が入力される。ここで、xUP信号はUP信号の反転信号であり,xDN信号はDN信号の反転信号である。なお、以下において、特に断りがない場合、信号名の先頭に「x」が付加されている信号は、その信号名から「x」を除いた信号の反転信号である。
【0025】
次に、チャージポンプ50の動作について説明する。
【0026】
まず最初に、端子93から出力される出力電流Ioutをゼロにする(以下、この動作を電流ゼロ動作という)場合について説明する。この場合、UP信号とDN信号はL(Low)レベル信号である。即ち、スイッチトランジスタ81と84はオンにされ、スイッチトランジスタ82と83はオフにされる。従って、電源51からの電流Icpは、図3の矢印Aが示す経路で、即ち電流源トランジスタ61、カスコードトランジスタ71、カスコードトランジスタ72、スイッチトランジスタ81、および電流源トランジスタ62を介して、アースに出力され、出力電流Ioutはゼロになる。即ち、端子93に流し込まれる電流と、端子93から引き込む電流は等しくなる。
【0027】
また、このとき、電源52から電流が、図3の矢印Bが示す経路で、即ちカスコードトランジスタ75、スイッチトランジスタ84、および電流源トランジスタ63を介して、アースに出力されるので、電流源トランジスタ63は、動作を維持することができる。
【0028】
次に、端子93に出力電流Ioutを流し込む場合(以下、この動作を流し込み動作という)について説明する。この場合、UP信号は、H(High)レベル信号であり、DN信号はLレベル信号である。即ち、スイッチトランジスタ81と83はオフにされ、スイッチトランジスタ82と84はオンにされる。従って、矢印Aが示す経路は遮断され、電源51からの電流Icpは、矢印Cが示す経路で、即ち電流源トランジスタ61とカスコードトランジスタ71を介して、端子93に供給され、出力電流Ioutとして出力される。
【0029】
また、このとき、電源52からの電流Icpが、出力電流Ioutがゼロである場合と同様に、図3の矢印Bが示す経路で出力されるので、電流源トランジスタ63は動作を維持することができる。さらに、電源53からの電流Icpが、図3の矢印Dが示す経路で、即ちカスコードトランジスタ73、スイッチトランジスタ82、および電流源トランジスタ62を介して、アースに出力されるので、電流源トランジスタ62は動作を維持することができる。
【0030】
最後に、端子93から電流を引き込む(以下、この動作を引き込み動作という)場合について説明する。この場合、UP信号は、Lレベル信号であり、DN信号はHレベル信号である。即ち、スイッチトランジスタ81と83はオンにされ、スイッチトランジスタ82と84はオフにされる。従って、矢印Aが示す経路で電源51からの電流Icpが流されるとともに、端子93からの電流Icpが、矢印Eが示す経路で、即ちカスコードトランジスタ74、スイッチトランジスタ83、および電流源トランジスタ63を介して、アースに出力される。
【0031】
以上のように、図3のチャージポンプ50は、常に電流源トランジスタ61乃至63を介した電流の経路が設けられるカレントステアリング方式のチャージポンプであり、すべての電流源トランジスタ61乃至63は常に飽和領域での動作を維持しているため、チャージポンプ50の動作速度を改善することができる。
【0032】
また、電流源トランジスタ62(63)とカスコードトランジスタ72(74)の間にスイッチトランジスタ81(83)を配置することで、スイッチトランジスタ81(83)のカップリング容量を介して、UP信号、xUP信号、DN信号、およびxDN信号を入力するスイッチ制御回路(図示せず)から各状態遷移時に注入されるフィードスルー電荷によるグリッチなどの出力電流Ioutへの影響を、改善することができる。
【0033】
さらに、すべての電流源トランジスタ61乃至63が、カスコード構成となっていることにより、電流ゼロ動作の状態から引き込み動作の状態に、または引き込み動作の状態から電流ゼロ動作の状態に遷移する際の電流源トランジスタ61乃至63のドレインの電圧変動を1/(gm×rds)(ここで、gmは、カスコードトランジスタ71乃至75のトランスコンダクタンスパラメータであり、rdsは、ドレインとソースの間の抵抗である)に抑えることができるため、図4で後述するブートストラップ方式のチャージポンプのようにオペアンプを用いずに、非常に簡単な構成かつ低消費電流で、チャージシェアによる出力電流Ioutのエラー成分を改善することができる。
【0034】
図4は、ブートストラップ方式のチャージポンプの構成の一例を示している。
【0035】
図4のチャージポンプ100は、電源101、電流源トランジスタ102と103、スイッチトランジスタ104乃至107、オペアンプ108、および端子109乃至115により構成される。
【0036】
電源101には、pMOSトランジスタである電流源トランジスタ102、pMOSトランジスタであるスイッチトランジスタ104、nMOSトランジスタであるスイッチトランジスタ105、およびnMOSトランジスタである電流源トランジスタ103が直列に接続され、接地される。また、電流源トランジスタ102のドレインと、スイッチトランジスタ105のソースの間には、直列に接続された、pMOSトランジスタであるスイッチトランジスタ106とnMOSトランジスタであるスイッチトランジスタ107が接続される。スイッチトランジスタ104のドレインには、オペアンプ108と端子111が接続される。
【0037】
端子109にはバイアス電圧Vbspが入力され、端子113には、バイアス電圧Vbsnが入力される。電流源トランジスタ102は、バイアス電圧Vbspが入力されたとき動作し、電流源トランジスタ103は、バイアス電圧Vbsnが入力されたとき動作する。また、端子110,112,114,115には、それぞれ、xUP信号、DN信号、UP信号、xDN信号が入力される。
【0038】
以上のように、チャージポンプ100では、端子111と、スイッチトランジスタ106のドレインの間にオペアンプ108を配置することにより、端子111と、電流源トランジスタ102および103のドレインの電圧を同一にし、チャージシェアによる出力電流のエラー成分を改善することができる。
【0039】
一方、図3のチャージポンプ50は、上述した動作速度の改善、フィードスルー電荷による影響の改善、およびチャージシェアによる出力電流Ioutのエラー成分の改善というメリットとともに、デメリットを有している。このデメリットについて、図5と図6を参照して説明する。
【0040】
図5と図6は、説明の便宜上、図3のチャージポンプ50のうちの、引き込み動作を行う部分を示したものである。
【0041】
なお、図5と図6では、寄生容量も示してある。即ち、カスコードトランジスタ74のソースとスイッチトランジスタ83のドレインを接続する端子131と、アースの間には寄生容量121があり、スイッチトランジスタ83のドレインとゲートの間には、寄生容量122がある。スイッチトランジスタ83のゲートとソースの間には、寄生容量123があり、スイッチトランジスタ83のソース、スイッチトランジスタ84のソース、および電流源トランジスタ63のドレインを接続する端子132とアースの間には、寄生容量124がある。
【0042】
また、スイッチトランジスタ84のドレインとアースの間には寄生容量125が、スイッチトランジスタ84のドレインとゲートの間には、寄生容量126があり、スイッチトランジスタ84のゲートとソースの間には、寄生容量127がある。
【0043】
まず最初に、図5を参照して、電流ゼロ動作の状態から、引き込み動作の状態に遷移する場合について説明する。この場合、DN信号がLレベル信号からHレベル信号に遷移し、xDN信号がHレベル信号からLレベル信号に遷移する。これにより、図5の矢印P1乃至S1が示すように、寄生容量122乃至127を介してAC(交流)的にフィードスルーが生じる。具体的には、矢印P1とQ1が示すように、寄生容量122と123を介して、正方向のフィードスルーが生じ、矢印R1とS1が示すように、寄生容量126と127を介して、逆方向のフィードスルーが生じる。なお、ここでは、寄生容量を介して電荷を注入することを、正方向のフィードスルーといい、寄生容量を介して電荷を放出することを、逆方向のフィードスルーという。
【0044】
次に、図6を参照して、引き込み動作の状態から、電流ゼロ動作の状態に遷移する場合について説明する。この場合、DN信号がHレベル信号からLレベル信号に遷移し、xDN信号がLレベル信号からHレベル信号に遷移する。これにより、図6の矢印P2乃至S2が示すように、寄生容量122乃至127を介して、図5の場合とは逆方向のフィードスルーが生じる。
【0045】
図5において、矢印Q1が示す正方向のフィードスルーにより、端子96から寄生容量123を介して注入される電荷と、矢印S1が示す逆方向のフィードスルーにより、寄生容量127を介して端子99に引き込まれる電荷が等しい場合、フィードスルーによる電荷は相殺される。また、図6において、矢印Q2が示す逆方向のフィードスルーにより、寄生容量123を介して端子96に引き込まれる電荷と、矢印S2が示す正方向のフィードスルーにより、端子99から寄生容量127を介して注入される電荷が等しい場合、フィードスルーによる電荷は相殺される。
【0046】
しかしながら、矢印P1とR1、または、矢印P2とR2が示すフィードスルーによる電荷は、互いに打ち消すものがない。
【0047】
次に、図7は、端子131の電圧Vxおよび出力電流Ioutを示している。なお、図7のA乃至Cにおいて、横軸は時刻を表している。また、図7のAとBにおいて縦軸は電圧を表し、図7のCにおいて、縦軸は電流を表している。
【0048】
図7のAにおいて、実線はDN信号を表し、点線はxDN信号を表している。図7のAに示すように、DN信号の電圧が0(DN信号がLレベル信号)であるとき、即ち、スイッチトランジスタ83がオフにされているとき、図7のBに示すように端子131の電圧Vxは、およそ、バイアス電圧Vbcasnから、カスコードトランジスタ74および75の閾値電圧Vthnを減算した値(Vbcasn-Vthn)となり、カスコードトランジスタ74はカットオフしている。
【0049】
この後、図7のAに示すように、DN信号の電圧がVdd(DN信号がHレベル信号)にされると、スイッチトランジスタ83がオンにされ、図7のBに示すように、電圧Vxは、図5の矢印P1で示した寄生容量122を介する正方向のフィードスルーにより、瞬間的に、端子96から寄生容量122を介して注入される電荷の電荷量Qa1を、端子131の寄生容量121の容量Cxで除算した値分増加した値(Vbcasn-Vthn+Qa1/Cx)となる。その後、電圧Vxは、その値から徐々に、電流Icpを流すための所望の電圧Vxonとなる。
【0050】
従って、スイッチトランジスタ83がオンにされてから、電圧Vxonに到達するまでの期間τ1の間、端子93を介して出力電流Ioutを出力する出力先との間にチャージシェアが生じる。その結果、図7のCにおいて実線で示すように、出力電流Ioutにはエラー成分が生じ、図7のCにおいて点線で示す理想値のように、出力電流Ioutは即座に所望の電流Icpにならない。
【0051】
さらに、この後、図7のAに示すように、DN信号の電圧が0にされると、図7のBに示すように、電圧Vxは、即座に、電圧Vxonから、バイアス電圧Vbcasnから閾値電圧Vthnを減算した値近辺に遷移することが望ましいが、矢印P2が示した寄生容量122を介する逆方向のフィードスルーによる電荷と、寄生容量121に蓄積された電荷により、即座に遷移することができない。即ち、電圧Vxは、瞬間的に、およそ、矢印P2が示したフィードスルーにより寄生容量122に引き抜かれる電荷の電荷量Qa2を、寄生容量121の容量Cxで除算した値分減少した値(Vbcasn-Vthn-Qa2/Cx)となる。
【0052】
このため、スイッチトランジスタ83がオフにされてから、電圧Vxがバイアス電圧Vbcasnから閾値電圧Vthnを減算した値に到達するまでの期間τ2の間、出力先との間にチャージシェアが生じ、図7のCにおいて実線で示すように、出力電流Ioutにエラー成分が生じる。
【0053】
【特許文献1】特開2003−218694号公報
【発明の開示】
【発明が解決しようとする課題】
【0054】
以上のように、チャージポンプ50では、状態遷移時に、端子131の電圧Vxが、寄生容量122を介したフィードスルーにより、所望の電圧方向とは一旦逆方向に向かい、それから寄生容量121を充電もしくは放電することで、緩やかに所望の電圧へと変化するため,動作速度の低下、チャージシェア起因の電流のエラー成分の発生を招いている。
【0055】
また、上述したように、チャージポンプ50は、電流源トランジスタ62(63)とカスコードトランジスタ72(74)の間にスイッチトランジスタ81(83)を配置することにより、各状態遷移時のフィードスルーによるグリッチなどの出力への影響をカスコードトランジスタ72(74)で、ある程度改善することができるが、完全に改善することはできなかった。なお、これらのことは、電流の流し込み動作においても同様である。
【0056】
本発明は、このような状況に鑑みてなされたものであり、簡単な回路構成で、高速動作と、出力電流のグリッチの低下を実現することができるようにするものである。
【課題を解決するための手段】
【0057】
本発明の第1の側面の電流制御回路は、出力端子に流し込む電流を決定する第1の流し込み側電流源トランジスタと、第1の流し込み側電流源トランジスタと出力端子の間に接続され、第1の流し込み側制御信号に応じて、第1の流し込み側電流源トランジスタに電流を流す第1の流し込み側スイッチトランジスタと、第1の流し込み側スイッチトランジスタと出力端子との間に接続される第1の流し込み側カスコードトランジスタと、第1の流し込み側カスコードトランジスタと、第1の流し込み側スイッチトランジスタとの間に接続され、第1の流し込み側制御信号の反転信号に応じて、交流的に電荷を注入または放出する第1の流し込み側電荷注入放出手段と、流し込み側電流源トランジスタと所定の電位の間に接続され、第1の流し込み側スイッチトランジスタが、第1の流し込み側電流源トランジスタに電流を流さない場合、第1の流し込み側電流源トランジスタに電流を供給する第1の流し込み側電流供給経路とを備え、流し込み側電流供給経路は、流し込み側制御信号の反転信号に応じて、流し込み側電流源トランジスタに電流を流す第2の流し込み側スイッチトランジスタを備える。
【0058】
本発明の第1の側面の電流制御回路においては、流し込み側電流供給経路は、第2の流し込み側スイッチトランジスタと所定の電位との間に接続される第2の流し込み側カスコードトランジスタと、第2の流し込み側カスコードトランジスタと、第2の流し込み側スイッチトランジスタとの間に接続され、流し込み側制御信号に応じて、交流的に電荷を注入または放出する第2の流し込み側電荷注入放出手段とをさらに設けることができる。
【0059】
本発明の第2の側面の電流制御回路は、出力端子から引き込む電流を決定する引き込み側電流源トランジスタと、引き込み側電流源トランジスタと出力端子の間に接続され、引き込み側制御信号に応じて、引き込み側電流源トランジスタに電流を流す第1の引き込み側スイッチトランジスタと、第1の引き込み側スイッチトランジスタと出力端子との間に接続される第1の引き込み側カスコードトランジスタと、第1の引き込み側カスコードトランジスタと、第1の引き込み側スイッチトランジスタとの間に接続され、引き込み側制御信号の反転信号に応じて、交流的に電荷を注入または放出する第1の引き込み側電荷注入放出手段と、引き込み側電流源トランジスタと所定の電位の間に接続され、第1の引き込み側スイッチトランジスタが、引き込み側電流源トランジスタに電流を流さない場合、引き込み側電流源トランジスタに電流を供給する引き込み側電流供給経路とを備え、引き込み側電流供給経路は、引き込み側制御信号の反転信号に応じて、引き込み側電流源トランジスタに電流を流す第2の引き込み側スイッチトランジスタを備える。
【0060】
本発明の第2の側面の電流制御回路においては、引き込み側電流供給経路は、第2の引き込み側スイッチトランジスタと所定の電位との間に接続される第2の引き込み側カスコードトランジスタと、第2の引き込み側カスコードトランジスタと、第2の引き込み側スイッチトランジスタとの間に接続され、引き込み側制御信号に応じて、交流的に電荷を注入または放出する第2の引き込み側電荷注入放出手段とをさらに備える。
【0061】
本発明の第3の側面の電流制御回路は、出力端子に流し込む電流を決定する流し込み側電流源トランジスタと、流し込み側電流源トランジスタと出力端子との間に接続され、第1の流し込み側制御信号に応じて、流し込み側電流源トランジスタに電流を流す第1の流し込み側スイッチトランジスタと、第1の流し込み側スイッチトランジスタと出力端子との間に接続される第1の流し込み側カスコードトランジスタと、第1の流し込み側カスコードトランジスタと、第1の流し込み側スイッチトランジスタとの間に接続され、第1の流し込み側制御信号の反転信号に応じて、交流的に電荷を注入または放出する第1の流し込み側電荷注入放出手段と、流し込み側電流源トランジスタと第1の電位の間に接続され、第1の流し込み側スイッチトランジスタが、流し込み側電流源トランジスタに電流を流さない場合、流し込み側電流源トランジスタに電流を供給する流し込み側電流供給経路と、出力端子から引き込む電流を決定する引き込み側電流源トランジスタと、引き込み側電流源トランジスタと出力端子の間に接続され、第1の引き込み側制御信号に応じて、引き込み側電流源トランジスタに電流を流す第1の引き込み側スイッチトランジスタと、第1の引き込み側スイッチトランジスタと出力端子との間に接続される第1の引き込み側カスコードトランジスタと、第1の引き込み側カスコードトランジスタと、第1の引き込み側スイッチトランジスタとの間に接続され、第1の引き込み側制御信号の反転信号に応じて、交流的に電荷を注入または放出する第1の引き込み側電荷注入放出手段と、引き込み側電流源トランジスタと第2の電位の間に接続され、第1の引き込み側スイッチトランジスタが、引き込み側電流源トランジスタに電流を流さない場合、引き込み側電流源トランジスタに電流を供給する引き込み側電流供給経路とを備え、流し込み側電流供給経路は、第2の流し込み側制御信号に応じて、流し込み側電流源トランジスタに電流を流す第2の流し込み側スイッチトランジスタを備え、引き込み側電流供給経路は、第2の引き込み側制御信号に応じて、引き込み側電流源トランジスタに電流を流す第2の引き込み側スイッチトランジスタを備える。
【0062】
本発明の第3の側面の電流制御回路においては、流し込み側電流供給経路は、第2の流し込み側スイッチトランジスタと第1の電位との間に接続される第2の流し込み側カスコードトランジスタと、第2の流し込み側カスコードトランジスタと、第2の流し込み側スイッチトランジスタとの間に接続され、第2の流し込み側制御信号の反転信号に応じて、交流的に電荷を注入または放出する第2の流し込み側電荷注入放出手段とを設け、引き込み側電流供給経路は、第2の引き込み側スイッチトランジスタと第2の電位との間に接続される第2の引き込み側カスコードトランジスタと、第2の引き込み側カスコードトランジスタと、第2の引き込み側スイッチトランジスタとの間に接続され、第2の引き込み側制御信号の反転信号に応じて、交流的に電荷を注入または放出する第2の引き込み側電荷注入放出手段とを設けることができる。
【0063】
本発明の第3の側面の電流制御回路は、第1の流し込み側スイッチトランジスタが、流し込み側電流源トランジスタに電流を流さず、かつ、第1の引き込み側スイッチトランジスタが、引き込み側電流源トランジスタに電流を流さない場合、流し込み側電流源トランジスタと引き込み側電流源トランジスタに電流を供給する共通電流供給経路をさらに設けることができる。
【0064】
本発明の第3の側面の電流制御回路は、第1の流し込み側スイッチトランジスタが、流し込み側電流源トランジスタに電流を流さず、かつ、第1の引き込み側スイッチトランジスタが、引き込み側電流源トランジスタに電流を流さない場合、流し込み側電流源トランジスタと引き込み側電流源トランジスタに電流を供給する共通電流供給経路をさらに設け、共通電流供給経路は、流し込み側電流源トランジスタと引き込み側電流源トランジスタの間に接続され、共通制御信号に応じて、流し込み側電流源トランジスタに電流を流す第1の共通スイッチトランジスタと、第1の共通スイッチトランジスタと引き込み側電流源トランジスタとの間に接続される第1の共通カスコードトランジスタと、第1の共通カスコードトランジスタと、第1の共通スイッチトランジスタとの間に接続され、共通制御信号の反転信号に応じて、交流的に電荷を注入または放出する第1の共通電荷注入放出手段と、引き込み側電流源トランジスタと第1の共通カスコードトランジスタの間に接続され、共通制御信号の反転信号に応じて、引き込み側電流源トランジスタに電流を流す第2の共通スイッチトランジスタと、第2の共通スイッチトランジスタと第1の共通カスコードトランジスタの間に接続される第2の共通カスコードトランジスタと、第2の共通カスコードトランジスタと、第2の共通スイッチトランジスタとの間に接続され、共通制御信号に応じて、交流的に電荷を注入または放出する第2の共通電荷注入放出手段とを設けることができる。
【0065】
本発明の第4の側面の電流制御装置は、並列に接続された複数の電流制御回路を備える電流制御装置において、各電流制御回路は、出力端子に流し込む電流を決定する流し込み側電流源トランジスタと、流し込み側電流源トランジスタと出力端子の間に接続され、流し込み側制御信号に応じて、流し込み側電流源トランジスタに電流を流す第1の流し込み側スイッチトランジスタと、第1の流し込み側スイッチトランジスタと出力端子との間に接続される流し込み側カスコードトランジスタと、流し込み側カスコードトランジスタと、第1の流し込み側スイッチトランジスタとの間に接続され、流し込み側制御信号の反転信号に応じて、交流的に電荷を注入または放出する流し込み側電荷注入放出手段と、流し込み側電流源トランジスタと所定の電位の間に接続され、第1の流し込み側スイッチトランジスタが、流し込み側電流源トランジスタに電流を流さない場合、流し込み側電流源トランジスタに電流を供給する流し込み側電流供給経路とを備え、流し込み側電流供給経路は、流し込み側制御信号の反転信号に応じて、流し込み側電流源トランジスタに電流を流す第2の流し込み側スイッチトランジスタを備える。
【0066】
本発明の第5の側面の電流制御装置は、並列に接続された複数の電流制御回路を備える電流制御装置において、各電流制御回路は、出力端子から引き込む電流を決定する引き込み側電流源トランジスタと、引き込み側電流源トランジスタと出力端子の間に接続され、引き込み側制御信号に応じて、引き込み側電流源トランジスタに電流を流す第1の引き込み側スイッチトランジスタと、第1の引き込み側スイッチトランジスタと出力端子との間に接続される引き込み側カスコードトランジスタと、引き込み側カスコードトランジスタと、第1の引き込み側スイッチトランジスタとの間に接続され、引き込み側制御信号の反転信号に応じて、交流的に電荷を注入または放出する引き込み側電荷注入放出手段と、引き込み側電流源トランジスタと所定の電位の間に接続され、第1の引き込み側スイッチトランジスタが、引き込み側電流源トランジスタに電流を流さない場合、引き込み側電流源トランジスタに電流を供給する引き込み側電流供給経路とを備え、引き込み側電流供給経路は、引き込み側制御信号の反転信号に応じて、引き込み側電流源トランジスタに電流を流す第2の引き込み側スイッチトランジスタを備える。
【0067】
本発明の第6の側面の電流制御装置は、並列に接続された複数の電流制御回路を備える電流制御装置において、各電流制御回路は、出力端子に流し込む電流を決定する流し込み側電流源トランジスタと、流し込み側電流源トランジスタと出力端子との間に接続され、第1の流し込み側制御信号に応じて、流し込み側電流源トランジスタに電流を流す第1の流し込み側スイッチトランジスタと、第1の流し込み側スイッチトランジスタと出力端子との間に接続される流し込み側カスコードトランジスタと、流し込み側カスコードトランジスタと、第1の流し込み側スイッチトランジスタとの間に接続され、第1の流し込み側制御信号の反転信号に応じて、交流的に電荷を注入または放出する流し込み側電荷注入放出手段と、流し込み側電流源トランジスタと第1の電位の間に接続され、第1の流し込み側スイッチトランジスタが、流し込み側電流源トランジスタに電流を流さない場合、流し込み側電流源トランジスタに電流を供給する流し込み側電流供給経路と、出力端子から引き込む電流を決定する引き込み側電流源トランジスタと、引き込み側電流源トランジスタと出力端子の間に接続され、第1の引き込み側制御信号に応じて、引き込み側電流源トランジスタに電流を流す第1の引き込み側スイッチトランジスタと、第1の引き込み側スイッチトランジスタと出力端子との間に接続される引き込み側カスコードトランジスタと、引き込み側カスコードトランジスタと、第1の引き込み側スイッチトランジスタとの間に接続され、引き込み側制御信号の反転信号に応じて、交流的に電荷を注入または放出する引き込み側電荷注入放出手段と、引き込み側電流源トランジスタと第2の電位の間に接続され、第1の引き込み側スイッチトランジスタが、引き込み側電流源トランジスタに電流を流さない場合、引き込み側電流源トランジスタに電流を供給する引き込み側電流供給経路とを備え、流し込み側電流供給経路は、第2の流し込み側制御信号に応じて、流し込み側電流源トランジスタに電流を流す第2の流し込み側スイッチトランジスタを備え、引き込み側電流供給経路は、第2の引き込み側制御信号に応じて、引き込み側電流源トランジスタに電流を流す第2の引き込み側スイッチトランジスタを備える。
【0068】
本発明の第1の側面においては、出力端子に流し込む電流を決定する流し込み側電流源トランジスタと出力端子の間に接続される第1の流し込み側スイッチトランジスタにより、流し込み側制御信号に応じて、流し込み側電流源トランジスタに電流が流され、第1の流し込み側スイッチトランジスタと出力端子との間に接続される第1の流し込み側カスコードトランジスタと、第1の流し込み側スイッチトランジスタとの間に接続される第1の流し込み側電荷注入放出手段により、流し込み側制御信号の反転信号に応じて、交流的に電荷が注入または放出される。第1の流し込み側スイッチトランジスタが、流し込み側電流源トランジスタに電流を流さない場合、流し込み側電流源トランジスタと所定の電位の間に接続される流し込み側電流供給経路の第2の流し込み側スイッチトランジスタにより、流し込み側制御信号の反転信号に応じて、流し込み側電流源トランジスタに電流が流される。
【0069】
本発明の第2の側面においては、出力端子から引き込む電流を決定する引き込み側電流源トランジスタと出力端子の間に接続される第1の引き込み側スイッチトランジスタにより、引き込み側制御信号に応じて、引き込み側電流源トランジスタに電流が流され、第1の引き込み側スイッチトランジスタと出力端子との間に接続される第1の引き込み側カスコードトランジスタと、第1の引き込み側スイッチトランジスタとの間に接続される第1の引き込み側電荷注入放出手段により、引き込み側制御信号の反転信号に応じて、交流的に電荷が注入または放出される。第1の引き込み側スイッチトランジスタが、引き込み側電流源トランジスタに電流を流さない場合、引き込み側電流源トランジスタと所定の電位の間に接続される引き込み側電流供給経路の第2の引き込み側スイッチトランジスタにより、引き込み側制御信号の反転信号に応じて、引き込み側電流源トランジスタに電流が流される。
【0070】
本発明の第3の側面においては、出力端子に流し込む電流を決定する流し込み側電流源トランジスタと出力端子との間に接続される第1の流し込み側スイッチトランジスタにより、第1の流し込み側制御信号に応じて、流し込み側電流源トランジスタに電流が流され、第1の流し込み側スイッチトランジスタと出力端子との間に接続される第1の流し込み側カスコードトランジスタと、第1の流し込み側スイッチトランジスタとの間に接続される第1の流し込み側電荷注入放出手段により、第1の流し込み側制御信号の反転信号に応じて、交流的に電荷が注入または放出される。第1の流し込み側スイッチトランジスタが、流し込み側電流源トランジスタに電流を流さない場合、流し込み側電流源トランジスタと第1の電位の間に接続される流し込み側電流供給経路の流し込み側スイッチトランジスタにより、第2の流し込み側制御信号に応じて、流し込み側電流源トランジスタに電流が流される。
【0071】
また、出力端子から引き込む電流を決定する引き込み側電流源トランジスタと出力端子の間に接続される第1の引き込み側スイッチトランジスタにより、第1の引き込み側制御信号に応じて、引き込み側電流源トランジスタに電流が流され、第1の引き込み側スイッチトランジスタと出力端子との間に接続される第1の引き込み側カスコードトランジスタと、第1の引き込み側スイッチトランジスタとの間に接続される第1の引き込み側電荷注入放出手段により、第1の引き込み側制御信号の反転信号に応じて、交流的に電荷が注入または放出される。第1の引き込み側スイッチトランジスタが、引き込み側電流源トランジスタに電流を流さない場合、引き込み側電流源トランジスタと第2の電位の間に接続される引き込み側電流供給経路の第2の引き込み側スイッチトランジスタにより、第2の引き込み側制御信号に応じて、引き込み側電流源トランジスタに電流が流される。
【0072】
本発明の第4の側面においては、複数の電流制御回路が並列に接続される。そして、各電流制御回路では、出力端子に流し込む電流を決定する流し込み側電流源トランジスタと、流し込み側電流源トランジスタと出力端子の間に接続される第1の流し込み側スイッチトランジスタにより、流し込み側制御信号に応じて、流し込み側電流源トランジスタに電流が流され、第1の流し込み側スイッチトランジスタと出力端子との間に接続される流し込み側カスコードトランジスタと、第1の流し込み側スイッチトランジスタとの間に接続される流し込み側電荷注入放出手段により、流し込み側制御信号の反転信号に応じて、交流的に電荷が注入または放出される。第1の流し込み側スイッチトランジスタが、流し込み側電流源トランジスタに電流を流さない場合、流し込み側電流源トランジスタと所定の電位の間に接続される流し込み側電流供給経路の第2の流し込み側スイッチトランジスタにより、流し込み側制御信号の反転信号に応じて、流し込み側電流源トランジスタに電流が流される。
【0073】
本発明の第5の側面においては、複数の電流制御回路が並列に接続される。そして、各電流制御回路では、出力端子から引き込む電流を決定する引き込み側電流源トランジスタと出力端子の間に接続される第1の引き込み側スイッチトランジスタにより、引き込み側制御信号に応じて、引き込み側電流源トランジスタに電流が流され、第1の引き込み側スイッチトランジスタと出力端子との間に接続される引き込み側カスコードトランジスタと、第1の引き込み側スイッチトランジスタとの間に接続される引き込み側電荷注入放出手段により、引き込み側制御信号の反転信号に応じて、交流的に電荷が注入または放出される。第1の引き込み側スイッチトランジスタが、引き込み側電流源トランジスタに電流を流さない場合、引き込み側電流源トランジスタと所定の電位の間に接続される引き込み側電流供給経路の第2の引き込み側スイッチトランジスタにより、引き込み側制御信号の反転信号に応じて、引き込み側電流源トランジスタに電流が流される。
【0074】
本発明の第6の側面においては、複数の電流制御回路を並列に接続される。各電流制御回路では、出力端子に流し込む電流を決定する流し込み側電流源トランジスタと出力端子との間に接続される第1の流し込み側スイッチトランジスタにより、第1の流し込み側制御信号に応じて、流し込み側電流源トランジスタに電流が流され、第1の流し込み側スイッチトランジスタと出力端子との間に接続される流し込み側カスコードトランジスタと、第1の流し込み側スイッチトランジスタとの間に接続される流し込み側電荷注入放出手段により、第1の流し込み側制御信号の反転信号に応じて、交流的に電荷が注入または放出される。第1の流し込み側スイッチトランジスタが、流し込み側電流源トランジスタに電流を流さない場合、流し込み側電流源トランジスタと第1の電位の間に接続される流し込み側電流供給経路の第2の流し込み側スイッチトランジスタにより、第2の流し込み側制御信号に応じて、流し込み側電流源トランジスタに電流が流される。
【0075】
また、出力端子から引き込む電流を決定する引き込み側電流源トランジスタと出力端子の間に接続される第1の引き込み側スイッチトランジスタにより、第1の引き込み側制御信号に応じて、引き込み側電流源トランジスタに電流が流され、第1の引き込み側スイッチトランジスタと出力端子との間に接続される引き込み側カスコードトランジスタと、第1の引き込み側スイッチトランジスタとの間に接続される引き込み側電荷注入放出手段により、引き込み側制御信号の反転信号に応じて、交流的に電荷が注入または放出され、第1の引き込み側スイッチトランジスタが、引き込み側電流源トランジスタに電流を流さない場合、引き込み側電流源トランジスタと第2の電位の間に接続される引き込み側電流供給経路の第2の引き込み側スイッチトランジスタにより、第2の引き込み側制御信号に応じて、引き込み側電流源トランジスタに電流が流される。
【発明の効果】
【0076】
以上のように、本発明の第1の側面乃至第3の側面によれば、簡単な回路構成で、高速動作と、出力電流のグリッチの低下を実現することができる。
【発明を実施するための最良の形態】
【0077】
以下に本発明の実施の形態を説明するが、本発明の構成要件と、明細書又は図面に記載の実施の形態との対応関係を例示すると、次のようになる。この記載は、本発明をサポートする実施の形態が、明細書又は図面に記載されていることを確認するためのものである。従って、明細書又は図面中には記載されているが、本発明の構成要件に対応する実施の形態として、ここには記載されていない実施の形態があったとしても、そのことは、その実施の形態が、その構成要件に対応するものではないことを意味するものではない。逆に、実施の形態が構成要件に対応するものとしてここに記載されていたとしても、そのことは、その実施の形態が、その構成要件以外の構成要件には対応しないものであることを意味するものでもない。
【0078】
本発明の第1の側面の電流制御回路(例えば、図8のチャージポンプ200)は、
出力端子に流し込む電流を決定する流し込み側電流源トランジスタ(例えば、図8の電流源トランジスタ211)と、
前記流し込み側電流源トランジスタと前記出力端子の間に接続され、流し込み側制御信号(例えば、xUP信号)に応じて、前記流し込み側電流源トランジスタに電流を流す第1の流し込み側スイッチトランジスタ(例えば、図8のスイッチトランジスタ221)と、
前記第1の流し込み側スイッチトランジスタと前記出力端子との間に接続される第1の流し込み側カスコードトランジスタ(例えば、図8のカスコードトランジスタ231)と、
前記第1の流し込み側カスコードトランジスタと、前記第1の流し込み側スイッチトランジスタとの間に接続され、前記流し込み側制御信号の反転信号(例えば、UP信号)に応じて、交流的に電荷を注入または放出する第1の流し込み側電荷注入放出手段(例えば、図8の容量241)と、
前記流し込み側電流源トランジスタと所定の電位の間に接続され、前記第1の流し込み側スイッチトランジスタが、前記流し込み側電流源トランジスタに電流を流さない場合、前記流し込み側電流源トランジスタに電流を供給する流し込み側電流供給経路(例えば、図8の矢印Bが示す経路)と
を備え、
前記流し込み側電流供給経路は、
前記流し込み側制御信号の反転信号に応じて、前記流し込み側電流源トランジスタに電流を流す第2の流し込み側スイッチトランジスタ(例えば、図8のスイッチトランジスタ223)
を備える。
【0079】
本発明の第1の側面の電流制御回路は、
前記流し込み側電流供給経路は、
前記第2の流し込み側スイッチトランジスタと前記所定の電位との間に接続される第2の流し込み側カスコードトランジスタ(例えば、図8のカスコードトランジスタ233)と、
前記第2の流し込み側カスコードトランジスタと、前記第2の流し込み側スイッチトランジスタとの間に接続され、前記流し込み側制御信号に応じて、交流的に電荷を注入または放出する第2の流し込み側電荷注入放出手段(例えば、図8の容量243)と
をさらに備える。
【0080】
本発明の第2の側面の電流制御回路(例えば、図8のチャージポンプ200)は、
出力端子(例えば、図8の端子255)から引き込む電流を決定する引き込み側電流源トランジスタ(例えば、図8の電流源トランジスタ212)と、
前記引き込み側電流源トランジスタと前記出力端子の間に接続され、引き込み側制御信号(例えば、DN信号)に応じて、前記引き込み側電流源トランジスタに電流を流す第1の引き込み側スイッチトランジスタ(例えば、図8のスイッチトランジスタ222)と、
前記第1の引き込み側スイッチトランジスタと前記出力端子との間に接続される第1の引き込み側カスコードトランジスタ(例えば、図8のカスコードトランジスタ232)と、
前記第1の引き込み側カスコードトランジスタと、前記第1の引き込み側スイッチトランジスタとの間に接続され、前記引き込み側制御信号の反転信号(例えば、xDN信号)に応じて、交流的に電荷を注入または放出する第1の引き込み側電荷注入放出手段(例えば、図8の容量242)と、
前記引き込み側電流源トランジスタと所定の電位の間に接続され、前記第1の引き込み側スイッチトランジスタが、前記引き込み側電流源トランジスタに電流を流さない場合、前記引き込み側電流源トランジスタに電流を供給する引き込み側電流供給経路(例えば、図8の矢印Dが示す経路)と
を備え、
前記引き込み側電流供給経路は、
前記引き込み側制御信号の反転信号に応じて、前記引き込み側電流源トランジスタに電流を流す第2の引き込み側スイッチトランジスタ(例えば、図8のスイッチトランジスタ224)
を備える。
【0081】
本発明の第2の側面の電流制御回路においては、
前記引き込み側電流供給経路は、
前記第2の引き込み側スイッチトランジスタと前記所定の電位との間に接続される第2の引き込み側カスコードトランジスタ(例えば、図8のカスコードトランジスタ234)と、
前記第2の引き込み側カスコードトランジスタと、前記第2の引き込み側スイッチトランジスタとの間に接続され、前記引き込み側制御信号に応じて、交流的に電荷を注入または放出する第2の引き込み側電荷注入放出手段(例えば、図8の容量244)と
をさらに備える。
【0082】
本発明の第3の側面の電流制御回路(例えば、図8のチャージポンプ200)は、 出力端子に流し込む電流を決定する流し込み側電流源トランジスタ(例えば、図8の電流源トランジスタ211)と、
前記流し込み側電流源トランジスタと前記出力端子との間に接続され、第1の流し込み側制御信号に応じて、前記流し込み側電流源トランジスタに電流を流す第1の流し込み側スイッチトランジスタ(例えば、図8のスイッチトランジスタ221)と、
前記第1の流し込み側スイッチトランジスタと前記出力端子との間に接続される第1の流し込み側カスコードトランジスタ(例えば、図8のカスコードトランジスタ231)と、
前記第1の流し込み側カスコードトランジスタと、前記第1の流し込み側スイッチトランジスタとの間に接続され、前記第1の流し込み側制御信号の反転信号に応じて、交流的に電荷を注入または放出する第1の流し込み側電荷注入放出手段(例えば、図8の容量241)と、
前記流し込み側電流源トランジスタと第1の電位の間に接続され、前記第1の流し込み側スイッチトランジスタが、前記流し込み側電流源トランジスタに電流を流さない場合、前記流し込み側電流源トランジスタに電流を供給する流し込み側電流供給経路(例えば、図8の矢印Bが示す経路)と、
前記出力端子から引き込む電流を決定する引き込み側電流源トランジスタ(例えば、図8の電流源トランジスタ212)と、
前記引き込み側電流源トランジスタと前記出力端子の間に接続され、第1の引き込み側制御信号に応じて、前記引き込み側電流源トランジスタに電流を流す第1の引き込み側スイッチトランジスタ(例えば、図8のスイッチトランジスタ222)と、
前記第1の引き込み側スイッチトランジスタと前記出力端子との間に接続される第1の引き込み側カスコードトランジスタ(例えば、図8のカスコードトランジスタ232)と、
前記第1の引き込み側カスコードトランジスタと、前記第1の引き込み側スイッチトランジスタとの間に接続され、前記第1の引き込み側制御信号の反転信号に応じて、交流的に電荷を注入または放出する第1の引き込み側電荷注入放出手段(例えば、図8の容量242)と、
前記引き込み側電流源トランジスタと第2の電位の間に接続され、前記第1の引き込み側スイッチトランジスタが、前記引き込み側電流源トランジスタに電流を流さない場合、前記引き込み側電流源トランジスタに電流を供給する引き込み側電流供給経路(例えば、図8の矢印Dが示す経路)と
を備え、
前記流し込み側電流供給経路は、
前記第2の流し込み側制御信号に応じて、前記流し込み側電流源トランジスタに電流を流す第2の流し込み側スイッチトランジスタ(例えば、図8のスイッチトランジスタ223)
を備え、
前記引き込み側電流供給経路は、
前記第2の引き込み側制御信号に応じて、前記引き込み側電流源トランジスタに電流を流す第2の引き込み側スイッチトランジスタ(例えば、図8のスイッチトランジスタ224)
を備える。
【0083】
本発明の第3の側面の電流制御回路においては、
前記流し込み側電流供給経路は、
前記第2の流し込み側スイッチトランジスタと前記第1の電位との間に接続される第2の流し込み側カスコードトランジスタ(例えば、図8のカスコードトランジスタ233)と、
前記第2の流し込み側カスコードトランジスタと、前記第2の流し込み側スイッチトランジスタとの間に接続され、前記第2の流し込み側制御信号の反転信号に応じて、交流的に電荷を注入または放出する第2の流し込み側電荷注入放出手段(例えば、図8の容量243)と
を備え、
前記引き込み側電流供給経路は、
前記第2の引き込み側スイッチトランジスタと前記第2の電位との間に接続される第2の引き込み側カスコードトランジスタ(例えば、図8のカスコードトランジスタ234)と、
前記第2の引き込み側カスコードトランジスタと、前記第2の引き込み側スイッチトランジスタとの間に接続され、前記第2の引き込み側制御信号の反転信号に応じて、交流的に電荷を注入または放出する第2の引き込み側電荷注入放出手段(例えば、図8の容量244)と
を備える。
【0084】
本発明の第3の側面の電流制御回路は、
前記第1の流し込み側スイッチトランジスタが、前記流し込み側電流源トランジスタに電流を流さず、かつ、前記第1の引き込み側スイッチトランジスタが、前記引き込み側電流源トランジスタに電流を流さない場合、前記流し込み側電流源トランジスタと前記引き込み側電流源トランジスタに電流を供給する共通電流供給経路(例えば、図15の矢印Nが示す経路)
をさらに備える。
【0085】
本発明の第3の側面の電流制御回路においては、
前記第1の流し込み側スイッチトランジスタが、前記流し込み側電流源トランジスタに電流を流さず、かつ、前記第1の引き込み側スイッチトランジスタが、前記引き込み側電流源トランジスタに電流を流さない場合、前記流し込み側電流源トランジスタと前記引き込み側電流源トランジスタに電流を供給する共通電流供給経路(例えば、図15の矢印Nが示す経路)
をさらに備え、
前記共通電流供給経路は、
前記流し込み側電流源トランジスタと前記引き込み側電流源トランジスタの間に接続され、共通制御信号(例えば、xB信号)に応じて、前記流し込み側電流源トランジスタに電流を流す第1の共通スイッチトランジスタ(例えば、図15のスイッチトランジスタ501)と、
前記第1の共通スイッチトランジスタと前記引き込み側電流源トランジスタとの間に接続される第1の共通カスコードトランジスタ(例えば、図15のカスコードトランジスタ511)と、
前記第1の共通カスコードトランジスタと、前記第1の共通スイッチトランジスタとの間に接続され、前記共通制御信号の反転信号(例えば、B信号)に応じて、交流的に電荷を注入または放出する第1の共通電荷注入放出手段(例えば、図15の容量接続トランジスタ521)と、
前記引き込み側電流源トランジスタと前記第1の共通カスコードトランジスタの間に接続され、前記共通制御信号の反転信号に応じて、前記引き込み側電流源トランジスタに電流を流す第2の共通スイッチトランジスタ(例えば、図15のスイッチトランジスタ502)と、
前記第2の共通スイッチトランジスタと前記第1の共通カスコードトランジスタの間に接続される第2の共通カスコードトランジスタ(例えば、図15のカスコードトランジスタ512)と、
前記第2の共通カスコードトランジスタと、前記第2の共通スイッチトランジスタとの間に接続され、前記共通制御信号に応じて、交流的に電荷を注入または放出する第2の共通電荷注入放出手段(例えば、図15の容量接続トランジスタ522)と
を備える。
【0086】
本発明の第4の側面の電流制御回路は、
並列に接続された複数の電流制御回路(例えば、図20の電流源セル811−1乃至811−6、電流源セル821−1乃至821−4)を備える電流制御装置(例えば、図20のIDAC703)において、
各電流制御回路は、
出力端子(例えば、図21の端子255)に流し込む電流を決定する流し込み側電流源トランジスタ(例えば、図21の電流源トランジスタ211)と、
前記流し込み側電流源トランジスタと前記出力端子の間に接続され、流し込み側制御信号(例えば、xUP信号)に応じて、前記流し込み側電流源トランジスタに電流を流す第1の流し込み側スイッチトランジスタ(例えば、図21のスイッチトランジスタ221)と、
前記第1の流し込み側スイッチトランジスタと前記出力端子との間に接続される流し込み側カスコードトランジスタ(例えば、図21のカスコードトランジスタ231)と、
前記流し込み側カスコードトランジスタと、前記第1の流し込み側スイッチトランジスタとの間に接続され、前記流し込み側制御信号の反転信号に応じて、交流的に電荷を注入または放出する流し込み側電荷注入放出手段(例えば、図21の容量241)と、
前記流し込み側電流源トランジスタと所定の電位の間に接続され、前記第1の流し込み側スイッチトランジスタが、前記流し込み側電流源トランジスタに電流を流さない場合、前記流し込み側電流源トランジスタに電流を供給する流し込み側電流供給経路(例えば、図21の経路Bが示す経路)と
を備え、
前記流し込み側電流供給経路は、
前記流し込み側制御信号の反転信号に応じて、前記流し込み側電流源トランジスタに電流を流す第2の流し込み側スイッチトランジスタ(例えば、図21のスイッチトランジスタ223)
を備える。
【0087】
本発明の第5の側面の電流制御装置は、
並列に接続された複数の電流制御回路(例えば、図22の電流源セル850)を備える電流制御装置(例えば、図20のIDAC703)において、
各電流制御回路は、
出力端子(例えば、図22の端子255)から引き込む電流を決定する引き込み側電流源トランジスタ(例えば、図22の電流源トランジスタ212)と、
前記引き込み側電流源トランジスタと前記出力端子の間に接続され、引き込み側制御信号(例えば、DN信号)に応じて、前記引き込み側電流源トランジスタに電流を流す第1の引き込み側スイッチトランジスタ(例えば、図22のスイッチトランジスタ222)と、
前記第1の引き込み側スイッチトランジスタと前記出力端子との間に接続される引き込み側カスコードトランジスタ(例えば、図22のカスコードトランジスタ232)と、
前記引き込み側カスコードトランジスタと、前記第1の引き込み側スイッチトランジスタとの間に接続され、前記引き込み側制御信号の反転信号に応じて、交流的に電荷を注入または放出する引き込み側電荷注入放出手段(例えば、図22の容量242)と、
前記引き込み側電流源トランジスタと所定の電位の間に接続され、前記第1の引き込み側スイッチトランジスタが、前記引き込み側電流源トランジスタに電流を流さない場合、前記引き込み側電流源トランジスタに電流を供給する引き込み側電流供給経路(例えば、図22の矢印Dが示す経路)と
を備え、
前記引き込み側電流供給経路は、
前記引き込み側制御信号の反転信号に応じて、前記引き込み側電流源トランジスタに電流を流す第2の引き込み側スイッチトランジスタ(例えば、図22のスイッチトランジスタ224)
を備える。
【0088】
本発明の第6の側面の電流制御装置は、
並列に接続された複数の電流制御回路(例えば、図18のチャージポンプ620−1乃至620−n)を備える電流制御装置(例えば、図18の電流源615)において、
各電流制御回路は、
出力端子に流し込む電流を決定する流し込み側電流源トランジスタ(例えば、図18のチャージポンプ620−1乃至620−nの電流源トランジスタ211)と、
前記流し込み側電流源トランジスタと前記出力端子との間に接続され、第1の流し込み側制御信号に応じて、前記流し込み側電流源トランジスタに電流を流す第2のスイッチトランジスタ(例えば、図18のチャージポンプ620−1乃至620−nのスイッチトランジスタ221)と、
前記第1の流し込み側スイッチトランジスタと前記出力端子との間に接続される流し込み側カスコードトランジスタ(例えば、図18のチャージポンプ620−1乃至620−nのカスコードトランジスタ231)と、
前記流し込み側カスコードトランジスタと、前記第1の流し込み側スイッチトランジスタとの間に接続され、前記第1の流し込み側制御信号の反転信号に応じて、交流的に電荷を注入または放出する流し込み側電荷注入放出手段(例えば、図18のチャージポンプ620−1乃至620−nの容量241)と、
前記流し込み側電流源トランジスタと第1の電位の間に接続され、前記第1の流し込み側スイッチトランジスタが、前記流し込み側電流源トランジスタに電流を流さない場合、前記流し込み側電流源トランジスタに電流を供給する流し込み側電流供給経路(例えば、図18のチャージポンプ620−1乃至620−nの矢印Bが示す経路)と
出力端子(例えば、図18の端子635)から引き込む電流を決定する引き込み側電流源トランジスタ(例えば、図18のチャージポンプ620−1乃至620−nの電流源トランジスタ212)と、
前記引き込み側電流源トランジスタと前記出力端子の間に接続され、第1の引き込み側制御信号に応じて、前記引き込み側電流源トランジスタに電流を流す第1の引き込み側スイッチトランジスタ(例えば、図18のチャージポンプ620−1乃至620−nのスイッチトランジスタ222)と、
前記第1の引き込み側スイッチトランジスタと前記出力端子との間に接続される第1の引き込み側カスコードトランジスタ(例えば、図18のチャージポンプ620−1乃至620−nのカスコードトランジスタ232)と、
前記引き込み側カスコードトランジスタと、前記第1の引き込み側スイッチトランジスタとの間に接続され、前記第1の引き込み側制御信号の反転信号(例えば、xDN信号)に応じて、交流的に電荷を注入または放出する引き込み側電荷注入放出手段(例えば、図18のチャージポンプ620−1乃至620−nの容量242)と、
前記引き込み側電流源トランジスタと第2の電位の間に接続され、前記第1の引き込み側スイッチトランジスタが、前記引き込み側電流源トランジスタに電流を流さない場合、前記引き込み側電流源トランジスタに電流を供給する引き込み側電流供給経路(例えば、図18のチャージポンプ620−1乃至620−nの矢印Dが示す経路)とを備え、
前記流し込み側電流供給経路は、
前記第2の流し込み側制御信号に応じて、前記流し込み側電流源トランジスタに電流を流す第2の流し込み側スイッチトランジスタ(例えば、図18のチャージポンプ620−1乃至620−nのスイッチトランジスタ223)
を備え、
前記引き込み側電流供給経路は、
前記第2の引き込み側制御信号に応じて、前記引き込み側電流源トランジスタに電流を流す第2の引き込み側スイッチトランジスタ(例えば、図18のチャージポンプ620−1乃至620−nのスイッチトランジスタ224)
を備える。
【0089】
以下、本発明を適用した具体的な実施の形態について、図面を参照しながら詳細に説明する。
【0090】
図8は、本発明を適用したチャージポンプの第1の実施の形態の構成例を示す図である。
【0091】
図8のチャージポンプ200は、電源201および202、電流源トランジスタ211および212、スイッチトランジスタ221乃至224、カスコードトランジスタ231乃至234、容量241乃至244、並びに端子251乃至263により構成される。
【0092】
図8の電源201は、pMOSトランジスタである電流源トランジスタ211のソースに接続し、電流源トランジスタ211のゲートは端子251に接続する。電流源トランジスタ211のドレインは、pMOSトランジスタであるスイッチトランジスタ221および223のソースと接続し、スイッチトランジスタ221のゲートは端子252に接続する。スイッチトランジスタ221のドレインは、容量241の一端と、pMOSトランジスタであるカスコードトランジスタ231のソースに接続し、容量241の他端は端子253に接続する。
【0093】
カスコードトランジスタ231のゲートは、端子254に接続し、ソースは、端子255と、nMOSトランジスタであるカスコードトランジスタ232のドレインに接続する。カスコードトランジスタ232のゲートは、端子256に接続し、ソースは容量242の一端と、nMOSトランジスタであるスイッチトランジスタ222のドレインに接続する。容量242の他端は端子257に接続し、スイッチトランジスタ222のソースは、nMOSトランジスタである電流源トランジスタ212とスイッチトランジスタ224のソースに接続する。電流源トランジスタ212のゲートは端子259に接続し、ソースは接地される。
【0094】
また、スイッチトランジスタ223のゲートは、端子260に接続し、ドレインは容量243の一端と、pMOSトランジスタであるカスコードトランジスタ233のソースに接続する。容量243の他端は端子261に接続し、カスコードトランジスタ233のゲートは、端子254に接続する。カスコードトランジスタ233のドレインは接地される。
【0095】
一方、電源202は、nMOSトランジスタであるカスコードトランジスタ234のドレインに接続し、カスコードトランジスタ234のゲートは端子256に接続する。カスコードトランジスタ234のソースは容量244の一端と、nMOSトランジスタであるスイッチトランジスタ224のドレインに接続し、容量244の他端は端子262と接続する。スイッチトランジスタ224のゲートは端子263に接続する。
【0096】
端子251,254,256,259には、それぞれ、バイアス電圧Vbsp、Vbcasp,Vbcasn,Vbsnが入力される。電流源トランジスタ211と212は、端子251または259からゲートにバイアス電圧VbspまたはVbsnが入力されたとき、電流Icpを流すように動作する。また、カスコードトランジスタ231乃至234は、端子254または256からゲートにバイアス電圧VbcaspまたはVbcasnが入力されたとき動作する。
【0097】
また、端子252と261,253と260,257と263,258と262には、それぞれ、xUP信号、UP信号、xDN信号、DN信号が入力される。
【0098】
以上のように、チャージポンプ200では、AC的に電荷の注入と放出が可能な容量241乃至244が、スイッチトランジスタ221乃至224と、カスコードトランジスタ231乃至234の間に設けられている。
【0099】
次に、チャージポンプ200の動作について説明する。
【0100】
まず最初に、チャージポンプ200が端子255から出力される出力電流Ioutをゼロにする電流ゼロ動作を行う場合について説明する。この場合、UP信号とDN信号の両方がHレベル信号であるか、または、両方がLレベル信号である。即ち、スイッチトランジスタ221と222がオンにされ、スイッチトランジスタ223と224がオフにされるか、または、スイッチトランジスタ221と222がオフにされ、スイッチトランジスタ223と224がオンにされる。
【0101】
スイッチトランジスタ221と222がオンにされ、スイッチトランジスタ223と224がオフにされる場合、電源201からの電流Icpは、図8の矢印Aが示す経路で、即ち電流源トランジスタ211、スイッチトランジスタ223、カスコードトランジスタ231、カスコードトランジスタ232、スイッチトランジスタ222、および電流源トランジスタ212を介して、アースに出力される。従って、出力電流Ioutはゼロになる。
【0102】
スイッチトランジスタ221と222がオフにされ、スイッチトランジスタ223と224がオンにされる場合、電源201からの電流Icpは、図8の矢印Bが示す経路で、即ち電流源トランジスタ211、スイッチトランジスタ223、およびカスコードトランジスタ233を介して、アースに出力され、電源202からの電流Icpは、図8の矢印Dが示す経路で、即ちカスコードトランジスタ234、スイッチトランジスタ224、および電流源トランジスタ212を介して、アースに出力される。従って、出力電流Ioutはゼロになる。
【0103】
次に、チャージポンプ200が、端子255に出力電流Ioutを流し込む流し込み動作を行う場合について説明する。この場合、UP信号は、H(High)レベル信号であり、DN信号はLレベル信号である。即ち、スイッチトランジスタ221と224はオンにされ、スイッチトランジスタ222と223はオンにされる。従って、電源201からの電流Icpは、矢印Cが示す経路で、即ち電流源トランジスタ211、スイッチトランジスタ221、およびカスコードトランジスタ231を介して、端子255に供給され、出力電流Ioutとして出力される。
【0104】
また、このとき、電源202からの電流Icpが、矢印Dが示す経路で出力されるので、電流源トランジスタ212は動作を維持することができる。
【0105】
最後に、チャージポンプ200が、端子255から電流を引き込む引き込み動作を行う場合について説明する。この場合、UP信号は、Lレベル信号であり、DN信号はHレベル信号である。即ち、スイッチトランジスタ221と224はオフにされ、スイッチトランジスタ222と223はオンにされる。従って、端子255からの電流Icpが、矢印Eが示す経路で、即ちカスコードトランジスタ232、スイッチトランジスタ222、および電流源トランジスタ212を介して、アースに出力される。
【0106】
また、このとき、電源201からの電流Icpが、矢印Aが示す経路で出力されるので、電流源トランジスタ211は動作を維持することができる。
【0107】
以上のように、図8のチャージポンプ50は、常に電流源トランジスタ211と212を介した電流の経路が設けられるカレントステアリング方式のチャージポンプであり、すべての電流源トランジスタ211と212は常に飽和領域での動作を維持しているため、チャージポンプ200を高速で動作することができる。
【0108】
また、電流源トランジスタ211(212)とカスコードトランジスタ231(232,233,234)の間にスイッチトランジスタ221(222,223,224)を配置することで、スイッチトランジスタ221(222,223,224)のカップリング容量を介して、UP信号、xUP信号、DN信号、およびxDN信号を入力するスイッチ制御回路(後述する図13)から各状態遷移時に注入されるフィードスルー電荷によるグリッチなどの出力電流Ioutへの影響を抑制することができる。
【0109】
さらに、すべての電流源トランジスタ211と212が、カスコード構成となっていることにより、電流ゼロ動作の状態から引き込み動作の状態に、または引き込み動作の状態から電流ゼロ動作の状態に遷移する際の電流源トランジスタ211と212のドレインの電圧変動を抑制し、図4で説明したブートストラップ方式のチャージポンプのようにオペアンプを用いずに、非常に簡単な構成かつ低消費電流でチャージシェア起因の出力電流Ioutのエラー成分を抑制することができる。
【0110】
図9と図10を用いて、電流ゼロ動作の状態と引き込み動作の状態の間の遷移時に生じるチャージシェアリングについて説明する。
【0111】
図9と図10は、説明の便宜上、図8のチャージポンプ200のうちの、引き込み動作を行う部分を示したものである。
【0112】
なお、図9と図10では、寄生容量も示してある。即ち、カスコードトランジスタ232のソースと容量242の一端を接続する端子311と、アースの間には寄生容量301があり、スイッチトランジスタ222のドレインとゲートの間には寄生容量302がある。スイッチトランジスタ222のゲートとソースの間には寄生容量303があり、カスコードトランジスタ234のソースと容量244の一端を接続する端子312と、アースの間には寄生容量304がある。
【0113】
また、スイッチトランジスタ224のドレインとゲートの間には寄生容量305があり、スイッチトランジスタ224のゲートとソースの間には、寄生容量306がある。また、スイッチトランジスタ222のソース、スイッチトランジスタ224のソース、および電流源トランジスタ212のドレインを接続する端子313と、アースの間には寄生容量307がある。
【0114】
また、以下では、容量242の容量を、容量Caといい、容量244の容量を、容量Cdという。
【0115】
まず最初に、図9を参照して、引き込み動作の状態から電流ゼロ動作に遷移する場合について説明する。この場合、DN信号がHレベル信号からLレベル信号に遷移し、xDN信号がLレベル信号からHレベル信号に遷移する。これにより、図10の矢印P´1乃至U´1が示すように、フィードスルーが生じる。
【0116】
即ち、図10の矢印P´1が示すように、容量242を介して正方向のフィードスルーが生じ、矢印Q´1が示すように、寄生容量302を介して逆方向のフィードスルーが生じる。また、矢印R´1が示すように、寄生容量303を介して逆方向のフィードスルーが生じ、矢印S´1が示すように、容量244を介して逆方向のフィードスルーが生じる。さらに、矢印T´1が示すように、寄生容量305を介して正方向のフィードスルーが生じ、矢印U´1が示すように、寄生容量306を介して正方向のフィードスルーが生じる。
【0117】
従って、端子311では、矢印P´1とQ´1が示すフィードスルーが、端子312では、矢印S´1とT´1が示すフィードスルーが、端子313では、矢印R´1とU´1が示すフィードスルーが、それぞれ互いに打ち消しあう方向に生じる。
【0118】
次に、図10を参照して、電流ゼロ動作の状態から引き込み動作の状態に遷移する場合について説明する。この場合、DN信号がLレベル信号からHレベル信号に遷移し、xDN信号がHレベル信号からLレベル信号に遷移する。これにより、図9の矢印P´1乃至U´1と逆方向の図10の矢印P´2乃至U´2が示すように、フィードスルーが生じる。従って、図9の場合と同様に、端子311乃至313では、フィードスルーが互いに打ち消しあう方向に生じる。
【0119】
次に、図11は、理論的な端子311の電圧Vxと出力電流Ioutを示している。なお、図11のA乃至Cにおいて、横軸は時刻を表している。また、図11のAとBにおいて縦軸は電圧を表し、図11のCにおいて、縦軸は電流を表している。
【0120】
図11のAにおいて、実線はDN信号を表し、点線はxDN信号を表している。図11のAに示すように、DN信号の電圧が0(DN信号がLレベル信号)であるとき、即ち電流ゼロ動作の状態であるとき、図11のBに示すように、端子311の電圧Vxは、およそ、バイアス電圧Vbcasnから、カスコードトランジスタ232および234の閾値電圧Vthnを減算した値(Vbcasn-Vthn)となり、カスコードトランジスタ232はカットオフしている。
【0121】
この後、図11のAに示すように、DN信号の電圧が0からVdd(DN信号がHレベル信号)にされると、即ち電流ゼロ動作の状態から引き込み動作の状態に遷移されると、スイッチトランジスタ222がオンにされ、図11のBに示すように、電圧Vxは、およそ、バイアス電圧Vbcasnから、閾値電圧Vthnを減算し、さらに、矢印P´2が示す逆方向のフィードスルーにより引き抜かれる電荷量Qa2から、矢印Q´2が示す正方向のフィードスルーにより注入される電荷の電荷量Qb2を減算した過剰電荷ΔQ2(=Qa2-Qb2)を、容量Cxで除算した値を減算した値(Vbcasn-Vthn-ΔQ2/Cx)となる。従って、過剰電荷ΔQ2を調整、即ち、容量242を調整することにより、端子131の電圧Vxが、図7に示した従来の場合のように、瞬間的に、バイアス電圧Vbcasnから閾値電圧Vthnを減算した値を超えることを抑制し、電圧Vxが電圧Vxonになるまでの時間、即ち電流ゼロ動作の状態から引き込み動作の状態への遷移時間τ1を短縮させることができる。
【0122】
また、電圧Vxは過剰電荷ΔQ2により変動するので、電圧Vxが、即座に、電流Icpを流すための電圧Vxonに達するように、容量242を調整することにより、遷移時間τ1をさらに短縮させることができる。
【0123】
さらに、この後、図11のAに示すように、DN信号の電圧がVddから0にされる、即ち引き込み動作の状態から電流ゼロ動作の状態に遷移されると、図11のBに示すように、電圧Vxは、およそ、バイアス電圧Vbcasnから、閾値電圧Vthnを減算し、さらに、矢印P´1が示す正方向のフィードスルーにより注入される電荷量Qa1から、矢印Q´1が示す逆方向のフィードスルーにより引き抜かれる電荷の電荷量Qb1を減算した過剰電荷ΔQ1(=Qa1-Qb1)を、容量Cxで除算した値を加算した値(Vbcasn-Vthn+(Qa1-Qb1)/Cx)となる。従って、過剰電荷ΔQ1を調整、即ち、容量242を調整することにより、端子131の電圧Vxが、図7に示した従来の場合のように、瞬間的に、電圧Vxonを下回ることを抑制し、引き込み動作の状態から電流ゼロ動作の状態への遷移時間τ2を短縮させることができる。
【0124】
また、電流ゼロ動作の状態から引き込み動作の状態への遷移の場合と同様に、電圧Vxは過剰電荷ΔQ1により変動するので、電圧Vxが、即座に、バイアス電圧Vbcasnから閾値電圧Vthnを減算した値(Vbcasn-Vthn)に達するように、容量242を調整することにより、遷移時間τ2をさらに短縮させることができる。
【0125】
電圧Vxが、バイアス電圧Vbcasnから閾値電圧Vthnを減算した値(Vbcasn-Vthn)に達した場合、カスコードトランジスタ232はカットオフ状態になる。
【0126】
以上のように、チャージポンプ200では、AC的に電荷の注入と放出が可能な容量242(244)が、カスコードトランジスタ232(234)と、スイッチトランジスタ222(224)の間に設けられ、その容量242(244)には、スイッチトランジスタ222(224)に入力されるDN(xDN)信号の反転信号であるxDN(DN)信号が入力されるので、端子313だけでなく、端子311(312)におけるフィードスルーも相殺することができる。その結果、フィードスルーによるグリッチを完全に防止することができる。
【0127】
また、過剰電荷ΔQ1またはΔQ2を利用して、電圧Vxを積極的に変動させることにより、遷移時間τ1とτ2を短縮することができる。その結果、動作速度の高速化が可能となり、端子255を介して出力電流Ioutを出力する出力先とのチャージシェアを低減することができるため、出力電流Ioutのエラー成分をより低減することができる。
【0128】
よって、チャージポンプ200では、オペアンプなどの複雑な回路を用いずに簡単な回路構成で、高速で電流ゼロ動作と引き込み動作を行い、グリッチが低い出力電流Ioutを端子255から引き込むことが可能となる。即ち、エラー成分が小さく、より理想に近い電流制御を実現することができる。
【0129】
図12は、実際の回路シミュレーションにより得られた端子311の電圧Vx、端子313の電圧Vy、および出力電流Ioutを示している。
【0130】
なお、図12では、端子255から引き込まれる出力電流Ioutの値を負の値とし、端子255に流し込まれる出力電流Ioutの値を正の値としている。また、図12のA乃至Cにおいて、横軸は時刻を表している。さらに、図12のAとBにおいて縦軸は電圧を表し、図12のCにおいて、縦軸は電流を表している。また、図12において、時刻約80n秒に、チャージポンプ50(図3)と200(図8)の状態が、電流ゼロ動作の状態から引き込み動作の状態に遷移され、時刻約85.1n秒に、チャージポンプ50と200の状態が、引き込み動作の状態から電流ゼロ動作の状態に遷移される。
【0131】
図12のAにおいて、波形331は、図3のチャージポンプ50における端子131(図5)の電圧Vxの波形であり、波形332は、図8のチャージポンプ200における端子311(図9)の電圧Vxの波形である。波形331が示すように、電流ゼロ動作の状態から引き込み動作の状態への遷移時に、端子131の電圧Vxは、瞬間的に上昇し、その後緩やかに下降して所望の値となるが、波形332が示すように、端子311の電圧Vxは、即座に下降して所望の値となる。
【0132】
また、波形331が示すように、引き込み動作の状態から電流ゼロ動作の状態への遷移時に、端子131の電圧Vxは、瞬間的に下降し、その後緩やかに上昇して所望の値となるが、波形332が示すように、端子311の電圧Vxは、即座に上昇して所望の値となる。
【0133】
図12のBにおいて、波形333は、チャージポンプ50における端子132の電圧Vyの波形であり、波形334は、チャージポンプ200における端子313の電圧Vyの波形である。波形333が示すように、電流ゼロ動作の状態から引き込み動作の状態への遷移時に、端子132の電圧Vyは、瞬間的に上昇し、その後緩やかに下降して所望の値となるが、波形334が示すように、端子313の電圧Vyは、即座に下降して所望の値となる。
【0134】
また、波形333が示すように、引き込み動作の状態から電流ゼロ動作の状態への遷移時に、端子132の電圧Vyは、瞬間的に下降して上昇し、その後緩やかに下降し、所望の値となるが、波形334が示すように、端子313の電圧Vyは、即座に上昇して所望の値となる。
【0135】
図12のCにおいて、波形335は、チャージポンプ50における出力電流Ioutの波形であり、波形336は、チャージポンプ200における出力電流Ioutの波形である。波形335が示すように、電流ゼロ動作の状態から引き込み動作の状態への遷移時に、チャージポンプ50の出力電流Ioutは、緩やかに下降して所望の値となるが、波形336が示すように、チャージポンプ200の出力電流Ioutは、即座に下降して所望の値となる。
【0136】
また、波形335が示すように、引き込み動作の状態から電流ゼロ動作の状態への遷移時に、チャージポンプ50の出力電流Ioutは、瞬間的に下降して、その後緩やかに上昇して所望の値となるが、波形336が示すように、チャージポンプ336の出力電流Ioutは、即座に上昇して所望の値となる。
【0137】
以上のように、実際の実験においても、チャージポンプ200では、従来のチャージポンプ50に比べて、高速で電流ゼロ動作と引き込み動作を行い、グリッチが低い出力電流Ioutを端子255から引き込むことが可能となる。
【0138】
図9乃至図11では、電流ゼロ動作の状態と引き込み動作の状態の間の遷移時について説明したが、電流ゼロ動作の状態と流し込み動作の状態の間の遷移時についても同様である。即ち、図8で示したように、チャージポンプ200では、AC的に電荷の注入と放出が可能な容量241(243)が、カスコードトランジスタ231(233)と、スイッチトランジスタ221(223)の間に設けられ、その容量241(243)には、スイッチトランジスタ221(223)に入力されるxUP(UP)信号の反転信号であるUP(xUP)信号が入力される。その結果、チャージポンプ200では、高速で電流ゼロ動作と流し込み動作を行い、グリッチが低い出力電流Ioutを端子255に流し込むことが可能となる。
【0139】
なお、図8のチャージポンプ200には、引き込み動作を行う回路(電源202、電流源トランジスタ212、スイッチトランジスタ222および224、カスコードトランジスタ232および234、容量242および244、並びに端子255)と、流し込み動作を行う回路(電流源トランジスタ211、スイッチトランジスタ221および223、カスコードトランジスタ231および233、容量241および243、並びに端子255)の両方が設けられたが、いずれか一方だけが設けられるようにしてもよい。
【0140】
また、図8のチャージポンプ200では、矢印CおよびEが示す出力電流の経路と、矢印BおよびDが示す出力電流を流さない場合の電流の経路の両方に容量241乃至244が設けられたが、矢印CおよびEが示す出力電流の経路の少なくとも一方に容量が設けられれば、容量が1つも設けられない場合に比べて、高速動作と出力電流のグリッチの低下を実現することができる。
【0141】
次に、図13は、DN信号とxDN信号を生成するスイッチ制御回路の構成例を示している。
【0142】
図13のスイッチ制御回路350は、入力端子351、NOTゲート352乃至359、並びに出力端子360および361により構成され、1相のInput信号からタイミングやスルーレートなどのマッチングがとれたDN信号とxDN信号を生成する。このようなスイッチ制御回路については、例えば、T. Toifl, C. Menolfi, P. Buchmann, M. Kossel, T. Morf, R. Reutemann, M. Ruegg, M. L. Schmatz, J. Weiss, “A 0.94-ps-RMS-jitter 0.016-mm/sup 2/ 2.5-GHz multiphase generator PLL with 360/spl deg/ digitally programmable phase shift for 10-Gb/s serial links,” Solid-State Circuits, IEEE Journal of Volume 40, Issue 12, Dec. 2005 pp2700 2712に記載されている。
【0143】
入力端子351は、NOTゲート352の入力端子に接続し、NOTゲート352の出力端子は、NOTゲート353と358の入力端子に接続する。NOTゲート353の出力端子は、NOTゲート354の入力端子に接続し、NOTゲート354の出力端子は、NOTゲート355の出力端子、NOTゲート356の入力端子、および、NOTゲート357の入力端子に接続する。NOTゲート355の入力端子は、NOTゲート356の出力端子、NOTゲート358の出力端子、およびNOTゲート359の入力端子に接続する。NOTゲート357の出力端子は、出力端子360に接続し、NOTゲート359の出力端子は、出力端子361に接続する。
【0144】
入力端子351に入力されるInput信号は、NOTゲート352の入力端子に入力される。NOTゲート352乃至359は、入力端子から入力される信号を反転して、出力端子から出力する。例えば、NOTゲート352は、入力端子351から入力されるInput信号を反転し、その結果得られるxInput信号を出力端子から出力する。このように、NOTゲート352乃至359が、それぞれ、入力端子から入力される信号を反転することにより、出力端子360からInput信号をDN信号として出力すると同時に、出力端子361からxInput信号をxDN信号として出力する。
【0145】
出力端子360から出力されるDN信号は、図8の端子258と262に入力され、出力端子361から出力されるxDN信号は、図8の端子257と263に入力される。
【0146】
以上のように、DN信号とxDN信号のタイミングやスルーレートなどのマッチングをとることにより、出力電流Ioutのグリッチを低くすることができる。
【0147】
なお、説明は省略するが、UP信号とxUP信号を生成するスイッチ制御回路も、図13のスイッチ制御回路350と同様に構成される。
【0148】
図14は、本発明を適用したチャージポンプの第2の実施の形態の構成例を示す図である。
【0149】
図14のチャージポンプ400では、図8のチャージポンプ200の容量241乃至244の代わりに、容量接続トランジスタ411乃至414が設けられている。なお、容量接続トランジスタ411と412は、pMOSトランジスタのソースとドレインを接続することにより構成され、容量接続トランジスタ413と414は、nMOSトランジスタのソースとドレインを接続することにより構成される。
【0150】
容量接続トランジスタ411乃至414は、容量241乃至244と同様に、AC的に電荷の注入と放出が可能なものであり、チャージポンプ400は、チャージポンプ200と同様の動作を行い、同様の効果を得ることができる。
【0151】
図15は、本発明を適用したチャージポンプの第3の実施の形態の構成例を示す図である。
【0152】
図15のチャージポンプ500は、電源201および202、電流源トランジスタ211および212、スイッチトランジスタ221乃至224、カスコードトランジスタ231乃至234、端子251乃至263、容量接続トランジスタ411乃至414、スイッチトランジスタ501および502、カスコードトランジスタ511および512、容量接続トランジスタ521および522、並びに端子531乃至535により構成される。なお、図8や図14と同一のものには同一の符号を付してあり、説明は繰り返しになるので省略する。
【0153】
図15のチャージポンプ500は、図14のチャージポンプ400に、図15の矢印Nが表す電流の経路が追加されたものである。具体的には、電流源トランジスタ211のドレインに、新たにpMOSトランジスタであるスイッチトランジスタ501のソースが接続され、スイッチトランジスタ501のゲートには、xB信号が入力される端子531が接続される。スイッチトランジスタ501のドレインは、pMOSトランジスタにより構成される容量接続トランジスタ521のソースに接続し、容量接続トランジスタ521のゲートは、B信号が入力される端子532に接続する。
【0154】
容量接続トランジスタ521のドレインは、pMOSトランジスタであるカスコードトランジスタ511のソースに接続し、カスコードトランジスタ511のゲートは、端子254に接続する。カスコードトランジスタ511のソースドレインは、端子533と、nMOSトランジスタであるカスコードトランジスタ512のドレインに接続し、カスコードトランジスタ512のゲートは端子256に接続する。カスコードトランジスタ512のソースは、nMOSトランジスタにより構成される容量接続トランジスタ522のドレインに接続し、容量接続トランジスタ522のゲートは、xB信号が入力される端子534に接続する。
【0155】
容量接続トランジスタ522のソースは、nMOSトランジスタであるスイッチトランジスタ502のドレインに接続し、ゲートは、B信号が入力される端子535に接続する。スイッチトランジスタ502のソースは、電流源トランジスタ212のドレインに接続する。
【0156】
B信号がHレベル信号である場合、電源201からの電流Icpは、図15の矢印Nが示す経路で、即ち電流源トランジスタ211、スイッチトランジスタ501、容量接続トランジスタ521、カスコードトランジスタ511、カスコードトランジスタ512、容量接続トランジスタ522、スイッチトランジスタ502、および電流源トランジスタ212を介して、アースに流れる。
【0157】
なお、図15のチャージポンプ500では、端子252にxA信号が、端子253にA信号が、端子257にxD信号が、端子258にD信号が、それぞれ入力される。また、端子260にxC信号が、端子261にC信号が、端子262にxE信号が、端子263にE信号が、それぞれ入力される。
【0158】
次に、図16を参照して、A信号乃至E信号と、UP信号およびDN信号の関係について説明する。
【0159】
図16の表では、上から1行目の各欄に各信号の名前が記述され、上から2行目以降の各欄に各信号のレベルが記述されている。なお、図16では、Hレベル信号を「1」で表し、Lレベル信号を「0」で表す。
【0160】
上から2行目に示すように、UP信号とDN信号がLレベル信号である場合、即ち、電流ゼロ動作を行う場合、B信号がHレベル信号となり、それ以外の信号がLレベル信号となる。従って、電源201からの電流Icpは、図15の矢印Nが示す経路で流れる。このように、UP信号とDN信号がLレベル信号である場合、チャージポンプ500を流れる電流は、1倍の電流Icpとなるため、チャージポンプ500では、図3の矢印AとDが示す経路で2倍の電流Icpが流れるチャージポンプ50や図8の矢印BとDが示す経路で2倍の電流Icpが流れるチャージポンプ200に比べて、消費電流を削減することができる。
【0161】
また、上から3行目に示すように、UP信号がLレベル信号であり、DN信号がHレベル信号である場合、即ち引き込み動作を行う場合、C信号とD信号がHレベル信号となり、それ以外の信号がLレベル信号となる。従って、電源201からの電流Icpが、図15の矢印Bが表す経路で流れ、端子255から出力電流Ioutとして引き込まれた電流Icpが、図15の矢印Eが表す経路で流れる。
【0162】
さらに、上から4行目に示すように、UP信号がHレベル信号であり、DN信号がLレベル信号である場合、即ち流し込み動作を行う場合、A信号とE信号がHレベル信号となり、それ以外の信号がLレベル信号となる。従って、電源201からの電流Icpが、図15の矢印Cが表す経路で、出力電流Ioutとして端子255に流し込まれ、電源202からの電流Icpが、図15の矢印Dが表す経路で流れる。
【0163】
また、上から5行目に示すように、UP信号とDN信号がHレベル信号である場合、即ち電流ゼロ動作を行う場合、A信号とD信号がHレベル信号となり、それ以外の信号がLレベル信号となる。従って、電源201からの電流Icpが、図15の矢印Cが表す経路で、出力電流Ioutとして端子255に流し込まれるとともに、端子255から出力電流Ioutとして引き込まれる電流Icpが、図15の矢印Eが表す経路で流れる。即ち、端子255から出力電流Ioutは流れない。
【0164】
次に、図17は、A信号乃至E信号とxA信号乃至xE信号を生成するスイッチング制御回路の構成例を示している。
【0165】
図17のスイッチング制御回路600は、NOTゲート601,602,607、および608、NORゲート603,605、および609、並びにNANDゲート604,606、および610により構成され、入力されるUP信号およびDN信号、並びに、その反転信号である、xUP信号およびxDN信号から、図16に示した関係のA信号乃至E信号と、その反転信号であるxA信号乃至xE信号を生成する。
【0166】
NOTゲート601の入力端子には、xUP信号が入力され、NOTゲート601は、そのxUP信号を反転し、その結果得られるUP信号をA信号として、出力端子から出力する。NOTゲート602の入力端子には、UP信号が入力され、NOTゲート602は、そのUP信号を反転し、その結果得られるxUP信号をxA信号として、出力端子から出力する。従って、NOTゲート602の出力端子から出力されるxA信号は、NOTゲート601の出力端子から出力されるA信号を反転した信号となる。
【0167】
NORゲート603の2つの入力端子には、UP信号とDN信号が入力され、NORゲート603は、UP信号とDN信号の論理和の反転信号をB信号として、出力端子から出力する。NANDゲート604の2つの入力端子には、UP信号を反転したxUP信号と、DN信号を反転したxDN信号の論理積の反転信号をxB信号として、出力端子から出力する。従って、NANDゲート604の出力端子から出力されるxB信号は、NORゲート603の出力端子から出力されるB信号を反転した信号となる。
【0168】
NORゲート605の2つの入力端子には、UP信号とxDN信号が入力され、NORゲート605は、UP信号とxDN信号の論理和の反転信号をC信号として、出力端子から出力する。NANDゲート606の2つの入力端子には、UP信号を反転したxUP信号と、xDN信号を反転したDN信号の論理積の反転信号をxC信号として、出力端子から出力する。従って、NANDゲート606の出力端子から出力されるxC信号は、NORゲート605の出力端子から出力されるC信号を反転した信号となる。
【0169】
NOTゲート607の入力端子には、xDN信号が入力され、NOTゲート607は、そのxDN信号を反転して得られるDN信号をD信号として、出力端子から出力する。NOTゲート608の入力端子には、DN信号が入力され、NOTゲート608は、そのDN信号を反転して得られるxDN信号をxD信号として、出力端子から出力する。従って、NOTゲート608の出力端子から出力されるxD信号は、NOTゲート607の出力端子から出力されるD信号を反転した信号となる。
【0170】
NORゲート609の2つの入力端子には、xUP信号とDN信号が入力され、NORゲート609は、xUP信号とDN信号の論理和の反転信号をE信号として、出力端子から出力する。NANDゲート610の2つの入力端子には、xUP信号を反転したUP信号と、DN信号を反転したxDN信号の論理積の反転信号をxE信号として、出力端子から出力する。従って、NANDゲート610の出力端子から出力されるxE信号は、NORゲート609の出力端子から出力されるE信号を反転した信号となる。
【0171】
なお、上述したチャージポンプ200,400,または500は、D/Aコンバータの電流源として用いることもできる。
【0172】
図18は、複数のチャージポンプ200を電流源として用いたD/Aコンバータの電流源の構成例を示している。
【0173】
図18の電流源615は、D/Aコンバータに入力されるデータのビット数であるn個のチャージポンプ200を並列に接続することにより構成される。
【0174】
具体的には、電流源615は、チャージポンプ620−1乃至620−n、端子621−1乃至621−n、端子622−1乃至622−n、端子623−1乃至623−n、端子624−1乃至624−n、および端子631乃至635により構成される。
【0175】
チャージポンプ620−1乃至620−nは、それぞれ、チャージポンプ200の端子251乃至263を除いた回路により構成される。チャージポンプ620−1乃至620−nには、それぞれ、D/Aコンバータに入力されるデータの各ビットが割り当てられており、チャージポンプ620−1乃至620−nの出力電流は、それぞれ、チャージポンプ620−1の出力電流の1倍、2倍、4倍、・・・N(=2n-1)倍となっている。
【0176】
なお、以下では、チャージポンプ620−1乃至620−nのそれぞれを特に区別する必要がない場合、それらをまとめてチャージポンプ620という。
【0177】
また、端子621−1乃至621−nは、各チャージポンプ620の端子253および260を共通化したものであり、端子622−1乃至622−nは、各チャージポンプ620の端子252および261を共通化したものである。端子623−1乃至623−nは、各チャージポンプ620の端子258および262を共通化したものであり、端子624−1乃至624−nは、各チャージポンプ620の端子257および263を共通化したものである。
【0178】
なお、以下では、端末621−1乃至621−nのそれぞれを特に区別する必要がない場合、それらをまとめて端末621という。また、同様に、端末622−1乃至622−nを端末622といい、端末623−1乃至623−nを端末623といい、端子624−1乃至624−nを端末624という。
【0179】
電流源615には、D/Aコンバータの制御回路(図示せず)から、D/A変換の対象となるデータの各ビットの値に対応するUP1乃至UPn信号とDN1乃至DNn信号、それらを反転したxUP1乃至xUPn信号とxDN1乃至xDNn信号が入力される。
【0180】
そして、チャージポンプ620の端末621には、UP1乃至UPn信号のうち、そのチャージポンプ620に割り当てられたビットに対応するものが供給され、端末622には、xUP1乃至xUPn信号のうち、そのチャージポンプ620に割り当てられたビットに対応するものが供給される。また、チャージポンプ620の端末623には、DN1乃至DNn信号のうち、そのチャージポンプ620に割り当てられたビットに対応するものが供給され、端末624には、xDN1乃至xDNn信号のうち、そのチャージポンプ620に割り当てられたビットに対応するものが供給される。
【0181】
端子631乃至634は、各チャージポンプ620の端子251,254,256,259をそれぞれ共通化したものであり、端子631乃至634には、D/Aコンバータのバイアス回路(図示せず)から、バイアス電圧Vbsp,Vbcasp,Vbcasn,Vbsnがそれぞれ入力される。
【0182】
端子635は、各チャージポンプ620の端子255を共通化したものである。従って、端子635の出力電流Ioutは、すべてのチャージポンプ620の出力電流を合わせたものとなる。ここで、上述したように、各ビットの値に対応するDN信号とUP信号により出力が制御される各チャージポンプ620の出力電流は、それぞれ異なっているので、その出力電流の合計である、端子635の出力電流Ioutは、D/A変換の対象となるデータに対応するアナログ信号となる。
【0183】
なお、以上では、引き込み動作と流し込み動作の両方を行うチャージポンプ200,400、および500について説明したが、チャージポンプ200や400のうちの引き込み動作を行う回路、または、流し込み動作を行う回路のいずれか一方の回路だけでも使用可能である。
【0184】
例えば、図8に示したチャージポンプ200の流し込み動作を行う回路だけが使用される場合について、以下に説明する。
【0185】
図19は、チャージポンプ200の流し込み動作を行う回路が使用されたデジタルPLLの構成例を示している。なお、このデジタルPLLの構成については、例えば、Fahim, A.M.“A compact, low-power low-jitter digital PLL,”Solid-State Circuits Conference, 2003. ESSCIRC '03. Proceedings of the 29th European 16-18 Sept. 2003 Page(s):101 104に記載されている。
【0186】
図19のデジタルPLL700は、位相比較部701、ループフィルタ部702、IDAC703、ICO(電流制御発振器)704、および分周器705により構成される。
【0187】
位相比較部701は、PFD部711、シフト部712、およびロジック713により構成される。PFD部711は、1ビットのコンパレータとロジック(いずれも図示せず)で構成される。PFD部711は、所定の周波数のクロック信号であるFin信号と、分周器705から入力されるpllout信号をN分周した信号の、周波数および位相の比較を、IDAC703のMSB(Most Significant Bit)からLSB(Least Significant Bit)までの各ビットに対して二分探索的に繰り返し行う。例えば、IDAC703のビット数がnである場合、PFD部711は、そのビット数であるn回分、周波数および位相の比較を行う。
【0188】
そして、PFD部711は、各ビットの位相周波数誤差の大小を表す符号であるINC信号またはDEC信号を、位相周波数誤差情報としてシフト部712に出力する。
【0189】
具体的には、PFD部711は、IDAC703の各ビットに対応する電流源セル(後述する)を動作させたときの位相周波数変動値の1/2を閾値として、位相周波数誤差の符号を判定し、INC信号またはDEC信号を、位相周波数誤差情報としてシフト部712に供給する。
【0190】
シフト部712は、ロジック713の制御により、PFD部711から供給される、IDAC703の各ビットに対応する位相周波数誤差情報を、MSBに対応するものからLSBに対応するものまで、二分探索的にシフトさせる。
【0191】
ロジック713は、シフト部712が位相周波数誤差情報を二分探索的にシフトさせるように、シフト部712を制御する。
【0192】
ループフィルタ部702は、加算器721、係数乗算部722、係数乗算部723、および加算部724から構成され、シフト部712から供給されるデジタル信号をフィルタ処理する。
【0193】
加算器721は、シフト部712から供給されるデジタル信号と、前回出力したデジタル信号を用いて、シフト部712から供給されるデジタル信号を加算する。そして、加算器721は、加算後のデジタル信号を係数乗算部722に供給するとともに、入力としてフィードバックする。係数乗算部722は、加算器721から供給される加算後のデジタル信号に対して、予め記憶している所定の係数K1を乗算し、その結果得られるデジタル信号を加算部724に供給する。即ち、加算器721と係数乗算部722を通る経路は、一般的なループフィルタの容量に対応し、係数K1によってループ定数を調節することができる。
【0194】
係数乗算部723は、シフト部712から供給されるデジタル信号に対して、予め記憶している所定の係数K2を乗算し、その結果得られるデジタル信号を加算部724に供給する。加算部724は、係数乗算部722および723から供給されるデジタル信号を加算し、その結果得られるデジタル信号をIDAC703に供給する。即ち、係数乗算部723を通る経路は、一般的なPLLのループフィルタの抵抗に対応し、係数K2によってループ定数を調節することができる。
【0195】
IDAC703は、図8のチャージポンプ200の流し込み動作を行う回路からなる電流源セル(後述する)により構成される。IDAC703は、ループフィルタ部702の加算部724から出力されるデジタル信号をアナログ電流に変換し、ICO704に出力する。
【0196】
このように、図19のデジタルPLL700では、IDAC703が、図8のチャージポンプ200の流し込み動作を行う回路からなる電流源セルにより構成されるので、ICO704に出力するアナログ電流を低グリッチにすることができる。
【0197】
ところで、ICO704に出力されるアナログ電流がグリッチを持つということは、ICO704から出力されるpllout信号の周波数が瞬間的に変化することを意味し、グリッチにより、pllout信号のジッタの増加、さらにはロックが外れてしまうという問題が発生する。従って、図19のデジタルPLL700では、ICO704に出力されるアナログ電流を低グリッチにすることにより、この問題の発生を抑制することができる。
【0198】
ICO704は、IDAC703から供給されるアナログ電流に応じた発振周波数のクロック信号であるpllout信号を外部に出力するとともに、分周器705に出力する。分周器705は、ICO704から供給されるpllout信号をN分周し、N分周後のpllout信号を位相比較部701のPFD部711にフィードバックする。以上にようにして、ループが構成され、デジタルPLL700は、pllout信号をFin信号に同期した信号にする。
【0199】
図20は、図19のIDAC703の詳細構成例を示している。
【0200】
図20のIDAC703は、上位ビット処理部801と、下位ビット処理部802により構成される。なお、図20では、ループフィルタ部702の加算部724(図19)から出力されるデジタル信号のビット数が10ビットであるものとする。
【0201】
上位ビット処理部801には、加算部724から出力される10ビットのデジタル信号のうちの、上位6ビットのデジタル信号が入力される。上位ビット処理部801は、各ビットが割り当てられた6個の電流源セル811−1乃至811−6が並列に接続されることにより構成される。6個の電流源セル811−1乃至811−6は、それぞれ、図8のチャージポンプ200の流し込み動作を行う回路からなり、割り当てられたビットのデジタル信号に応じて、出力電流を出力する。
【0202】
下位ビット処理部802には、加算部724から出力される10ビットのデジタル信号のうちの、下位4ビットのデジタル信号が入力される。下位ビット処理部802は、各ビットが割り当てられた4個の電流源セル821−1乃至821−4が並列に接続されることにより構成される。4個の電流源セル821−1乃至821−4は、それぞれ、図8のチャージポンプ200の流し込み動作を行う回路からなり、割り当てられたビットのデジタル信号に応じて、出力電流を出力する。
【0203】
上位ビット処理部801の6個の電流源セル811−1乃至811−6のそれぞれから出力される出力電流と、下位ビット処理部802の4個の電流源セル821−1乃至821−4のそれぞれから出力される出力電流は合わせられ、ICO704(図19)に出力される。
【0204】
図21は、図20の電流源セル811−1の詳細構成例を示している。
【0205】
なお、図8と同一のものには同一の符号を付してある。
【0206】
図21に示すように、電流源セル811−1は、図8のチャージポンプ200のうちの、流し込み動作を行う、電源201、電流源トランジスタ211、スイッチングトランジスタ221および223、カスコードトランジスタ231および233、容量241および243、並びに、端子251乃至255、260、および261により構成される回路である。
【0207】
なお、図示は省略するが、図20の他の電流源セル811−2乃至811−6および821−1乃至821−4も、電流源セル811−1と同様に構成される。
【0208】
また、図19では、IDAC703を構成する各電流源セルが、図8のチャージポンプ200の流し込み動作を行う回路により構成されたが、引き込み動作を行う回路により構成されるようにしてもよい。この場合、流し込み動作を行う回路を用いる場合とは、ICO704において発振周波数を変化させるためのアナログ電流の向きを変更させる必要がある。従って、引き込み動作を行う回路を用いる場合、例えば、ICO704を構成するトランジスタが、pMOSトランジスタまたはnMOSトランジスタのうちのいずれか一方から他方に変更される。
【0209】
図22は、図19のIDAC703を構成する各電流源セルが図8のチャージポンプ200の引き込み動作を行う回路により構成される場合の、1つの電流源セルの構成を示している。
【0210】
図22に示すように、電流源セル850は、図8のチャージポンプ200のうちの、引き込み動作を行う、電源202、電流源トランジスタ212、スイッチングトランジスタ222および224、カスコードトランジスタ232および234、容量242および244、並びに、端子255乃至259、262、および263により構成される回路である。
【0211】
なお、上述した説明では、IDAC703を構成する各電流源セルは、図8のチャージポンプ200のうちの、流し込み動作を行う回路または引き込み動作を行う回路のいずれか一方により構成されたが、勿論、図14のチャージポンプ400のうちの、流し込み動作を行う回路または引き込み動作を行う回路のいずれか一方により構成されるようにしてもよい。
【0212】
さらに、上述した説明では、チャージポンプ200,400、および500のカスコードトランジスタ233のドレインは接地され、カスコードトランジスタ234のドレインは電源202に接続されるようにしたが、カスコードトランジスタ233と234のドレインは、端子255の電位と同一の電位に接続されるようにすることもできる。この場合、端子255と、電流源トランジスタ211および212のドレインの電位を確実に同一にすることができるので、チャージシェアによる出力電流のエラー成分を、より確実に改善することができる。
【0213】
また、本発明の実施の形態は、上述した実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において種々の変更が可能である。
【図面の簡単な説明】
【0214】
【図1】従来のチャージポンプを用いたPLL回路の構成の一例を示す図である。
【図2】従来のPLLクロック再生回路の構成の一例を示す図である。
【図3】従来のチャージポンプの構成の一例を示す図である。
【図4】従来のブートストラップ方式のチャージポンプの構成の一例を示す図である。
【図5】従来のチャージポンプのデメリットを説明する図である。
【図6】従来のチャージポンプのデメリットを説明する他の図である。
【図7】電圧Vxと出力電流Ioutを示すグラフである。
【図8】本発明を適用したチャージポンプの第1の実施の形態の構成例を示す図である。
【図9】フィードスルーについて説明する図である。
【図10】フィードスルーについて説明する他の図である。
【図11】理論的な電圧Vxと出力電流Ioutを示すグラフである。
【図12】実際の回路シミュレーションにより得られた電圧Vx、電圧Vy、および出力電流Ioutを示すグラフである。
【図13】DN信号とxDN信号を生成するスイッチ制御回路の構成例を示す図である。
【図14】本発明を適用したチャージポンプの第2の実施の形態の構成例を示す図である。
【図15】本発明を適用したチャージポンプの第3の実施の形態の構成例を示す図である。
【図16】A信号乃至E信号と、UP信号およびDN信号の関係について説明する図である。
【図17】A信号乃至E信号とxA信号乃至xE信号を生成するスイッチング制御回路の構成例を示す図である。
【図18】D/Aコンバータの電流源の構成例を示す図である。
【図19】デジタルPLLの構成例を示す図である。
【図20】図19のIDACの詳細構成例を示す図である。
【図21】図20の電流源セルの詳細構成例を示す図である。
【図22】引き込み動作を行う回路により構成される電流源セルの構成例を示す図である。
【符号の説明】
【0215】
200 チャージポンプ, 211,212 電流源トランジスタ, 221,222 スイッチトランジスタ, 231,232 カスコードトランジスタ, 241,242 容量, 255 端子, 615 電流源, 620−1乃至620−n チャージポンプ, 635 端子, 811−1乃至811−6,821−1乃至821−4,850 電流源セル

【特許請求の範囲】
【請求項1】
出力端子に流し込む電流を決定する流し込み側電流源トランジスタと、
前記流し込み側電流源トランジスタと前記出力端子の間に接続され、流し込み側制御信号に応じて、前記流し込み側電流源トランジスタに電流を流す第1の流し込み側スイッチトランジスタと、
前記第1の流し込み側スイッチトランジスタと前記出力端子との間に接続される第1の流し込み側カスコードトランジスタと、
前記第1の流し込み側カスコードトランジスタと、前記第1の流し込み側スイッチトランジスタとの間に接続され、前記流し込み側制御信号の反転信号に応じて、交流的に電荷を注入または放出する第1の流し込み側電荷注入放出手段と、
前記流し込み側電流源トランジスタと所定の電位の間に接続され、前記第1の流し込み側スイッチトランジスタが、前記流し込み側電流源トランジスタに電流を流さない場合、前記流し込み側電流源トランジスタに電流を供給する流し込み側電流供給経路と
を備え、
前記流し込み側電流供給経路は、
前記流し込み側制御信号の反転信号に応じて、前記流し込み側電流源トランジスタに電流を流す第2の流し込み側スイッチトランジスタ
を備える
電流制御回路。
【請求項2】
前記流し込み側電流供給経路は、
前記第2の流し込み側スイッチトランジスタと前記所定の電位との間に接続される第2の流し込み側カスコードトランジスタと、
前記第2の流し込み側カスコードトランジスタと、前記第2の流し込み側スイッチトランジスタとの間に接続され、前記流し込み側制御信号に応じて、交流的に電荷を注入または放出する第2の流し込み側電荷注入放出手段と
をさらに備える
請求項1に記載の電流制御回路。
【請求項3】
出力端子から引き込む電流を決定する引き込み側電流源トランジスタと、
前記引き込み側電流源トランジスタと前記出力端子の間に接続され、引き込み側制御信号に応じて、前記引き込み側電流源トランジスタに電流を流す第1の引き込み側スイッチトランジスタと、
前記第1の引き込み側スイッチトランジスタと前記出力端子との間に接続される第1の引き込み側カスコードトランジスタと、
前記第1の引き込み側カスコードトランジスタと、前記第1の引き込み側スイッチトランジスタとの間に接続され、前記引き込み側制御信号の反転信号に応じて、交流的に電荷を注入または放出する第1の引き込み側電荷注入放出手段と、
前記引き込み側電流源トランジスタと所定の電位の間に接続され、前記第1の引き込み側スイッチトランジスタが、前記引き込み側電流源トランジスタに電流を流さない場合、前記引き込み側電流源トランジスタに電流を供給する引き込み側電流供給経路と
を備え、
前記引き込み側電流供給経路は、
前記引き込み側制御信号の反転信号に応じて、前記引き込み側電流源トランジスタに電流を流す第2の引き込み側スイッチトランジスタ
を備える
電流制御回路。
【請求項4】
前記引き込み側電流供給経路は、
前記第2の引き込み側スイッチトランジスタと前記所定の電位との間に接続される第2の引き込み側カスコードトランジスタと、
前記第2の引き込み側カスコードトランジスタと、前記第2の引き込み側スイッチトランジスタとの間に接続され、前記引き込み側制御信号に応じて、交流的に電荷を注入または放出する第2の引き込み側電荷注入放出手段と
をさらに備える
請求項3に記載の電流制御回路。
【請求項5】
出力端子に流し込む電流を決定する流し込み側電流源トランジスタと、
前記流し込み側電流源トランジスタと前記出力端子との間に接続され、第1の流し込み側制御信号に応じて、前記流し込み側電流源トランジスタに電流を流す第1の流し込み側スイッチトランジスタと、
前記第1の流し込み側スイッチトランジスタと前記出力端子との間に接続される第1の流し込み側カスコードトランジスタと、
前記第1の流し込み側カスコードトランジスタと、前記第1の流し込み側スイッチトランジスタとの間に接続され、前記第1の流し込み側制御信号の反転信号に応じて、交流的に電荷を注入または放出する第1の流し込み側電荷注入放出手段と、
前記流し込み側電流源トランジスタと第1の電位の間に接続され、前記第1の流し込み側スイッチトランジスタが、前記流し込み側電流源トランジスタに電流を流さない場合、前記流し込み側電流源トランジスタに電流を供給する流し込み側電流供給経路と、
前記出力端子から引き込む電流を決定する引き込み側電流源トランジスタと、
前記引き込み側電流源トランジスタと前記出力端子の間に接続され、第1の引き込み側制御信号に応じて、前記引き込み側電流源トランジスタに電流を流す第1の引き込み側スイッチトランジスタと、
前記第1の引き込み側スイッチトランジスタと前記出力端子との間に接続される第1の引き込み側カスコードトランジスタと、
前記第1の引き込み側カスコードトランジスタと、前記第1の引き込み側スイッチトランジスタとの間に接続され、前記第1の引き込み側制御信号の反転信号に応じて、交流的に電荷を注入または放出する第1の引き込み側電荷注入放出手段と、
前記引き込み側電流源トランジスタと第2の電位の間に接続され、前記第1の引き込み側スイッチトランジスタが、前記引き込み側電流源トランジスタに電流を流さない場合、前記引き込み側電流源トランジスタに電流を供給する引き込み側電流供給経路と
を備え、
前記流し込み側電流供給経路は、
前記第2の流し込み側制御信号に応じて、前記流し込み側電流源トランジスタに電流を流す第2の流し込み側スイッチトランジスタ
を備え、
前記引き込み側電流供給経路は、
前記第2の引き込み側制御信号に応じて、前記引き込み側電流源トランジスタに電流を流す第2の引き込み側スイッチトランジスタ
を備える
電流制御回路。
【請求項6】
前記流し込み側電流供給経路は、
前記第2の流し込み側スイッチトランジスタと前記第1の電位との間に接続される第2の流し込み側カスコードトランジスタと、
前記第2の流し込み側カスコードトランジスタと、前記第2の流し込み側スイッチトランジスタとの間に接続され、前記第2の流し込み側制御信号の反転信号に応じて、交流的に電荷を注入または放出する第2の流し込み側電荷注入放出手段と
を備え、
前記引き込み側電流供給経路は、
前記第2の引き込み側スイッチトランジスタと前記第2の電位との間に接続される第2の引き込み側カスコードトランジスタと、
前記第2の引き込み側カスコードトランジスタと、前記第2の引き込み側スイッチトランジスタとの間に接続され、前記第2の引き込み側制御信号の反転信号に応じて、交流的に電荷を注入または放出する第2の引き込み側電荷注入放出手段と
を備える
請求項5に記載の電流制御回路。
【請求項7】
前記第1の流し込み側スイッチトランジスタが、前記流し込み側電流源トランジスタに電流を流さず、かつ、前記第1の引き込み側スイッチトランジスタが、前記引き込み側電流源トランジスタに電流を流さない場合、前記流し込み側電流源トランジスタと前記引き込み側電流源トランジスタに電流を供給する共通電流供給経路
をさらに備える
請求項5に記載の電流制御回路。
【請求項8】
前記第1の流し込み側スイッチトランジスタが、前記流し込み側電流源トランジスタに電流を流さず、かつ、前記第1の引き込み側スイッチトランジスタが、前記引き込み側電流源トランジスタに電流を流さない場合、前記流し込み側電流源トランジスタと前記引き込み側電流源トランジスタに電流を供給する共通電流供給経路
をさらに備え、
前記共通電流供給経路は、
前記流し込み側電流源トランジスタと前記引き込み側電流源トランジスタの間に接続され、共通制御信号に応じて、前記流し込み側電流源トランジスタに電流を流す第1の共通スイッチトランジスタと、
前記第1の共通スイッチトランジスタと前記引き込み側電流源トランジスタとの間に接続される第1の共通カスコードトランジスタと、
前記第1の共通カスコードトランジスタと、前記第1の共通スイッチトランジスタとの間に接続され、前記共通制御信号の反転信号に応じて、交流的に電荷を注入または放出する第1の共通電荷注入放出手段と、
前記引き込み側電流源トランジスタと前記第1の共通カスコードトランジスタの間に接続され、前記共通制御信号の反転信号に応じて、前記引き込み側電流源トランジスタに電流を流す第2の共通スイッチトランジスタと、
前記第2の共通スイッチトランジスタと前記第1の共通カスコードトランジスタの間に接続される第2の共通カスコードトランジスタと、
前記第2の共通カスコードトランジスタと、前記第2の共通スイッチトランジスタとの間に接続され、前記共通制御信号に応じて、交流的に電荷を注入または放出する第2の共通電荷注入放出手段と
を備える
請求項7に記載の電流制御回路。
【請求項9】
並列に接続された複数の電流制御回路を備える電流制御装置において、
各電流制御回路は、
出力端子に流し込む電流を決定する流し込み側電流源トランジスタと、
前記流し込み側電流源トランジスタと前記出力端子の間に接続され、流し込み側制御信号に応じて、前記流し込み側電流源トランジスタに電流を流す第1の流し込み側スイッチトランジスタと、
前記第1の流し込み側スイッチトランジスタと前記出力端子との間に接続される流し込み側カスコードトランジスタと、
前記流し込み側カスコードトランジスタと、前記第1の流し込み側スイッチトランジスタとの間に接続され、前記流し込み側制御信号の反転信号に応じて、交流的に電荷を注入または放出する流し込み側電荷注入放出手段と、
前記流し込み側電流源トランジスタと所定の電位の間に接続され、前記第1の流し込み側スイッチトランジスタが、前記流し込み側電流源トランジスタに電流を流さない場合、前記流し込み側電流源トランジスタに電流を供給する流し込み側電流供給経路と
を備え、
前記流し込み側電流供給経路は、
前記流し込み側制御信号の反転信号に応じて、前記流し込み側電流源トランジスタに電流を流す第2の流し込み側スイッチトランジスタ
を備える
電流制御装置。
【請求項10】
並列に接続された複数の電流制御回路を備える電流制御装置において、
各電流制御回路は、
出力端子から引き込む電流を決定する引き込み側電流源トランジスタと、
前記引き込み側電流源トランジスタと前記出力端子の間に接続され、引き込み側制御信号に応じて、前記引き込み側電流源トランジスタに電流を流す第1の引き込み側スイッチトランジスタと、
前記第1の引き込み側スイッチトランジスタと前記出力端子との間に接続される引き込み側カスコードトランジスタと、
前記引き込み側カスコードトランジスタと、前記第1の引き込み側スイッチトランジスタとの間に接続され、前記引き込み側制御信号の反転信号に応じて、交流的に電荷を注入または放出する引き込み側電荷注入放出手段と、
前記引き込み側電流源トランジスタと所定の電位の間に接続され、前記第1の引き込み側スイッチトランジスタが、前記引き込み側電流源トランジスタに電流を流さない場合、前記引き込み側電流源トランジスタに電流を供給する引き込み側電流供給経路と
を備え、
前記引き込み側電流供給経路は、
前記引き込み側制御信号の反転信号に応じて、前記引き込み側電流源トランジスタに電流を流す第2の引き込み側スイッチトランジスタ
を備える
電流制御装置。
【請求項11】
並列に接続された複数の電流制御回路を備える電流制御装置において、
各電流制御回路は、
出力端子に流し込む電流を決定する流し込み側電流源トランジスタと、
前記流し込み側電流源トランジスタと前記出力端子との間に接続され、第1の流し込み側制御信号に応じて、前記流し込み側電流源トランジスタに電流を流す第1の流し込み側スイッチトランジスタと、
前記第1の流し込み側スイッチトランジスタと前記出力端子との間に接続される流し込み側カスコードトランジスタと、
前記流し込み側カスコードトランジスタと、前記第1の流し込み側スイッチトランジスタとの間に接続され、前記第1の流し込み側制御信号の反転信号に応じて、交流的に電荷を注入または放出する流し込み側電荷注入放出手段と、
前記流し込み側電流源トランジスタと第1の電位の間に接続され、前記第1の流し込み側スイッチトランジスタが、前記流し込み側電流源トランジスタに電流を流さない場合、前記流し込み側電流源トランジスタに電流を供給する流し込み側電流供給経路と、
出力端子から引き込む電流を決定する引き込み側電流源トランジスタと、
前記引き込み側電流源トランジスタと前記出力端子の間に接続され、第1の引き込み側制御信号に応じて、前記引き込み側電流源トランジスタに電流を流す第1の引き込み側スイッチトランジスタと、
前記第1の引き込み側スイッチトランジスタと前記出力端子との間に接続される引き込み側カスコードトランジスタと、
前記引き込み側カスコードトランジスタと、前記第1の引き込み側スイッチトランジスタとの間に接続され、前記第1の引き込み側制御信号の反転信号に応じて、交流的に電荷を注入または放出する引き込み側電荷注入放出手段と、
前記引き込み側電流源トランジスタと第2の電位の間に接続され、前記第1の引き込み側スイッチトランジスタが、前記引き込み側電流源トランジスタに電流を流さない場合、前記引き込み側電流源トランジスタに電流を供給する引き込み側電流供給経路と
を備え、
前記流し込み側電流供給経路は、
前記第2の流し込み側制御信号に応じて、前記流し込み側電流源トランジスタに電流を流す第2の流し込み側スイッチトランジスタ
を備え、
前記引き込み側電流供給経路は、
前記第2の引き込み側制御信号に応じて、前記引き込み側電流源トランジスタに電流を流す第2の引き込み側スイッチトランジスタ
を備える
電流制御装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate

【図22】
image rotate


【公開番号】特開2009−38468(P2009−38468A)
【公開日】平成21年2月19日(2009.2.19)
【国際特許分類】
【出願番号】特願2007−199225(P2007−199225)
【出願日】平成19年7月31日(2007.7.31)
【出願人】(000002185)ソニー株式会社 (34,172)
【Fターム(参考)】