説明

高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆切削工具

【課題】高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆切削工具を提供する。
【解決手段】表面被覆切削工具の硬質被覆層を、いずれも化学蒸着で形成された上部層と下部層とで構成し、該上部層は1〜15μmの平均層厚を有する酸化アルミニウム層、該下部層は3〜20μmの合計平均層厚を有する密着性Ti化合物層と改質Ti系炭窒化物層とからなり、そして、該改質Ti系炭窒化物層は、2.5〜15μmの平均層厚を有し、組成式:(Ti1−XCr)C1−Y(但し、原子比で、X:0.12〜0.20、Y:0.35〜0.55)を満足し、さらに、該改質Ti系炭窒化物層は、傾斜角度数分布グラフにおいて、0〜10度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0〜10度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の45%以上の割合を占める傾斜角度数分布グラフを示すこと。

【発明の詳細な説明】
【技術分野】
【0001】
この発明は、特に鋼や鋳鉄などの高い発熱を伴う高速切削加工で、硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆切削工具(以下、被覆工具という)に関するものである。
【背景技術】
【0002】
従来、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットで構成された基体(以下、これらを総称して工具基体という)の表面に、
(a)下部層が、いずれも化学蒸着形成された、Tiの炭化物(以下、TiCで示す)層、窒化物(以下、同じくTiNで示す)層、炭窒化物(以下、TiCNで示す)層、炭酸化物(以下、TiCOで示す)層、および炭窒酸化物(以下、TiCNOで示す)層のうちの2層以上からなり、かつ3〜20μmの合計平均層厚を有するTi化合物層、
(b)上部層が、化学蒸着形成された1〜15μmの平均層厚を有する酸化アルミニウム(以下、Al23で示す)層、
からなる硬質被覆層を形成してなる被覆工具において、上記Ti化合物層におけるTiの一部を10原子%以下のCr等で置換することによって、耐摩耗性をさらに向上させるようにした被覆工具が知られている。
【特許文献1】特開平 6− 31503号公報
【特許文献2】特開平10−244405号公報
【発明の開示】
【発明が解決しようとする課題】
【0003】
近年の切削装置の高性能化はめざましく、一方で切削加工における省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削効率の向上を目的として、切削速度を高速化する傾向にあるが、上記の従来被覆工具においては、これを鋼や鋳鉄などの通常の条件での連続切削や断続切削に用いた場合には問題はないが、特にこれを高速切削条件で用いた場合、これを構成する硬質被覆層は、下部層のTi化合物層による高温強度、同上部層のAl23層による高温硬さを具備するものの、前記Ti化合物層による耐熱性が不十分であるために切削加工時の発熱によって熱塑性変形、偏摩耗を生じやすく、そのため、耐摩耗性が低下し比較的短時間で使用寿命に至るのが現状である。
【課題を解決するための手段】
【0004】
そこで、本発明者等は、上述のような観点から、上記の被覆工具の硬質被覆層の耐摩耗性向上をはかるべく、これの下部層であるTi化合物層を構成するTiCN層、すなわちTi化合物層のうちで相対的に高い高温強度を有するTiの一部をCrで置換した(Ti,Cr)CN層に着目し、研究を行った結果、
(a)従来被覆工具の硬質被覆層において、下部層を構成するTi化合物層のうちの(Ti,Cr)CN層(以下、「従来Ti系CN層」という)は、例えば、通常の化学蒸着装置にて、
反応ガス組成:容量%で、TiCl:3〜10%、CrF:0.1〜0.4%、CHCN:0.5〜3%、N2:20〜40%、H2:残り、
反応雰囲気温度:800〜900℃、
反応雰囲気圧力:6〜20kPa、
の条件(通常条件という)で蒸着形成されるが、
反応ガス組成:容量%で、TiCl:1〜5%、CrCl:0.7〜2.5%、CHCN:3〜6%、N2:20〜40%、HCl:0.5〜2%、H2:残り、
反応雰囲気温度:800〜900℃、
反応雰囲気圧力:5〜20kPa、
の条件、すなわち上記の通常条件に比して、反応ガス成分の一つであるCrFにかえて、少量のCrClおよびHClを加え、さらに、CHCNの含有割合を多くした条件で蒸着形成して、
組成式:(Ti1−XCr)C1−Y(ただし、原子比で、X:0.12〜0.20、Y:0.35〜0.55)、
を満足するTi系炭窒化物層を形成すると、この結果のTi系炭窒化物層(以下、「改質Ti系CN層」で示す)は、上記の従来Ti系CN層と同様の結晶構造、すなわち格子点にTi、Cr、炭素(C)、および窒素(N)からなる構成原子がそれぞれ存在するNaCl型面心立方晶の結晶構造を有するが、前記従来Ti系CN層に比して一段とすぐれた耐熱性を有すること。
【0005】
(b)上記の従来Ti系CN層と上記(a)の改質Ti系CN層について、
電界放出型走査電子顕微鏡を用い、図1(a),(b)に概略説明図で例示される通り、表面研磨面の測定範囲内に存在する立方晶結晶格子を有する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である{111}面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフを作成した場合、前記従来Ti系CN層は、図3に例示される通り、{111}面の測定傾斜角の分布が0〜45度の範囲内で不偏的な傾斜角度数分布グラフを示すのに対して、前記改質Ti系CN層は、図2に例示される通り、傾斜角区分の特定位置にシャープな最高ピークが現れ、そしてこのような場合に、改質Ti系CN層にはクーリングクラックが均一に分散し、これによって、Cr含有量を増加したことによる改質Ti系CN層の高温強度の低下を抑制することができ、しかも、このシャープな最高ピークは、グラフ横軸の傾斜角区分に現れる高さおよび傾斜角区分位置が前記改質Ti系CN層におけるCrの含有割合を調整することにより変化すること。
【0006】
(c)上記の通り、上記改質Ti系CN層の形成に際して、層中のCr含有割合を、Tiとの合量に占める割合(原子比)で0.12〜0.20とすることによって、前記改質Ti系CN層の傾斜角度数分布グラフで、シャープな最高ピークが傾斜角区分の0〜10度の範囲内に現れ、かつ、前記0〜10度の範囲内に存在する度数割合が、傾斜角度数分布グラフにおける度数全体の45%以上の割合を占める傾斜角度数分布グラフを示すようになるのであり、したがって、前記改質Ti系CN層中のCr含有割合が前記の範囲から低い方に外れても、あるいは高い方に外れても、傾斜角度数分布グラフにおけるシャープな最高ピークが傾斜角区分の0〜10度の範囲から外れ、かつ、前記0〜10度の範囲内に存在する度数数割合も45%未満になってしまい、この場合は一段の耐熱性向上効果を期待できないばかりか、Cr含有割合を増加したことによる高温強度の低下をクーリングクラックの均一分散によって抑制することはできないこと。
つまり、上記改質Ti系CN層のCr成分は、Tiとの合量に占める割合(原子比)で0.12(12原子%)以上で所望の耐熱性向上効果が現れるが、その含有割合が0.20(20原子%)を越えると、高熱発生を伴う高速切削加工では、改質Ti系CN層は急激に軟化し、熱塑性変形、偏摩耗を生じやすくなることから、その含有割合は、Tiとの合量に占める割合(原子比)で0.12〜0.20とする必要がある。
【0007】
(d)硬質被覆層の上部層がAl23層、下部層が密着性Ti化合物層と改質Ti系CN層とからなり、かつ、該改質Ti系CN層が、2.5〜15μmの平均層厚を有し、{111}面の測定傾斜角の分布が0〜10度の範囲内に傾斜角区分の最高ピークが現れ、かつ前記0〜10度の範囲内に存在する度数割合が45%以上を占める被覆工具は、改質Ti系CN層が従来Ti系CN層に比して一段と高い耐熱性を有し、また、同上部層であるAl23層がすぐれた高温硬さを具備することと相俟って、特に高熱発生を伴う高速切削加工でも、前記硬質被覆層がすぐれた耐熱性を発揮し、熱塑性変形、偏摩耗を生じることがないため、長期に亘ってすぐれた耐摩耗性を示すようになること。
以上(a)〜(d)に示される研究結果を得たのである。
【0008】
この発明は、上記の研究結果に基づいてなされたものであって、上記工具基体の表面に上部層と下部層とからなる硬質被覆層を蒸着形成した表面被覆切削工具において、
(a)上記上部層は、化学蒸着で形成された1〜15μmの平均層厚を有する酸化アルミニウム層からなり、
(b)上記下部層は、3〜20μmの合計平均層厚を有し、いずれも化学蒸着で形成された密着性Ti化合物層と改質Ti系炭窒化物層とからなり、
(c)上記密着性Ti化合物層は、0.5〜5μmの合計平均層厚を有するTiの炭化物層、窒化物層、炭窒化物層、炭酸化物層、および炭窒酸化物層のうちの1層または2層以上からなり、
(d)上記改質Ti系炭窒化物層は、2.5〜15μmの平均層厚を有し、かつ、
組成式:(Ti1−XCr)C1−Y(ただし、原子比で、X:0.12〜0.20、Y:0.35〜0.55)、
を満足するTiとCrの炭窒化物層からなり、さらに、上記改質Ti系炭窒化物層は、電界放出型走査電子顕微鏡を用い、表面研磨面の測定範囲内に存在する立方晶結晶格子を有する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である{111}面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフにおいて、0〜10度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0〜10度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の45%以上の割合を占める傾斜角度数分布グラフを示すこと、
を特徴とする高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆切削工具(被覆工具)に特徴を有するものである。
【0009】
つぎに、この発明の被覆工具の硬質被覆層の構成層について、上記の通りに数値限定した理由を以下に説明する。
(a)下部層の密着性Ti化合物層
密着性Ti化合物層は、工具基体と上部層であるAl23層および改質Ti系CN層のいずれにも強固に密着し、よって硬質被覆層の工具基体に対する密着性向上に寄与する作用をもつが、その合計平均層厚が0.5μm未満では、所望のすぐれた密着性を確保することができず、一方前記密着性は5μmまでの合計平均層厚で充分であることから、その合計平均層厚を0.5〜5μmと定めた。
【0010】
(b)下部層の改質Ti系CN層
上記の改質Ti系CN層の傾斜角度数分布グラフの傾斜角区分における最高ピーク位置および前記最高ピークが存在する所定の傾斜角区分内に存在する度数割合は、上記の通り層中のCr含有割合(X値)をTiとの合量に占める原子比で、0.12〜0.20とすることによって、0〜10度の範囲内の傾斜角区分に最高ピークを存在させ、かつ前記0〜10度の範囲内に存在する度数割合を、傾斜角度数分布グラフにおける度数全体の45%以上とすることができるものであり、したがって、その含有割合が0.12未満でも、0.20を越えても、前記最高ピーク位置の現れる傾斜角区分が0〜10度の範囲内から外れ、さらに前記0〜10度の範囲内に存在する度数割合は45%未満となってしまい、そのため、高温強度の低下をクーリングクラックの均一分散により抑制することができなくなるばかりか、高速切削加工におけるすぐれた耐熱性向上効果を確保することができなくなり、熱塑性変形の発生あるいは偏摩耗の発生によって耐摩耗性の劣ったものとなる。
また、改質Ti系CN層におけるC成分には層の硬さを向上させ、一方N成分には高温強度を向上させる作用があり、これら両成分を共存含有することにより高い硬さとすぐれた強度を具備するようになるものであり、したがって、層中のN成分の含有割合(Y値)がC成分との合量に占める原子比で0.35未満では所望の強度を確保することができず、一方その含有割合(Y値)が同じく0.55を越えると、相対的にC成分の含有割合が少なくなり過ぎて、所望の高硬度が得られなくなることから、Y値を原子比で0.35〜0.55と定めた。
このように前記改質Ti系CN層は、上記の通り従来Ti系CN層に比して、一段とすぐれた耐熱性を有するようになるが、その平均層厚が2.5μm未満では所望のすぐれた耐熱性向上効果を硬質被覆層に十分に具備せしめることができず、一方その平均層厚が15μmを越えると、チッピングが発生し易くなることから、その平均層厚を2.5〜15μmと定めた。
【0011】
(c)上部層のAl23
Al23層は、すぐれた高温硬さを有し、硬質被覆層の耐摩耗性向上に寄与するが、その平均層厚が1μm未満では、硬質被覆層に十分な耐摩耗性を発揮せしめることができず、一方その平均層厚が15μmを越えて厚くなりすぎると、チッピングが発生し易くなることから、その平均層厚を1〜15μmと定めた。
【0012】
なお、切削工具の使用前後の識別を目的として、黄金色の色調を有するTiN層を最表面層として、必要に応じて蒸着形成してもよいが、この場合の平均層厚は0.1〜1μmでよく、これは0.1μm未満では、十分な識別効果が得られず、一方前記TiN層による前記識別効果は1μmまでの平均層厚で十分であるという理由からである。
【発明の効果】
【0013】
この発明の被覆工具は、高熱発生を伴う鋼や鋳鉄などの高速切削加工でも、硬質被覆層の下部層のうちの改質Ti系CN層が一段とすぐれた耐熱性と高温強度を有し、熱塑性変形、偏摩耗の発生が抑制されることによって、硬質被覆層はすぐれた耐摩耗性を示すものとなる。
【発明を実施するための最良の形態】
【0014】
つぎに、この発明の被覆工具を実施例により具体的に説明する。
【実施例】
【0015】
原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr32粉末、TiN粉末、TaN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で20時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、切刃部にR:0.05mmのホーニング加工を施すことによりISO・CNMG120412に規定するスローアウエイチップ形状をもったWC基超硬合金製の工具基体A〜Fをそれぞれ製造した。
【0016】
また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比で、TiC/TiN=50/50)粉末、Mo2C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで20時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1540℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.07mmのホーニング加工を施すことによりISO規格・CNMG120412のチップ形状をもったTiCN基サーメット製の工具基体a〜fを形成した。
【0017】
つぎに、これらの工具基体A〜Fおよび工具基体a〜fの表面に、通常の化学蒸着装置を用い、硬質被覆層の下部層として、密着性Ti化合物層および改質Ti系CN層からなる下部層を表3に示される条件で、表4に示される組み合わせおよび目標層厚で蒸着形成し、ついで同じく表3に示される条件にて、上部層としてのAl23層を同じく表4に示される組み合わせで、かつ目標層厚で蒸着形成することにより本発明被覆工具1〜13をそれぞれ製造した。
【0018】
また、比較の目的で、硬質被覆層の下部層として、密着性Ti化合物層および従来Ti系CN層を表3に示される条件で、表5に示される組み合わせおよび目標層厚で蒸着形成し、さらに上部層としてのAl23層を、表3に示される条件で、かつ同じく表5に示される目標層厚で蒸着形成することにより従来被覆工具1〜13をそれぞれ製造した。
【0019】
ついで、上記の本発明被覆工具と従来被覆工具の硬質被覆層を構成する改質Ti系CN層および従来Ti系CN層について、電界放出型走査電子顕微鏡を用いて、傾斜角度数分布グラフをそれぞれ作成した。
すなわち、上記傾斜角度数分布グラフは、上記の改質TiCN層および従来Ti系CN層の表面を研磨面とした状態で、電界放出型走査電子顕微鏡の鏡筒内にセットし、前記研磨面に70度の入射角度で15kVの加速電圧の電子線を1nAの照射電流で、前記表面研磨面の測定範囲内に存在する立方晶結晶格子を有する結晶粒個々に照射して、電子後方散乱回折像装置を用い、30×50μmの領域を0.1μm/stepの間隔で、前記表面研磨面の法線に対して、前記結晶粒の結晶面である{111}面の法線がなす傾斜角を測定し、この測定結果に基づいて、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計することにより作成した。
【0020】
この結果得られた各種の改質Ti系CN層および従来Ti系CN層の傾斜角度数分布グラフにおいて、{111}面が最高ピークを示す傾斜角区分、並びに0〜10度の範囲内の傾斜角区分内に存在する傾斜角度数の傾斜角度数分布グラフ全体の傾斜角度数に占める割合を表4,5にそれぞれ示した。
【0021】
上記の各種の傾斜角度数分布グラフにおいて、表4に示される通り、本発明被覆工具1〜13の改質Ti系CN層は、いずれも{111}面の測定傾斜角の分布が0〜10度の範囲内の傾斜角区分に最高ピークが現れ、かつ0〜10度の範囲内の傾斜角区分内に存在する傾斜角度数の割合が45%以上である傾斜角度数分布グラフを示すのに対して、表5に示される通り、従来被覆工具1〜13の従来Ti系CN層は、いずれも{111}面の測定傾斜角の分布が0〜45度の範囲内で不偏的で、最高ピークが存在せず、0〜10度の範囲内の傾斜角区分内に存在する傾斜角度数の割合も30%以下である傾斜角度数分布グラフを示すものであった。
なお、図2は、本発明被覆工具5の改質Ti系CN層の傾斜角度数分布グラフ、図3は、従来被覆工具5の従来Ti系CN層の傾斜角度数分布グラフをそれぞれ示すものである。
【0022】
さらに、上記の本発明被覆工具1〜13および従来被覆工具1〜13について、これの硬質被覆層の構成層を電子線マイクロアナライザー(EPMA)およびオージェ分光分析装置を用いて観察(層の縦断面を観察)したところ、前者および後者とも目標組成と実質的に同じ組成を有する密着性Ti化合物層、改質Ti系CN層および従来Ti系CN層、さらにAl23層からなることが確認された。また、これらの被覆工具の硬質被覆層の構成層の厚さを、走査型電子顕微鏡を用いて測定(同じく縦断面測定)したところ、いずれも目標層厚と実質的に同じ平均層厚(5点測定の平均値)を示した。
【0023】
つぎに、上記の各種の被覆サーメット工具をいずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆工具1〜13および従来被覆工具1〜13について、
被削材:JIS・SNCM439の丸棒、
切削速度: 380 m/min、
切り込み: 1.5 mm、
送り: 0.25 mm/rev、
切削時間: 7 分、
の条件(切削条件Aという)での合金鋼の湿式連続高速切削試験(通常の切削速度は、200m/min)、
被削材:JIS・FC350の長さ方向等間隔4本縦溝入り丸棒、
切削速度: 400 m/min、
切り込み: 2.0 mm、
送り: 0.30 mm/rev、
切削時間: 7 分、
の条件(切削条件Bという)での鋳鉄の湿式断続高速切削試験(通常の切削速度は、250m/min)、
被削材:JIS・S50Cの長さ方向等間隔4本縦溝入り丸棒、
切削速度: 360 m/min、
切り込み: 1.3 mm、
送り: 0.35 mm/rev、
切削時間: 7 分、
の条件(切削条件Cという)での炭素鋼の湿式断続高速切削試験(通常の切削速度は、250m/min)を行い、
いずれの切削試験(水溶性切削油使用)でも切刃の逃げ面摩耗幅を測定した。この測定結果を表6に示した。
【0024】
【表1】

【0025】
【表2】

【0026】
【表3】

【0027】
【表4】

【0028】
【表5】

【0029】
【表6】

【0030】
表4〜6に示される結果から、本発明被覆工具1〜13は、いずれも硬質被覆層の下部層のうちの改質Ti系CN層が、{111}面の傾斜角が0〜10度の範囲内の傾斜角区分で最高ピークを示すと共に、前記0〜10度の傾斜角区分範囲内に存在する度数の合計割合が45%以上を占める傾斜角度数分布グラフを示し、高い熱発生を伴う鋼や鋳鉄の高速切削でも、前記改質Ti系CN層が一段とすぐれた耐熱性と高温強度を有し、熱塑性変形、偏摩耗の発生が防がれることから、硬質被覆層がすぐれた耐摩耗性を示すのに対して、硬質被覆層の下部層のうちの従来Ti系CN層が、{111}面の測定傾斜角の分布が0〜45度の範囲内で不偏的で、最高ピークが存在しない傾斜角度数分布グラフを示す従来Ti系CN層で構成された従来被覆工具1〜13においては、いずれも高速切削では硬質被覆層の熱塑性変形あるいは偏摩耗の発生により、硬質被覆層の耐摩耗性は非常におとったものであり、比較的短時間で使用寿命に至ることが明らかである。
【0031】
上述のように、この発明の被覆工具は、各種鋼や鋳鉄などの通常の条件での連続切削や断続切削は勿論のこと、特に高い熱発生を伴う高速切削加工でも硬質被覆層がすぐれた耐摩耗性を示し、長期に亘ってすぐれた切削性能を発揮するものであるから、切削装置の高性能化並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。
【図面の簡単な説明】
【0032】
【図1】硬質被覆層の下部層を構成する改質Ti系CN層および従来Ti系CN層における結晶粒の{111}面の傾斜角の測定範囲を示す概略説明図である。
【図2】本発明被覆工具5の硬質被覆層の下部層を構成する改質Ti系CN層の{111}面の傾斜角度数分布グラフである。
【図3】従来被覆工具5の硬質被覆層の下部層を構成する従来Ti系CN層の{111}面の傾斜角度数分布グラフである。

【特許請求の範囲】
【請求項1】
炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に上部層と下部層とからなる硬質被覆層を蒸着形成した表面被覆切削工具において、
(a)上記上部層は、化学蒸着で形成された1〜15μmの平均層厚を有する酸化アルミニウム層からなり、
(b)上記下部層は、3〜20μmの合計平均層厚を有し、いずれも化学蒸着で形成された密着性Ti化合物層と改質Ti系炭窒化物層とからなり、
(c)上記密着性Ti化合物層は、0.5〜5μmの合計平均層厚を有するTiの炭化物層、窒化物層、炭窒化物層、炭酸化物層、および炭窒酸化物層のうちの1層または2層以上からなり、
(d)上記改質Ti系炭窒化物層は、2.5〜15μmの平均層厚を有し、かつ、
組成式:(Ti1−XCr)C1−Y(ただし、原子比で、X:0.12〜0.20、Y:0.35〜0.55)、
を満足するTiとCrの炭窒化物層からなり、さらに、上記改質Ti系炭窒化物層は、電界放出型走査電子顕微鏡を用い、表面研磨面の測定範囲内に存在する立方晶結晶格子を有する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である{111}面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフにおいて、0〜10度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0〜10度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の45%以上の割合を占める傾斜角度数分布グラフを示すこと、
を特徴とする高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆切削工具。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate


【公開番号】特開2008−80476(P2008−80476A)
【公開日】平成20年4月10日(2008.4.10)
【国際特許分類】
【出願番号】特願2007−93791(P2007−93791)
【出願日】平成19年3月30日(2007.3.30)
【出願人】(000006264)三菱マテリアル株式会社 (4,417)
【Fターム(参考)】