説明

Fターム[2G065BA12]の内容

測光及び光パルスの特性測定 (19,875) | 検出素子、受光素子、受光器 (4,668) | 光電、熱電変換素子 (3,177) | サーミスタ、ポロメータ (378)

Fターム[2G065BA12]に分類される特許

121 - 140 / 378


【課題】熱体検知装置において、増幅部のオフセット電圧値の調整中においても、誤検知を防ぐ。
【解決手段】増幅部12で増幅された電気信号Vaが飽和しないように、増幅部12のオフセット電圧値を変更(調整)する飽和検知部17を備えているので、増幅された電気信号Vaの飽和を防止して、誤検知をなくし、安定して熱体を検知できる。しかも、増幅部12のオフセット電圧値を変更するときに、比較部16の機能が制限されるようにしたので、従来の発明と異なり、飽和検知部17による増幅部12のオフセット電圧の調整中においても、比較部16が、調整の完了していない増幅部12から出力された、飽和している可能性のある電気信号に基づくデータと、比較電圧部15の保持するしきい値との大小を比較して熱体検知を示す出力信号Hを出力してしまうのを防ぐことができる。 (もっと読む)


【課題】ボロメータ用抵抗材料、それを用いた赤外線検出器用ボロメータ、及びその製造方法を提供すること。
【解決手段】本発明に係るボロメータ用抵抗材料は、アンチモン(Sb)に、窒素(N)、酸素(O)及びゲルマニウム(Ge)からなる群から選択された1つ以上の元素を含むものであって、このような抵抗材料は、優れた特性、すなわち、高いTCR、低い比抵抗及び低いノイズ定数 を有し、CMOS工程で一般的に用いるスパッタリング法を用いて容易に薄膜で製造され、非冷却型赤外線検出器のボロメータに抵抗体として用いることができ、赤外線検出器に優れた温度精度を具現することができる。 (もっと読む)


【課題】カーボン薄膜を材料として、室温付近で高いTCR絶対値を有するボロメータ材料を製造できる技術を提供する。
【解決手段】カーボン薄膜を通電しながら酸処理を施すことによりボロメータ材料を作製する。 (もっと読む)


【課題】少量のメモリでゲイン補正値及びオフセット補正値を算出し、複数の撮像素子の出力値を、同一の対象物に対しては略一致するように補正することができる撮像装置、撮像装置の補正値算出方法及び撮像方法を提供する。
【解決手段】撮像部で撮像された互いに異なる均一な輝度を有する2つの画像を2つのメモリP1、P2にそれぞれ保存しておき、補正値を算出する際、両メモリから前記2つの画像を読み出して、これらの画像を用いてゲイン補正値(又はオフセット補正値)を算出して、一方のメモリに保存し、他方のメモリの画像及び算出された前記ゲイン補正値(又はオフセット補正値)を用いて、オフセット補正値(又はゲイン補正値)を算出する。 (もっと読む)


【課題】熱電変換素子と、光電変換素子とトランジスタまたはダイオードとの少なくとも一方と、をモノリシックに集積化すること、または、p型熱電変換部とn型熱電変換部とが干渉を抑制すること。
【解決手段】本発明は、熱電変換を行なう半導体層38を含む熱電変換素子100と、前記半導体層38の少なくとも一部の層が光電変換を行なう光電変換素子102と、前記半導体層38の少なくとも一部の層を動作層とするトランジスタ104またはダイオードと、の少なくとも一方と、を具備する電子装置である。 (もっと読む)


【課題】メンブレン部と梁部の下部のSi(100)基板そのものを除去してブリッジ構造を形成するためのSi異方性ウェットエッチングの処理時間を短縮できる半導体装置技術を提供すること。
【解決手段】メンブレン部51と梁部52〜55は、Si(100)基板の<100>方向に形成され、梁部52〜55はメンブレン部51の対向する二辺上でのみメンブレン部51を支持し、梁部52〜55の最短部分の長さが幅よりも長い構成となっている。メンブレン部51上には赤外線を検出するための感熱部90(赤外線センサーの場合)と赤外線吸収膜91が形成され、検出した赤外線によって発生される信号を、配線92、93が感熱部90からメンブレン部51、梁部53、55を通って外部へと導いている。メンブレン部51は底面保護層94、層間膜95、上面保護層96によってエッチング溶液から保護されている。 (もっと読む)


【課題】環境負荷が少なく、且つ、赤外線反射防止膜や赤外線光学フィルタ膜の剥れを抑制できるとともに高感度化および低コスト化が可能な赤外線センサを提供する。
【解決手段】赤外線検出素子1を収納するパッケージ2と、パッケージ2の開口部2aを閉塞する第1の赤外線透過部材41および第2の赤外線透過部材42とを備え、パッケージ2と第1の赤外線透過部材41とで囲まれた空間を真空雰囲気としてある。第1の赤外線透過部材41は、ZnSにより形成され、パッケージ2に対して、パッケージ2の内側から開口部2aを閉塞する形で鉛フリーのガラスフリットからなる接合部51により固着され、赤外線光学フィルタ膜43と赤外線反射防止膜44とが積層された第2の赤外線透過部材42は、Siにより形成され、ガラスフリットに比べて低温での使用が可能な鉛フリーの導電性接着剤からなる接合部52により、パッケージ2に対して固着されている。 (もっと読む)


【課題】カバー部材に対する赤外線レンズの光軸の位置決め精度を高めることが可能な赤外線センサの製造方法を提供する。
【解決手段】赤外線レンズ3をカバー部材22に固着する際には、赤外線レンズ3の光軸方向において当該赤外線レンズ3とカバー部材22の窓部2aとを重ね合わせた状態で赤外線レンズ3およびカバー部材22の窓部2aを含む所定の空間領域を撮像手段8により撮像し、撮像手段8による撮像により得られた画像内で赤外線レンズ3の陽極32の開口部33およびカバー部材22の窓部2aそれぞれに対応する各部位を抽出する特定部位抽出処理を行い、特定部位抽出処理により抽出した陽極32の開口部33およびカバー部材22の窓部2aそれぞれに対応する各部位の中心を求める特徴抽出処理を行い、求めた両方の中心が一致するように赤外線レンズ3とカバー部材22との相対的な位置を調整し、赤外線レンズ3をカバー部材22に固着する。 (もっと読む)


【課題】人体を確実に検出できる赤外線センサ装置を提供する。
【解決手段】赤外線を検出する複数のセンサ素子52をマトリクス状に配列した赤外線センサ本体41を設ける。赤外線を赤外線センサ本体41の受光面に導く光学系を設ける。光学系により赤外線センサ本体41の受光面に導かれる赤外線の強度分布に応じて、各センサ素子52の感度を調整する感度調整手段61を設ける。感度調整手段61では、赤外線の強度が強い位置のセンサ素子52の感度を低く、赤外線の強度が弱い位置のセンサ素子52の感度が高く調整し、各センサ素子52から出力する検出信号の強度を均等にする。 (もっと読む)


【課題】 赤外線検知用と温度補償用との感熱素子間で高い温度差分が得られると共に小型化が可能で、安価な構造を有している赤外線センサを提供すること。
【解決手段】 絶縁性フィルム2と、該絶縁性フィルム2の一方の面に互いに離間させて設けられた第1の感熱素子3A及び第2の感熱素子3Bと、絶縁性フィルム2の一方の面に形成され第1の感熱素子3A及び第2の感熱素子3Bに別々に接続された複数対の導電性の配線膜4と、第1の感熱素子3Aに対向して絶縁性フィルム2の他方の面に設けられた赤外線吸収膜5と、第2の感熱素子3Bに対向して絶縁性フィルム2の他方の面に設けられた赤外線反射膜6と、を備えている。 (もっと読む)


【課題】集積化が容易で検出感度の向上が可能な赤外線2次元イメージセンサの製造方法を提供する。
【解決手段】強誘電体膜から成る赤外線検出容量CFのうち、容量部分100は、引出配線102および104により支持されて、溝部330の両側のSi基板に対して保持される。下部電極は、引出配線102と結合し、上部電極は、引出配線104と結合する。容量部分100の平面形状は、長方形形状から、対角線方向に互いに対向する106の部分および108の部分を除いた形状となっている。 (もっと読む)


【課題】VO2ナノワイヤ及びこれを用いたナノワイヤデバイス
【解決手段】
遷移金属原子によるナノ粒子又はナノドットを成長触媒3として基板1に形成し、減圧下で加熱された基板面に、気相−液相−固相(VLS)成長法によって、VO2ナノワイヤを[110]方向に沿って細長く成長させる。基板として正方晶系のTiO2を使用し結晶面を(110)面とすると、基板の面に対して90°の方向にVO2ナノワイヤ2aを、結晶面を(100)面とすると、45°の方向にVO2ナノワイヤ2bを成長させることができる。ナノワイヤの形成領域が制御でき、径、成長方向、長さが制御されたVO2ナノワイヤを基板に高密度に形成できる。 (もっと読む)


本電磁波検出装置は、検出した放射線が表すそれぞれの電流(Im)を供給する放射線(IR)検出画素(10)と、前記画素と接続し、前記画素(10)が供給する電流を伝送する列(12)と、伝送列(12)と接続し、前記画素(10)が供給する電流を処理する電気モジュール(14)とを備える。各画素(10)は、ボロメータ検出器(20)へのバイアス電圧印加手段(22)に直列接続しているボロメータ検出器(20)を含む検出回路(18)を備え、伝送列(12)から処理モジュールが(14)に供給される電流を調節する。装置はさらに、ボロメータ検出器(20)へバイアス電流を印加し、伝送列(12)から処理電気モジュール(14)に供給される電流を調節するバイアス電流印加回路(34)を有し、前記バイアス電流印可回路(34)は、検出回路(18)とは異なり、ボロメータ検出器(20)とバイアス電圧印加手段(22)との間に位置する検出回路(18)の点(36)でボロメータ検出器(20)に接続する。 (もっと読む)


赤外線放射マイクロデバイス、このようなデバイス用の被覆材、及びその製造方法であって、該デバイスが、基板及び被覆材及び赤外線放射線検出、放射または反射赤外線マイクロユニットを有し、赤外線マイクロユニットが、基板と被覆材との間に画定されたキャビティ内に配置され、被覆材が、赤外線放射線の透過率を高める反射防止表面テクスチャを有し、付加的なプロセスにおいて、被覆材の基板側及び/または基板の被覆材側上に形成された分離フレームが、基板と被覆材との間に配置される。
(もっと読む)


【課題】熱電変換素子の温度を一定に保つと共に消費電力を抑える。
【解決手段】遮光構造とされる画素15a、15b中のボロメータ素子と、外部から入射される赤外線を受光する画素2a、2b中のボロメータ素子と、を含み、電流ミラー源回路14、自己発熱制御回路16は、画素15a、15b中のボロメータ素子の抵抗値に基づいて、第1の期間において画素15a、15b、2a、2b中のボロメータ素子への電源VDD(発熱用電圧)の供給を制御し、第1の期間とは排他的な第2の期間において電流ミラー源回路14、読み出し回路8は、画素15a、15b、2a、2b中のボロメータ素子に読み出し用電圧を印加するように制御する。 (もっと読む)


【課題】電気的絶縁における信頼性を確保しつつ、高速応答が可能な赤外線撮像素子を提供する。
【解決手段】この発明に係る赤外線撮像素子の製造方法は、SOI基板に配置された複数の画素と、画素からの電気信号を読み出す回路とをSOI基板に有する熱型の赤外線撮像素子の製造方法であって、画素にシリコンダイオードによって温度を検出する検出部を形成する工程を有し、検出部を形成する工程において、SOI基板のSOI層にシリコンダイオードを形成し、さらにシリコンダイオードを構成するシリコンの表面を熱酸化して熱酸化によって生成された熱酸化膜とSOI基板の埋め込み酸化膜層とによってシリコンダイオードを被覆する工程を備えりことを特徴とするとする。 (もっと読む)


【課題】常温の大気中で用いても10(cmHz1/2/W)以上の比検出能Dが得られる赤外線検出装置を提供する。
【解決手段】赤外線検出装置2に赤外線が照射されると、白金黒膜220が赤外線を吸収して温度が上昇し、その裏面に接している単結晶シリコン層の温度が上昇する。その温度変化によって単結晶シリコン層の抵抗が変化する。この抵抗変化を検出することによって赤外線の強度を検出することができる。単結晶シリコン層の不純物濃度を4×1015〜1×1017/cmの範囲に設定し、単結晶シリコン層140の体積を1.2×10-14〜8.0×10-13の範囲に設定すると、高い抵抗温度係数と低い雑音電圧と必要な高速応答性を実現でき、常温大気中での比検出能Dを10以上にできる。 (もっと読む)


本発明は、電磁放射測定のための超小型電子装置に関し、超小型電子装置は、少なくとも1つのボロメータ等の電磁放射検出器(102)と、積分時間中に、検出器により放出された前記電流によって振幅および周波数が変化する、一連のパルス状の第1の信号(S1)を出力するための積分コンデンサ(112、212、312)を形成する手段を備える積分手段(110、210、310)と、第2の信号(S2)を発するための、前記第1の信号を制御する手段(120、220、320)とを備え、前記制御手段が、積分時間中に検出された前記第1の信号の各パルスを計数して、所定パルス数Nに達したときに計数終了を示すための計数手段(140、240)を備え、積分終了時間に達して、前記計数手段が所定パルス数Nを計数または算出したときに、第1の信号の振幅に応じた、または第1の信号の振幅に等しい第2の振幅信号を発するために制御手段が実行される、超小型電子装置。
(もっと読む)


【課題】常温での検出能力が高い赤外線検出装置を提供する。
【解決手段】1対の配線12a,12bの間に導電性粒子群を含有している多孔質絶縁体4aを介在させる。多孔質絶縁体4aを赤外線吸収膜16で被覆する。多孔質絶縁体4aの内部には同一サイズの孔が同一間隔で形成されており、各孔の内部に導電性粒子が収容されている。各導電性粒子の粒径が1〜10nmであり、隣接する導電性粒子同士の間隔が1〜10nmであると、クーロンブロッケード現象の発生確率が常温近傍の温度域で温度に対して敏感に変化する関係が得られる。赤外線検出装置1によると、常温常圧で用いても10(cmHz1/2/W)以上の比検出能Dが得られる。 (もっと読む)


ナノ熱電対検出器が、2つの電極をまたいで結合されたナノワイヤを含む。この2つの電極は、増幅器に電気的に接続される。この2つの電極は、一般に約5マイクロメーターから約30マイクロメーター離れており、これをまたいでナノワイヤが配置される。集束素子を配置して、この集束素子からナノワイヤ上にぶつかってナノワイヤを加熱する光子が入れるようにする。ナノワイヤが光によって加熱されることによる電圧変化が増幅器によって検出される。この電圧変化は、ナノワイヤが光から吸収したエネルギーに対応する。このような装置を使用して、単一光子の色を検出することができる。このような装置のアレイを使用して、光を2次元規模で検知することにより、検出器アレイにぶつかる光のエネルギーのわずかな変化を示す画像を提供することができる。 (もっと読む)


121 - 140 / 378