説明

Fターム[3C081BA11]の内容

マイクロマシン (28,028) | 形状、構成 (11,743) | 形状 (1,329) | 積層、多層構造 (202)

Fターム[3C081BA11]に分類される特許

61 - 80 / 202


【課題】可動部を支持する可動梁に張力を生じさせ、沈み込みを防止することができる光偏向装置を提供する。
【解決手段】光偏向装置は、基板と、可動部と、一対の支持部と、一対の可動梁を備えている。可動部は、少なくとも1つの開口部を形成する枠形状を備えている。各々の支持部は、基板に固定されて基板から上方に伸びている。一対の支持部は、間隔を挟んで相互に離間しているとともに開口部内に配置されている。各々の可動梁は、対応する支持部と可動部の開口部の内周面とを接続している。一対の可動梁は、基板の表面に平行な同一直線上を伸びて、可動部を直線の周りに揺動可能に支持している。枠形状の可動部のうち、少なくとも間隔に沿って伸びる範囲に、基板よりも熱膨張係数が低い材料で形成されている低熱膨張部分が存在する。 (もっと読む)


マイクロチャンネルが、装置組み立てに要する材料量を低減させるよう賦形された、マイクロチャンネル装置の新規な設計形状が提供される。当該設計形状では幾つかのマイクロチャンネルの断面形状が、高応力部分における構造材を比較的多くする一方、比較的低応力を受ける装置部分では単位操作用の広い部分を残すように賦形される。
(もっと読む)


【課題】中空の構造を持つ積層体を製造する方法をより容易とし、さらには、多層の構造を可能とする作製方法を提供することを目的とする。
【解決手段】基板上に中空の構造体を作製するための方法のうち、構造材料を積み重ねて作製する方法であって、少なくとも、
(a)基板上に構造材料層を形成する工程と、
(b)前記構造材料層にパターンを形成する工程と、
(c)前記パターンの間を埋め込む犠牲材料として水溶性又はアルカリ可溶性のポリマーを用いて、前記パターンの間を埋め込み犠牲材料層を形成する工程と、
(d)更に構造材料層を積層してパターンを形成する工程と、
(e)積層を全て終えた後に前記犠牲材料を最終的に除去する工程、
を含むことを特徴とする中空の構造体製造方法。 (もっと読む)


【課題】既存のマイクロリアクタ構造の大幅な改変を伴うことなく熱交換部を併設できるようにした。
【解決手段】複数のプレート10,11を重ねた積層体2を備え、前記積層体が前記プレート同士の間または/および前記プレートに形成された孔10a,11aや溝により通路を形成しているマイクロリアクタにおいて、前記積層体2が前記各プレートに設けられた位置決め用の貫通孔10b,11bを有し、前記貫通孔を利用して前記流路に導入される流体を加熱したり冷却するための熱冷媒流路を形成していることを特徴としている。 (もっと読む)


【課題】圧電材料、焦電性材料、又は磁性材料から構成することも可能な表面層、埋め込み層、及び支持体又は支持体として機能する基層を含む新規な構造体とそのような構造体の機械的補強手段を提供する。
【解決手段】表面層、少なくとも一つの埋め込み層、及び支持体から構成される半導体構造体において、第一の支持体上に第一の材料からなる第一の層を形成し、更に第一の層の内部に、第一の材料よりエッチング速度の大きい第二の材料からなる少なくとも一つの領域を形成する第一のステップと、第二の支持体の上に構造体を組み立てることにより表面層を形成し、二つの支持体の少なくとも一方を薄膜化する第二のステップで製造される構造体。 (もっと読む)


【課題】高い性能を確保しながら、小型化を実現することが可能なアクチュエータの製造方法、アクチュエータ、及び該アクチュエータを用いた撮像装置を提供する。
【解決手段】電極層と、該電極層に通電することにより変形する金属板と、が積層されたアクチュエータの製造方法であって、金属板の表面に絶縁膜を成膜する工程と、絶縁膜の表面に電極層を形成する工程と、電極層が形成された面と同じ側の面に、金属板のエッチング部分に開口を有する第1のレジスト膜を成膜する工程と、金属板の絶縁膜が成膜された面と反対側の面に、第1のレジスト膜の開口部分が表裏で略同じ形状になるように第2のレジスト膜を成膜する工程と、第1のレジスト膜および第2のレジスト膜をエッチングマスクとして、エッチング法を用いて金属板を除去することにより、該金属板の形状を形成する工程と、を有する。 (もっと読む)


【目的】多孔膜を含むマイクロデバイスと関連して、例えば、膜マイクロ構造体内において実質的な漏洩なく触媒処理及び非触媒化学処理の如きを可能にする。
【構成】膜マイクロ構造デバイス(10)は、第1の凹部(32)を画定する第1のガラス、セラミック又はガラスセラミックからなる板(12)と、第2の凹部(34)を画定する第2のガラス、セラミック又はガラスセラミックからなる板(20)と、第1及び第2の板(12、20)の間に挟持される非金属多孔膜(30)とを含む。第1の板(12)、第2の板(20)及び多孔膜(30)が互いに組み合わせられて、多孔膜(30)が第1の凹部(32)及び第2の凹部(34)をカバーするように配置される。第1の凹部(32)は、第1の板及び多孔膜の間に第1のマイクロチャネルを画定する。第2の凹部(34)は、第2の板及び多孔膜の間で、第1のマイクロチャネルと流体連通する第2のマイクロチャネルを画定する。 (もっと読む)


【課題】MEMSセンサーなどの物理量センサー、および、物理量センサーを比較的容易に製造できる物理量センサーの製造方法、および、物理量センサーを備えた電子機器を提供する。
【解決手段】静電容量型加速度センサー100は、固定部としての固定枠部110と、可動錘部120と、固定電極を有する固定電極部(固定腕部)150(150a,150b)と、可動電極を有する少なくとも一つの可動電極部(可動腕部)140(140a,140b)と、を有し、固定電極部150(150a,150b)は、第1積層構造体AISの側面に形成された、固定電極としての第1側面導体膜CQ1(CQ1a,CQ1b)および第1接続電極部L4(L4a,L4b)と、を有し、可動電極部140(140a,140b)は、第2積層構造体層構造体BISの側面に形成された、可動電極としての第2側面導体膜CQ2(CQ2a,CQ2b)および第2接続電極部L5(L5a,L5b)を有する。 (もっと読む)


本発明は、一般に、ホット・スイッチング(hot switching)が可能なRF MEMSデバイスに関する。RF MEMSデバイスは、1つ又はそれ以上のスプリング機構を利用することによって、ホット・スイッチングが可能である。ある実施形態では、2つ又はそれ以上のスプリングセットが使用でき、MEMSデバイスのカンチレバーの変位における特定ポイントにおいて関与する。スプリングは、所定の引き込み(pull in)着地電圧で、解放電圧の著しい増加を可能にする。
(もっと読む)


【課題】簡便に液体流路を開通状態から閉止状態にしたり、閉止状態から開通状態にしたりできる液体流路装置を低コストで提供する。
【解決手段】基板11Aの少なくとも片面に、液体が流通する液体流路12と、液体が溜まる1つ以上の液槽14a、14bとが形成され、基板11Aの流路形成面12aには蓋板13Aが積層した液体流路装置10Aであって、液体流路12の一部を閉止状態から開通状態にする開通手段S1、S2として、液体流路12に配置された栓体15を具備している。この栓体15を蓋板13Aに形成された凹部16に移動させることにより、液体流路12を開通状態とする。反対に、閉止手段T1では、凹部18から液体流路12に栓体17を移動させると、液体流路12を閉止状態にできる。 (もっと読む)


【課題】分割混合の段数を増やしたとしても、構成する流路を掘り込んだ板の枚数が増えないようにすることにより、安価で製造性、組立性およびシール性に優れたマイクロ混合器を提供する。
【解決手段】マイクロ混合器1は、流路形成部材2と、上下2枚のカバー部材3、4を積み重ねて一体的に結合した3層構造からなる。流路形成部材2は、両面に形成された混合分配流路7を有する。混合分配流路7は、表面5に4段に形成された第1の混合分配用流路8と、裏面6に4段に形成された第2の混合分配用流路9と、これらの流路を連結する複数の連通孔10a〜10mを有し、これらによって混合器13A〜13Gと、混合分配器14A〜14Cを形成している。一方のカバー部材3は、流体Aを供給する第1の流体供給口20と、混合流体Cを排出する排出口21を有し、他方のカバー部材4は、流体Bを供給する第2の流体供給口24を有する。 (もっと読む)


【課題】簡便に液体流路を閉止状態から開通状態にできる液体流路装置を低コストで提供する。
【解決手段】基板11の少なくとも片面に、液体が流通する液体流路と、液体が溜まる1つ以上の液槽14aとが形成され、基板11の流路形成面には蓋板13が積層した液体流路装置であって、液体流路の一部を閉止状態から開通状態にする開通手段S1を有し、開通手段S1は、液体流路の一部に配置され、蓋板13または液体流路の底部を外側から押圧する操作により塑性変形し、前記開通状態とする封止栓15からなる。 (もっと読む)


【課題】沈殿を生じる液体にも対応した、流路内のプライミング、洗浄性に優れる多並列処理型の乳化装置を提供する。
【解決手段】下方にエマルジョンの溶質となる分散相が流れる部品を、その上にエマルジョンの溶媒となる連続相が流れる部品が積層され、さらにその上に生成したエマルジョンが流れる部品が積層され、乳化用マイクロ流体デバイスを構成する。積層によって複数の微細な十字形の液滴生成部が構成され、液滴生成部には下方から上方に分散相が流れ、そこに連続相が左右から合流して、分散相の周囲を連続相が覆うシースフローを形成する。シースフロー内では連続相と分散相の流速差により分散相が分断、液滴化されたエマルジョンが生成され、液滴生成流路の上方へと流れる。微小な流路を全て上方に向けて開けた構造とすることで、液中の微粒子が沈殿しにくく、空気が抜け易くできる。 (もっと読む)


【課題】超小型電子デバイスのための微小空胴構造およびカプセル封じ構造を提供する。
【解決手段】微小空胴構造であって、−基板と、−カバーであって、カバーと基板の間に形成される空間が微小空胴を形成するように基板に取り付けられたカバーと、−カバーを貫通する少なくとも1つの孔と、−微小空胴内に配置された、孔のための少なくとも1つの密閉フラップであって、熱膨張係数が異なる材料の少なくとも2つの部分を備え、これらの少なくとも2つの部分が互いに貼り合わせて配置され、前記2つの部分の1つの第1の末端がカバーに機械的にリンクされ、前記2つの部分の第2の末端が自由であり、密閉フラップの少なくとも一部が孔と向かい合って配置され、前記2つの部分が、温度変化の効果の下で孔を密閉し、あるいは開放するのに適している少なくとも1つの密閉フラップとを備えた微小空胴構造。 (もっと読む)


【課題】ミラー部の慣性モーメントを簡易な構成で調整することによりミラー部の走査角や共振周波数を微調整可能にした光走査装置を提供する。
【解決手段】基板揺動部4aの両面に各々重ね合わせて設けられる第1,第2ミラー4bと、を備え、第1ミラー4bと第2ミラー4bとは、基板揺動部4aを支持する揺動軸3を中心として軸対称となるように反対方向にずれ量を持たせて積層されている。 (もっと読む)


【課題】ブリッジ部に張力を与えることによってブリッジ部をたわむことなく形成し、動作の安定したMEMSデバイスを得ること。
【解決手段】基板11上にブリッジ部を有するMEMSデバイス1の製造方法において、ブリッジ部16の材料として、その熱膨張率αmが基板11の熱膨張率αkよりも大きい材料を用い、基板11上にブリッジ部16の形成を、当該MEMSデバイス1を構成する構造体の耐熱温度よりも低くかつ当該MEMSデバイス1の使用温度よりも高い温度で行う。 (もっと読む)


【課題】研削加工によるだれの発生及び耐久性の低下を抑制することができる微小構造体、ドナー基板、及び微小構造体の製造方法を提供する。
【解決手段】微小構造体10は、第1の硬度を有する第1の導電膜からなるNi膜パターン2A〜2Eと、第1の硬度よりも低い第2の硬度を有する第2の導電膜からなるAu薄膜パターン6aとを交互に積層してなるとともに、第2の硬度よりも低くない第3の導電膜からなるNi薄膜パターン4aをAu薄膜パターン6aの外側に配置してなる。 (もっと読む)


【課題】回動するミラーを有するマイクロミラー装置において、ミラー部の慣性モーメントに大きく影響を与える重量の増加を最低限に抑えつつ、ミラー部の剛性を向上させて往復振動時の反りや変形を極力低減させることができるように、ミラー部の構成について工夫すること。
【解決手段】トーションバー(52)を介してミラー部がフレーム(53)に対して回動可能に連結されたマイクロミラー装置を前提として、
上記ミラー部は、引張り応力を有する層(12a)と圧縮応力を有する層(12b)を備え、この二つの層の屈折率を異ならせて交互に積層した積層構造から構成される応力制御反射層(12)を含んで成ることである。 (もっと読む)


【課題】接着力、観察性、無不純物、耐圧性の観点において実用性に優れた小型反応器を提供する。
【解決手段】
複数の無機透明基板11〜13を接着して小型反応器を製造する際に、各無機透明基板11〜13の互いに接触して接着される接着面16〜19を、先ず、研磨して平坦化した後、接着面16〜19の表面を部分的に加工する。次いで、接着面16〜19を親水化処理し、純水洗浄を行った後、遠心力によって純水膜を振り切って除去し、接着面同士を接着させた状態で加熱する。接着面間が酸素を介する化学結合によって接着され、複数の無機透明基板11〜13が強固に接着された小型反応器1、2が得られる。透明であるから反応が観察でき、強固であるから耐圧が高く、接着剤を使用しないから不純物の溶出がない。 (もっと読む)


【課題】基板と垂直なZ方向に変位する可動錘部の質量を増大させることができ、CMOSプロセスを用いて自在かつ容易に製造可能なMEMSセンサーを提供すること。
【解決手段】連結部130Aを介して支持部110に連結されてZ方向に移動する可動錘部120Aを有するMEMSセンサー100Aは、可動錘部が、複数の導電層と、複数の導電層間に配置された複数の層間絶縁層と、複数の層間絶縁層の各層に貫通形成された埋め込み溝パターンに充填され、層間絶縁膜よりも比重が大きいプラグと、を含む積層構造体を有し、各層に形成されたプラグは、層間絶縁層と平行な二次元平面の少なくとも一軸方向に沿って壁状に形成された壁部を含む。可動電極部140Aは積層構造体にて形成され、これと対向する固定電極部150Aとの間の対向面積が可動錘部のZ方向変位に応じて変化する。 (もっと読む)


61 - 80 / 202