説明

Fターム[3C081BA24]の内容

マイクロマシン (28,028) | 形状、構成 (11,743) | 構成要素 (3,421) | マイクロチャンネル (794) | 混合、分離部 (192)

Fターム[3C081BA24]に分類される特許

81 - 100 / 192


【課題】反応装置における反応剤の混合の均一性を高める。
【解決手段】反応装置の第1流路構造体1aは、基板4と、その基板4の一方の面を覆った状態でその面に接合されている第1封止部材6と、基板4の他方の面を覆った状態でその面に接合されている第2封止部材8とを有し、基板4の一方の面には、第1導入路10を構成する第1導入溝18と第2導入路12を構成する第2導入溝20とが形成されている一方、基板4の他方の面には、反応路16を構成する反応溝24が形成されており、さらに、合流路14を構成する合流孔22が基板4の一方の面から他方の面へ貫通しており、合流孔22は、第1導入溝18と第2導入溝20の共通の終点でかつ反応溝24の始点であり、第1導入溝18の下流側端部と第2導入溝20の下流側端部とは、基板4の一方の面において互いに異なる方向から合流孔22に合流している。 (もっと読む)


【課題】分離効率に優れたマイクロ流路デバイスを提供すること。
【解決手段】流路の一部がフィルター状の隔壁により隔てられている微小流路を有し、前記微小流路は、1つの供給口及び2つの排出口を少なくとも有し、前記供給口と1つの前記排出口とは、前記フィルター状の隔壁を通して接続されており、前記供給口と他の1つの前記排出口とは、前記フィルター状の隔壁を通らず接続されており、前記フィルター状の隔壁は、微小流路の流路方向と平行に設けられていることを特徴とするマイクロ流路デバイス、前記マイクロ流路デバイスを備えた分離装置、及び、分離方法。 (もっと読む)


【課題】チップ内に分取用の特別な機構を設けなくても、ダメージを与えることなく高速で微小粒子を分取することができ、かつ分取中にマイクロチップが移動及び変形することを防止できる微小粒子分取装置及び微小粒子分取方法を提供する。
【解決手段】導入流路11と、この導入流路11に連通する分岐流路12a,12bとが設けられたマイクロチップ1を使用して、微小粒子3a,3bを含む液から微小粒子3aを分離・回収する微小粒子分取装置に、圧力調節部2を設ける。そして、この圧力調節部2により、マイクロチップ1に接触せずに、分岐流路12a内の圧力を高め、微小粒子3aを分岐流路12bに流入させる。 (もっと読む)


本発明はマイクロ流体システムに関する。より詳細には本発明は、毛細管チャネル(14)及び流体を受ける流入口(12)を有するマイクロ流体システム、並びに、毛細管(14)を充填する方法に関する。流体を受ける流入口(12)、毛細管チャネル(14)、余剰流体を外へ出す流出口(20)、及び、前記流入口(12)と前記毛細管チャネル(14)とをつなぐ貯蔵室(10)を有するマイクロ流体システムが供される。前記貯蔵室(10)は、前記流入口(12)から前記流出口(20)への第1流路、及び、前記流入口(12)から前記毛細管チャネル(14)の入口への第2流路を形成する。流体が前記流入口(12)にて圧力を受けた状態で受けられるときに、前記毛細管チャネル(14)の入口(22)での圧力を減少させる効果を生じさせるため、前記第1流路の流体抵抗は十分に低い。
(もっと読む)


【課題】 バッチ装置における化合物の合成を促進するための方法及び装置を提供する。
【解決手段】 本願では、放射標識化合物の合成に対するバッチタイプマイクロ流体装置の適用について開示している。本願発明に係る方法及び装置では、強化環流分配弁を介して合成装置の単一入口ポートから複数試薬を選択的に送り込む。単一入口ポートから複数試薬を順次送り込むことによって、反応器への高濃度試薬の最適な送り込みが可能になり、移送中における材料の損失を最小限に抑えて、所望の生成物の合成を促進することが可能になる。このことは、放射標識生物マーカの合成にとって極めて重要である。 (もっと読む)


【課題】常温常圧から高温高圧下における流通反応を安全かつ高速、高効率で行うため、高温高圧と腐食環境に耐えうるマイクロリアクター用の中空金属反応管を提供する。
【解決手段】鉄合金またはニッケル合金チューブ1の内面に、チタンまたはチタン合金層2を有し、最上層として触媒金属層3を積層してなるマイクロリアクター用反応管。 (もっと読む)


【課題】流体の流量の制御を簡単な構造で実現でき、故障が少なく、安価で、かつ装置を微少化することができる流体制御方法を提供する。
【解決手段】ポンプ16を作動させ、容器11内の液体をチューブ17内に導入し、容器12内の液体をチューブ18内に吸引する。温度調整部13,14の設定温度を調整してチューブ17,18内を流れる液体の粘度を調整することによりチューブ17,18内を流れる液体の流量を制御する。これにより、合流部19で容器11,12内の液体を所望の混合比で混合する。 (もっと読む)


【解決手段】特にマイクロ流体装置における流体の流れを制御する装置が記載される。装置は、気体/液体の界面を利用して用途の要件にしたがって液体流を制御する。オン/オフ流れ切り換え、遠心分離、混合、計量およびアリコーティング用の装置が記載される。 (もっと読む)


【課題】複数種類の液体の混合を迅速且つ効率的に行うことができると共に、圧力損失が大きくなることもない。
【解決手段】複数種類の液体L1,L2を供給流路部12からマイクロ空間の合流部14に合流させ、合流した合流液体LMを排出流路部16を介して合流部14から排出するマイクロデバイスにおいて、供給流路部12は、1つの液体L1を2つの液体L2で挟み込むように複数種類の液体L1,L2を合流させる3本の供給流路18A,18B,18Cを1組とした流路ユニット18が合流部14の回りに1組以上配置されると共に、流路ユニット18から合流部14に流入する液体の流入方向が合流部中心14Aから偏芯するように構成されていることを特徴とするマイクロデバイスを提供する。 (もっと読む)


本発明は、マイクロチャネル反応器の中で水素化分解プロセスまたは水素化処理プロセスを行うためのプロセスに関する。本発明は、マイクロチャネルプロセス処理単位の中の複数のマイクロチャネルの中へ蒸気および液体を流すためのプロセスおよび装置にも関する。 (もっと読む)


【課題】連続的に処理が可能なマイクロ流路装置を提供すること。
【解決手段】直線状の微小流路を有し、該微小流路には、流体の流れ方向に交差する、傾斜を有する隔壁が配置され、該隔壁で仕切られた流路の少なくとも1つに流体を供給する供給口を有し、該隔壁で仕切られた流路のそれぞれに排出口が設けられ、該隔壁がフィルタであることを特徴とするマイクロ流路装置。前記微小流路が、鉛直方向に傾きをもって配置され、供給口が該供給口とフィルタを通らずに接続された排出口よりも上方に配置されていることが好ましい。 (もっと読む)


【課題】ミクロ流体装置システム中の流体流の精密な制御を提供すること。
【解決手段】流体中の同等または不同等なサイズの不連続な部分をフォーカシングおよび/または作製するミクロ流体の方法および装置を提供する。装置は簡単な技法を用いて、容易に入手可能な安価な物質から容易に製作することができる。本発明の方法は、上流部分および出口に接続する下流部分を有するミクロ流体の相互連結領域を提供すること、該ミクロ流体の相互連結領域に目的の流体および分散流体を送達すること、および該目的の流体の不連続な部分であって、基本的に均一なサイズを有する部分を創出することを含む。 (もっと読む)


【課題】流動触媒を用いた反応後に連続的に触媒を回収可能な触媒の回収方法、及び、マイクロリアクタを提供すること。
【解決手段】触媒を含む反応液を微小流路内で送液する反応工程、該反応液に触媒分離液を合流させて、触媒粒子を成長させる成長工程、及び、成長した触媒粒子を回収する回収工程、を含むことを特徴とする触媒の回収方法。触媒及び前記触媒と反応する対象物を含む反応液を送液する第一の微小流路と、前記反応液と、触媒分離液とを送液する第二の微小流路と、前記第二の微小流路から、成長した触媒粒子を回収する回収流路とを有することを特徴とするマイクロリアクタ。 (もっと読む)


マイクロ流体デバイスは、壁により画成され、流路(52)を構成するように、またこれと並行して多流路基本デザインパターン(57)を構成するように流体連通して直列に配列された、混合および/または滞留時間を提供することのできる基本デザインパターン(34)の群を備えた少なくとも1つの並列多流路構造(50)を含む少なくとも1つの反応体通路(26)を備えており、並列多流路構造(50)は、2つの隣接する並列流路(52)の基本デザインパターン(34)の間に少なくとも1つの連通区域(54)を備えており、この連通区域(54)は、連通区域(54)が間に配置された基本デザインパターン(34)により画成された平面と同じ平面にあり、同じ流動方向を有する隣接する並列流路(52)の間の質量流量差を最小にするために、流体を通過させることができる。
(もっと読む)


【課題】微小流路を用いて非常に均一な粒径を有する、20〜30μm程度より小さい微小粒子を生成することできる微小粒子製造方法及びそのための微小流路構造体を提供する。
【解決の手段】微小粒子を含有する流体を流すための微小流路及びこれに連通する排出流路を備え、かつ前記微小流路に連通する1以上の流体の導入口と前記排出流路に連通する1以上の流体の排出口とを有した構造体であって、微小流路から排出流路への分岐部において、流体が流れる方向に沿って、微小流路の深さと実質的に等しい高さの複数の仕切り壁により複数の微小空間に分割されている微小流路構造体及びそれを用いた微小粒子の製造方法を用いる。 (もっと読む)


【課題】本発明では、チップ内で微量な試料を無駄なく正確に計量し、目的のチップへ輸送できる小型のマイクロ分注装置を提供することを課題とする。
【解決手段】流動体のサンプルを導入するためのサンプル導入管と、サンプルを分注するためのサンプル分注管と、減圧に応じてサンプルを所定量分だけサンプル導入管から導き入れ、加圧に応じて導き入れた所定量のサンプルをサンプル分注管の複数の管のいずれか一に選択的に押し出すためのサンプリング導出管を有するマイクロ分注チップと、サンプル分注管の1つの管を選択的に大気開放するようラッチ駆動される選択開放管を有するマイクロ多分岐切換バルブチップと、マイクロポンプの吸引口の開口端と排出口の開口端を、交互に前記サンプリング導出管と連結するようラッチ駆動されるポンプ選択管を有する加減圧切換マイクロポンプチップから構成されるマイクロ分注装置を提供する。 (もっと読む)


【課題】微粒子と薬剤との反応を即座に観察できるようにする。
【解決手段】図2(a)
に示すように、マイクロ化学チップ装置中の微小流路20には3つの層流(つまり、微粒子を含有する微粒子含有溶液Aと、薬剤Aと、緩衝液A)が供給されている。微粒子含有溶液A中の微粒子は薬剤Aに接触することにより反応が開始されるが、図2(a)
に示す状態では緩衝液Aによって分離されているので、反応は開始されていない。この状態で緩衝液Aの供給を停止すると、同図(c)
に示すように微粒子含有溶液Aと薬剤Aとが接触することとなるが、薬剤Aは微粒子含有溶液Aの内部まで入り込むので多くの微粒子に接触することとなり(チューブラピンチ効果によれば、微粒子は層流表面よりも少し内側を流れることとなる)、微粒子と薬剤との反応が即座に観察できることとなる。 (もっと読む)


【課題】
浸透圧発生時の半透膜を介して流入してくる溶媒による半透膜近傍での濃度降下を防ぎ、高い浸透圧を持続することができる送液機構を提供すること。
【解決手段】
本発明にかかる浸透圧ポンプ101は、半透膜102と、前記半透膜102によって仕切られた少なくとも2つの室と、前記半透膜の片側に少なくとも1種類の溶質を保持させる溶質保持手段とからなり、前記溶質保持手段によって生じた前記2つの室間に充填された溶液の濃度差によって浸透圧を発生することを特徴とする。また、本発明にかかるマイクロチップは該浸透圧ポンプを用いた送液機構を有することを特徴とする。 (もっと読む)


【課題】マイクロ流体システムにおける、流体種の制御及び操作を提供すること。
【解決手段】
1つの様態において、本発明は、例えば、電界、機械的変形、介在流体の添加等を用いて、液体に囲まれた流体の小滴を生成するシステム及び方法に関する。特定の例において、小滴の各々にほぼ均一の数の成分を含有させることができる。例えば、小滴各々の95%以上に同一数の特定種成分を含有させることができる。別の様態において、本発明は、例えば電荷及び/又は双極子と、電界との相互作用を通して、流体小滴を2つの小滴に分割するためのシステム及び方法に関する。また、本発明は、本発明の別の様態において、例えば電荷及び/又は双極子と電界との相互作用を通して、小滴を融合させるためのシステム及び方法に関する。特定の例において、小滴の融合によって、反応を開始させ又はこれを判別することができる。 (もっと読む)


【課題】 反応や分析のステップ数や量の制限が緩く、製造が容易であるマイクロ流体システム用支持ユニット、さらに、複雑な流体回路を高密度に実装できるマイクロ流体システム用支持ユニットを提供する。
【解決手段】 第一の支持体と、マイクロ流体システムの流路を構成する、少なくとも一本の中空フィラメントとを備え、該中空フィラメントが前記第一の支持体に任意の形状に敷設され、かつ前記中空フィラメントの内側の所定箇所が機能性を有するマイクロ流体システム用支持ユニットに関する。 (もっと読む)


81 - 100 / 192